Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = solid–liquid–vapor equilibrium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3327 KB  
Article
Numerical Analysis of Heat Transfer and Flow Characteristics in Porous Media During Phase-Change Process of Transpiration Cooling for Aerospace Thermal Management
by Junhyeon Bae, Jukyoung Shin and Tae Young Kim
Energies 2025, 18(15), 4070; https://doi.org/10.3390/en18154070 - 31 Jul 2025
Viewed by 676
Abstract
Transpiration cooling that utilizes the phase change of a liquid coolant is recognized as an effective thermal protection technique for extreme environments. However, the introduction of phase change within the porous structure brings about challenges, such as vapor blockage, pressure fluctuations, and temperature [...] Read more.
Transpiration cooling that utilizes the phase change of a liquid coolant is recognized as an effective thermal protection technique for extreme environments. However, the introduction of phase change within the porous structure brings about challenges, such as vapor blockage, pressure fluctuations, and temperature inversion, which critically influence system reliability. This study conducts numerical analyses of coupled processes of heat transfer, flow, and phase change in transpiration cooling using a Two-Phase Mixture Model. The simulation incorporates a Local Thermal Non-Equilibrium approach to capture the distinct temperature fields of the solid and fluid phases, enabling accurate prediction of the thermal response within two-phase and single-phase regions. The results reveal that under low heat flux, dominant capillary action suppresses dry-out and expands the two-phase region. Conversely, high heat flux causes vaporization to overwhelm the capillary supply, forming a superheated vapor layer and constricting the two-phase zone. The analysis also explains a paradoxical pressure drop, where an initial increase in flow rate reduces pressure loss by suppressing the high-viscosity vapor phase. Furthermore, a local temperature inversion, where the fluid becomes hotter than the solid matrix, is identified and attributed to vapor counterflow and its subsequent condensation. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

20 pages, 5211 KB  
Article
Perspectives of Hydrogen Generation in Cavitation–Jet Hydrodynamic Reactor
by G. K. Mamytbekov, I. V. Danko, Zh. I. Beksultanov, Y. R. Nurtazin and A. Rakhimbayev
Appl. Sci. 2024, 14(20), 9415; https://doi.org/10.3390/app14209415 - 15 Oct 2024
Viewed by 2254
Abstract
The article investigates the potential for producing hydrogen by combining the methods of water splitting under cavitation and the chemical activation of aluminum in a high-speed cavitation–jet flow generated by a specialized hydrodynamic reactor. The process of cavitation and water spraying causes the [...] Read more.
The article investigates the potential for producing hydrogen by combining the methods of water splitting under cavitation and the chemical activation of aluminum in a high-speed cavitation–jet flow generated by a specialized hydrodynamic reactor. The process of cavitation and water spraying causes the liquid heating itself until it reaches saturated vapor pressure, resulting in the creation of vapor–gaseous products from the splitting of water molecules. The producing of vapor–gaseous products can be explained through the theory of non-equilibrium low-temperature plasma formation within a high-speed cavitation–jet flow of fluid. Special focus is also given to the interactions occurring at the interface boundary phase of aluminum and liquid under cavitation condition. The primary solid products formed on aluminum surfaces are bayerite, copper oxides (I and II), iron carbide, and a compound of magnesium oxides and aluminum hydroxide. A high hydrogen yield of 60% was achieved when using a 0.1% sodium hydroxide solution as a working liquid compared to demineralized water. Moreover, hydrogen methane was also detected in the volume of the vapor–gas mixture, which could be utilized to address the challenges of decarbonization and the recycling of aluminum-containing solid industrial and domestic waste. This work provides a contribution to the study of the mechanism of hydrogen generation by cavitation–jet processing of water and aqueous alkali solutions, in which conditions are created for double cavitation in the cavitation–jet chamber of the hydrodynamic reactor. Full article
Show Figures

Figure 1

14 pages, 1986 KB  
Article
Composition of Vapor–Liquid–Solid III–V Ternary Nanowires Based on Group-III Intermix
by Vladimir G. Dubrovskii
Nanomaterials 2023, 13(18), 2532; https://doi.org/10.3390/nano13182532 - 11 Sep 2023
Cited by 6 | Viewed by 1242
Abstract
Compositional control in III–V ternary nanowires grown by the vapor–liquid–solid method is essential for bandgap engineering and the design of functional nanowire nano-heterostructures. Herein, we present rather general theoretical considerations and derive explicit forms of the stationary vapor–solid and liquid–solid distributions of vapor–liquid–solid [...] Read more.
Compositional control in III–V ternary nanowires grown by the vapor–liquid–solid method is essential for bandgap engineering and the design of functional nanowire nano-heterostructures. Herein, we present rather general theoretical considerations and derive explicit forms of the stationary vapor–solid and liquid–solid distributions of vapor–liquid–solid III–V ternary nanowires based on group-III intermix. It is shown that the vapor–solid distribution of such nanowires is kinetically controlled, while the liquid–solid distribution is in equilibrium or nucleation-limited. For a more technologically important vapor-solid distribution connecting nanowire composition with vapor composition, the kinetic suppression of miscibility gaps at a growth temperature is possible, while miscibility gaps (and generally strong non-linearity of the compositional curves) always remain in the equilibrium liquid–solid distribution. We analyze the available experimental data on the compositions of the vapor–liquid–solid AlxGa1−xAs, InxGa1−xAs, InxGa1−xP, and InxGa1−xN nanowires, which are very well described within the model. Overall, the developed approach circumvents uncertainty in choosing the relevant compositional model (close-to-equilibrium or kinetic), eliminates unknown parameters in the vapor–solid distribution of vapor–liquid–solid nanowires based on group-III intermix, and should be useful for the precise compositional tuning of such nanowires. Full article
(This article belongs to the Special Issue Preparation and Application of Nanowires: 2nd Edition)
Show Figures

Figure 1

33 pages, 5002 KB  
Review
An Overview of Modeling Approaches for Compositional Control in III–V Ternary Nanowires
by Egor D. Leshchenko and Vladimir G. Dubrovskii
Nanomaterials 2023, 13(10), 1659; https://doi.org/10.3390/nano13101659 - 17 May 2023
Cited by 15 | Viewed by 1899
Abstract
Modeling of the growth process is required for the synthesis of III–V ternary nanowires with controllable composition. Consequently, new theoretical approaches for the description of epitaxial growth and the related chemical composition of III–V ternary nanowires based on group III or group V [...] Read more.
Modeling of the growth process is required for the synthesis of III–V ternary nanowires with controllable composition. Consequently, new theoretical approaches for the description of epitaxial growth and the related chemical composition of III–V ternary nanowires based on group III or group V intermix were recently developed. In this review, we present and discuss existing modeling strategies for the stationary compositions of III–V ternary nanowires and try to systematize and link them in a general perspective. In particular, we divide the existing approaches into models that focus on the liquid–solid incorporation mechanisms in vapor–liquid–solid nanowires (equilibrium, nucleation-limited, and kinetic models treating the growth of solid from liquid) and models that provide the vapor–solid distributions (empirical, transport-limited, reaction-limited, and kinetic models treating the growth of solid from vapor). We describe the basic ideas underlying the existing models and analyze the similarities and differences between them, as well as the limitations and key factors influencing the stationary compositions of III–V nanowires versus the growth method. Overall, this review provides a basis for choosing a modeling approach that is most appropriate for a particular material system and epitaxy technique and that underlines the achieved level of the compositional modeling of III–V ternary nanowires and the remaining gaps that require further studies. Full article
Show Figures

Graphical abstract

41 pages, 8850 KB  
Review
Topological Isomorphism of Liquid–Vapor, Fusibility, and Solubility Diagrams: Analogues of Gibbs–Konovalov and Gibbs–Roozeboom Laws for Solubility Diagrams
by Nikolay A. Charykov, Alexey V. Rumyantsev, Konstantin N. Semenov, Zhasulan Shaymardanov, Botogyz Shaymardanova, Natalia A. Kulenova, Marzhan A. Sadenova, Ludmila V. Shushkevich, Victor A. Keskinov and Alexander A. Blokhin
Processes 2023, 11(5), 1405; https://doi.org/10.3390/pr11051405 - 6 May 2023
Cited by 5 | Viewed by 2566
Abstract
The comprehensive topological isomorphism of liquid–vapor, fusibility, and solubility diagrams in the proper sets of variables is proven with the aid of van der Waals equations of the shift in phase equilibrium. Analogues of Gibbs–Konovalov and Gibbs–Roozeboom laws are demonstrated in solubility diagrams [...] Read more.
The comprehensive topological isomorphism of liquid–vapor, fusibility, and solubility diagrams in the proper sets of variables is proven with the aid of van der Waals equations of the shift in phase equilibrium. Analogues of Gibbs–Konovalov and Gibbs–Roozeboom laws are demonstrated in solubility diagrams of ternary and quaternary systems under crystallization of different types of solid solutions. For the demonstration, the quaternary reciprocal system K+,NH4+||Cl,BrH2O and its ternary subsystems with modeling of the liquid phase within the framework of the classical Pitzer formalism are mainly used. An algorithm for calculating solubility equilibria in these systems is given. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

19 pages, 6256 KB  
Article
Euler–Euler Multi-Scale Simulations of Internal Boiling Flow with Conjugated Heat Transfer
by Edouard Butaye, Adrien Toutant and Samuel Mer
Appl. Mech. 2023, 4(1), 191-209; https://doi.org/10.3390/applmech4010011 - 6 Feb 2023
Cited by 2 | Viewed by 2813
Abstract
A numerical approach was implemented, to study a boiling flow in a horizontal serpentine tube. A NEPTUNE_CFD two-fluid model was used, to study the behavior of the refrigerant R141b in diabatic cases. The model was based on the Euler–Euler formalism of the Navier–Stokes [...] Read more.
A numerical approach was implemented, to study a boiling flow in a horizontal serpentine tube. A NEPTUNE_CFD two-fluid model was used, to study the behavior of the refrigerant R141b in diabatic cases. The model was based on the Euler–Euler formalism of the Navier–Stokes equations, in which governing equations are solved for both phases of the fluid at each time step. The conjugate heat transfer—between the tube wall and the fluid—was considered via a coupling with the SYRTHES 4.3 software, which solves solid conduction in three dimensions. A mesh convergence study was carried out, which found that a resolution of 40 meshes per diameter was necessary for our case. The approach was validated by comparison with an experimental study of the literature, based on the faithful reproduction of the positions of two-phase flow regime transitions in the domain. Original post-processing was used, to unravel the flow characteristics. The mean and RMS fields of void fraction, temperatures and stream wise velocities in several sections were analyzed, when statistical convergence was reached. A thermal equilibrium was reached in the saturated liquid, but not in the vapor phase, due to the flow dynamic and possibly the presence of droplets. Finally, a thermal analysis of the configuration was proposed. It demonstrated the strong coupling between the temperature distribution in the solid, and the two-phase flow regimes at stake in the fluid domain. Full article
(This article belongs to the Special Issue Applied Thermodynamics: Modern Developments (2nd Volume))
Show Figures

Figure 1

22 pages, 3858 KB  
Article
Carbon Capture from Post-Combustion Flue Gas Using a State-Of-The-Art, Anti-Sublimation, Solid–Vapor Separation Unit
by Hani Ababneh, Ahmed AlNouss and Shaheen A. Al-Muhtaseb
Processes 2022, 10(11), 2406; https://doi.org/10.3390/pr10112406 - 15 Nov 2022
Cited by 13 | Viewed by 6626
Abstract
This work attempts to address the quest of removing carbon dioxide from flue gas streams to help preserve the environment. It is based on a model that is able to describe the solid-liquid-vapour and solid-vapour phase equilibria for the ternary system of N [...] Read more.
This work attempts to address the quest of removing carbon dioxide from flue gas streams to help preserve the environment. It is based on a model that is able to describe the solid-liquid-vapour and solid-vapour phase equilibria for the ternary system of N2-O2-CO2 at pressures from 5 to 130 bar and over a wide range of temperature (140 to 220 K). Furthermore, a corresponding state-of-the art solid-vapor (SV) CO2 capture/separation unit is developed and introduced in this work. The SV unit was modeled using the Aspen Custom Modeler software by implementing the thermodynamic model developed before. It was then simulated using the Aspen Plus simulator; its performance was studied and analyzed. Moreover, the performance of the unit was optimized and compared to the most conventional corresponding technology used by the industry (i.e., amine-scrubbing). Results proved that for the same output clean gas composition, which contains only 0.3% CO2, the developed state-of-the-art SV unit consumes almost half of the energy required by the conventional process. Other advantages of the novel SV separation unit include the lower requirement of capital equipment, no need of additional agents (such as solvents) and the avoidance of product contamination with such additional agents. Full article
(This article belongs to the Special Issue Trends in Carbon Capture, Storage and Utilisation)
Show Figures

Graphical abstract

15 pages, 2189 KB  
Article
Effect of Dissolved Salts on Steady-State Heat Transfer Using Excessive Cooling by Water-Air Mists
by Constantin Alberto Hernández-Bocanegra, Francisco Andrés Acosta-González, José Ángel Ramos-Banderas and Nancy Margarita López-Granados
Metals 2022, 12(5), 819; https://doi.org/10.3390/met12050819 - 10 May 2022
Viewed by 1954
Abstract
This work reports a new finding on the effect of dissolved salts, in water-air mists, on spray heat removal efficiencies from a metallic surface under steady state conditions. The experimental system is based on a calorimeter that measures heat flux removed by water-air [...] Read more.
This work reports a new finding on the effect of dissolved salts, in water-air mists, on spray heat removal efficiencies from a metallic surface under steady state conditions. The experimental system is based on a calorimeter that measures heat flux removed by water-air mist sprays from 8 mm diameter × 2.5 mm thickness platinum samples heated by electromagnetic induction. During steady-state experiments, a solid-state controller equilibrates automatically the rate of heat generation with the rate of heat removal to reach a constant temperature. Equilibrium temperatures for stepwise T rising include 200 to 1200 °C in steps of 100 °C and then stepwise T that is lowered to 200 °C. The new finding is that, when using soft water-air mist and a high-water impingement density, a lack of temperature control during stepwise T increases was observed when stepping from 200 to 300 °C. This lack of temperature control is associated with a high heat flux and is attributed to the stabilization of the single-phase convection regime when T rising from 200 to 300 °C. Temperature stabilization was again possible only at wall temperatures Tw600 °C, at which single-phase convection was not stable. In contrast, when using a hard water-air mist under the same fluid flow conditions, all temperatures were readily reached. This is attributed to the transition from single-phase convection to nucleate boiling regime when T increased from 200 to 300 °C. This transition leads to a decrease in heat flux due to a reduction in the contact area between liquid and the wall surface. Finally, the corresponding boiling curves at high wall temperatures show the importance of heat radiation from the wall to understand the effect of salts during the stable vapor film regime. Full article
Show Figures

Figure 1

14 pages, 1761 KB  
Article
Freezing Protocol Optimization for Iberian Red Deer (Cervus elaphus hispanicus) Epididymal Sperm under Field Conditions
by Daniela Alejandra Medina-Chávez, Ana Josefa Soler, Alicia Martín-Maestro, Silvia Villaverde, Irene Sánchez-Ajofrín, Patricia Peris-Frau, Enrique del Olmo, Alfonso Bisbal, Olga García-Álvarez, María del Rocío Fernández-Santos and José Julián Garde
Animals 2022, 12(7), 869; https://doi.org/10.3390/ani12070869 - 30 Mar 2022
Cited by 7 | Viewed by 2717
Abstract
Creating germplasm banks of wild species, such as the Iberian red Deer (Cervus elaphus hispanicus) can be challenging. One of the main difficulties is the obtention and cryopreservation of good-quality reproductive cells when the spermatozoa are obtained from epididymides after death. [...] Read more.
Creating germplasm banks of wild species, such as the Iberian red Deer (Cervus elaphus hispanicus) can be challenging. One of the main difficulties is the obtention and cryopreservation of good-quality reproductive cells when the spermatozoa are obtained from epididymides after death. To avoid a loss of seminal quality during transport, developing alternative methods for cooling and freezing sperm samples under field conditions is necessary. The objective of this study was to evaluate the effects of different durations of equilibrium and different techniques of cooling and freezing on Iberian red deer epididymal sperm quality after thawing to optimize the processing conditions in this species. Three experiments were carried out: (I) evaluation of refrigeration in straws or tubes of 15 mL; (II) study of equilibration period (0, 30, 60, or 120 min); and (III) comparison of four freezing techniques (liquid nitrogen vapor in a tank (C), liquid nitrogen vapor in a polystyrene box (B), dry ice (DY), and placing straws on a solid metallic plate floating on the surface of liquid nitrogen (MP)). For all experiments, sperm motility and kinematic parameters, acrosomal integrity, sperm viability, mitochondrial membrane potential, and DNA integrity were evaluated after thawing. All statistical analyses were performed by GLM-ANOVA analysis. Samples refrigerated in straws showed higher values (p ≤ 0.05) for mitochondrial activity and lower values (p ≤ 0.05) for apoptotic cells. Moreover, the acrosome integrity showed significant differences (p ≤ 0.05) between 0 and 120 min, but not between 30 and 60 min, of equilibration. Finally, no significant differences were found between freezing in liquid nitrogen vapors in a tank or in a box, although there was a low quality after thawing when the samples were cryopreserved in dry ice or by placing straws on a solid metallic plate floating on the surface of liquid nitrogen. In conclusion, under field conditions, it would be possible to refrigerate the sperm samples by storing them in straws with a 120 min equilibration period and freezing them in liquid nitrogen vapors in a tank or box. Full article
(This article belongs to the Special Issue New Challenges in Cryopreservation)
Show Figures

Figure 1

14 pages, 4481 KB  
Article
Effect of Atmospheres on Transformation of Heavy Metals during Thermal Treatment of MSWI Fly Ash: By Thermodynamic Equilibrium Calculation
by Facun Jiao, Xulong Ma, Tao Liu, Chengli Wu, Hanxu Li and Zhongbing Dong
Molecules 2022, 27(1), 131; https://doi.org/10.3390/molecules27010131 - 27 Dec 2021
Cited by 11 | Viewed by 3263
Abstract
The vaporization behaviors of eight heavy metals (Pb, Zn, Cu, Cd, Cr, Co, Mn, and Ni) in municipal solid wastes incineration (MSWI) fly ash during thermal treatment under air atmosphere (21% O2/79% N2), an inert atmosphere (100% N2 [...] Read more.
The vaporization behaviors of eight heavy metals (Pb, Zn, Cu, Cd, Cr, Co, Mn, and Ni) in municipal solid wastes incineration (MSWI) fly ash during thermal treatment under air atmosphere (21% O2/79% N2), an inert atmosphere (100% N2), and a reducing atmosphere (50% CO/50% N2) were evaluated based on a thermodynamic equilibrium calculation by FactSage 8.1. The results show that the reducing atmosphere promotes the melting of MSWI fly ash, resulting in a more liquid phase than in air or an inert atmosphere. Except for Cd, the formation of liquids can dissolve heavy metals and reduce their vaporization ratio. In the air and inert atmospheres, Pb, Zn, Cu, Co, Mn, and Ni vaporize mainly in the form of metallic chlorides, while Cd volatilizes in the form of metallic Cd (g) and CdO (g). In the reducing atmosphere, Co, Mn, and Ni still vaporize as chlorides. Zn and Cd mainly vaporize in the form of Zn (g) and Cd (g), respectively. In terms of Pb, in addition to its chlorides, the volatiles of Pb contain some Pb (g) and PbS (g). Cr has a low vaporization ratio, accounting for 2.4% of the air atmosphere. Cr, on the other hand, readily reacts with Ca to form water-soluble CrCaO4, potentially increasing Cr leaching. Except for Cd, the results of this study suggest that the reducing atmosphere is used for the thermal treatment of MSWI fly ash because it promotes the melting of fly ash and thus prevents heavy metal vaporization. Full article
Show Figures

Figure 1

18 pages, 28337 KB  
Article
A Molecular Dynamics Study of Heat Transfer Enhancement during Phase Change from a Nanoengineered Solid Surface
by A. K. M. Monjur Morshed, Muhammad Rubayat Bin Shahadat, Md. Rakibul Hasan Roni, Ahmed Shafkat Masnoon, Saif Al-Afsan Shamim and Titan C. Paul
Processes 2021, 9(4), 715; https://doi.org/10.3390/pr9040715 - 18 Apr 2021
Cited by 5 | Viewed by 4452
Abstract
This study investigates the enhancement of the rate of evaporation from a nanoengineered solid surface using non-equilibrium molecular dynamics simulation. Four different types of surface modifications were introduced to examine the thermal transportation behavior. The surface modification includes: (1) transformation of surface wetting [...] Read more.
This study investigates the enhancement of the rate of evaporation from a nanoengineered solid surface using non-equilibrium molecular dynamics simulation. Four different types of surface modifications were introduced to examine the thermal transportation behavior. The surface modification includes: (1) transformation of surface wetting condition from hydrophobic to hydrophilic, (2) implementing nanostructures on the smooth surface, (3) cutting nano slots on the smooth surface and (4) introducing nano-level surface roughness. Evaporation behavior from the same effective surface area was also studied. The simulation domain consisted of three distinct zones: solid base wall made of copper, a few layers of liquid argon, and a vapor zone made of argon. All the nano-level surface modifications were introduced on the solid base surface. The few layers of liquid argon representing the liquid zone of the domain take heat from the solid surface and get evaporated. Outside this solid and liquid zone, there is argon vapor. The simulation began at the initial time t = 0 ns and then was allowed to reach equilibrium. Immediately after equilibrium was achieved on all three-phase systems, the temperature of the solid wall was raised to a higher value. In this way, thermal transportation from the solid wall to liquid argon was established. As the temperature of the solid wall was high enough, the liquid argon tended to evaporate. From the simulation results, it is observed that during the transformation from hydrophobic to hydrophilic conditions, enhancement of evaporation takes place due to the improvement of thermal transportation behavior. At the nanostructure surface, the active nucleation sites and effective surface area increase which results in evaporation enhancement. With nano slots and nano-level surface roughness, the rate of evaporation increases due to the increase of solid-liquid contact area and effective surface area. Full article
(This article belongs to the Special Issue Rheological Study of Nanofluids)
Show Figures

Figure 1

17 pages, 2081 KB  
Review
Dependency of Contact Angles on Three-Phase Contact Line: A Review
by H. Yildirim Erbil
Colloids Interfaces 2021, 5(1), 8; https://doi.org/10.3390/colloids5010008 - 1 Feb 2021
Cited by 49 | Viewed by 9679
Abstract
The wetted area of a sessile droplet on a practical substrate is limited by the three-phase contact line and characterized by contact angle, contact radius and drop height. Although, contact angles of droplets have been studied for more than two hundred years, there [...] Read more.
The wetted area of a sessile droplet on a practical substrate is limited by the three-phase contact line and characterized by contact angle, contact radius and drop height. Although, contact angles of droplets have been studied for more than two hundred years, there are still some unanswered questions. In the last two decades, it was experimentally proven that the advancing and receding contact angles, and the contact angle hysteresis of rough and chemically heterogeneous surfaces, are determined by interactions of the liquid and the solid at the three-phase contact line alone, and the interfacial area within the contact perimeter is irrelevant. However, confusion and misunderstanding still exist in this field regarding the relationship between contact angle and surface roughness and chemical heterogeneity. An extensive review was published on the debate for the dependence of apparent contact angles on drop contact area or the three-phase contact line in 2014. Following this old review, several new articles were published on the same subject. This article presents a review of the novel articles (mostly published after 2014 to present) on the dependency of contact angles on the three-phase contact line, after a short summary is given for this long-lasting debate. Recently, some improvements have been made; for example, a relationship of the apparent contact angle with the properties of the three-phase line was obtained by replacing the solid–vapor interfacial tension term, γSV, with a string tension term containing the edge energy, γSLV, and curvature of the triple contact line, km, terms. In addition, a novel Gibbsian thermodynamics composite system was developed for a liquid drop resting on a heterogeneous multiphase and also on a homogeneous rough solid substrate at equilibrium conditions, and this approach led to the same conclusions given above. Moreover, some publications on the line energy concept along the three-phase contact line, and on the “modified” Cassie equations were also examined in this review. Full article
(This article belongs to the Special Issue Wetting on Micro/Nano-Scale: From Fundamentals to Application)
Show Figures

Figure 1

12 pages, 3566 KB  
Article
What Can You Learn about Apparent Surface Free Energy from the Hysteresis Approach?
by Konrad Terpiłowski, Lucyna Hołysz, Michał Chodkowski and David Clemente Guinarte
Colloids Interfaces 2021, 5(1), 4; https://doi.org/10.3390/colloids5010004 - 14 Jan 2021
Cited by 12 | Viewed by 4092
Abstract
The apparent surface free energy is one of the most important quantities in determining the surface properties of solids. So far, no method of measuring this energy has been found. The essence of contact angle measurements is problematic. Contact angles should be measured [...] Read more.
The apparent surface free energy is one of the most important quantities in determining the surface properties of solids. So far, no method of measuring this energy has been found. The essence of contact angle measurements is problematic. Contact angles should be measured as proposed by Young, i.e., in equilibrium with the liquid vapors. This type of measurement is not possible because within a short time, the droplet in the closed chamber reaches equilibrium not only with vapors but also with the liquid film adsorbed on the tested surface. In this study, the surface free energy was determined for the plasma-activated polyoxymethylene (POM) polymer. Activation of the polymer with plasma leads to an increase in the value of the total apparent surface free energy. When using the energy calculations from the hysteresis based approach (CAH), it should be noted that the energy changes significantly when it is calculated from the contact angles of a polar liquid, whereas being calculated from the angles of a non-polar liquid, the surface activation with plasma changes its value slightly. Full article
(This article belongs to the Special Issue Outstanding Scientists in Colloids and Interfaces: Emil Chibowski)
Show Figures

Figure 1

12 pages, 2471 KB  
Article
Active Biopolymer Coating Based on Sodium Caseinate: Physical Characterization and Antioxidant Activity
by Marika Valentino, Stefania Volpe, Fabio Angelo Di Giuseppe, Silvana Cavella and Elena Torrieri
Coatings 2020, 10(8), 706; https://doi.org/10.3390/coatings10080706 - 22 Jul 2020
Cited by 27 | Viewed by 4901
Abstract
The objective of this work was to investigate the effect of sodium caseinate concentration on physical-chemical properties of coating solutions and films obtained by casting as a starting point for the development of an active coating for minimally processed fruits or vegetables. Sodium [...] Read more.
The objective of this work was to investigate the effect of sodium caseinate concentration on physical-chemical properties of coating solutions and films obtained by casting as a starting point for the development of an active coating for minimally processed fruits or vegetables. Sodium caseinate solutions at different concentrations (4%, 8%, 10%, 12%, 14%) were used as a coating system. The coating viscosity and desorption kinetic were characterized. Minimally processed fennels were coated by dipping and the liquid and dry coating thickness were estimated by assessing the amount of coating on fennel during draining as a function of solution properties (concentration and viscosity). Film obtained by casting were also characterized in terms of equilibrium moisture content, color, and water vapor permeability. The potential of using the sodium caseinate solution to obtain active coating was investigated by adding gallic acid or rosemary oil to sodium caseinate solution at 4%. The antioxidant capacity of the coating was evaluated by DPPH test. Results show that sodium caseinate solutions follow a Newtonian behavior in the range of concentration investigated and the viscosity increased as solids concentration increased, following a power law. The drying rate was in the range 0.0063–0.00107 mgH2O·mgsolids−1·min−1·m−2 as a function of sodium caseinate concentration. The average liquid and dry coating thickness on fennels were in the range 20–70 and 0.7–6.4 μm, respectively. The water vapor permeability slightly decreased as the solid concentration increased. Active coating showed good antioxidant properties. Full article
(This article belongs to the Special Issue Bio-Based Active Packaging for Shelf Life Extension)
Show Figures

Figure 1

27 pages, 14998 KB  
Review
Experimental Data of Fluid Phase Equilibria- Correlation and Prediction Models: A Review
by Urszula Domańska
Processes 2019, 7(5), 277; https://doi.org/10.3390/pr7050277 - 10 May 2019
Cited by 26 | Viewed by 8959
Abstract
The examples of phase equilibria in binary systems, solid/liquid (SLE), liquid/liquid (LLE), vapor/liquid (VLE), as well as liquid/liquid equilibria in ternary systems mainly containing ionic liquids (ILs), or the infragrance materials, or pharmaceuticals with molecular organic solvents, such as an alcohol, or water, [...] Read more.
The examples of phase equilibria in binary systems, solid/liquid (SLE), liquid/liquid (LLE), vapor/liquid (VLE), as well as liquid/liquid equilibria in ternary systems mainly containing ionic liquids (ILs), or the infragrance materials, or pharmaceuticals with molecular organic solvents, such as an alcohol, or water, or hydrocarbons, are presented. The most popular correlation methods of the experimental phase equilibrium data are presented, related to the excess Gibbs free energy models such as Wilson, universal-quasichemical, UNIQUAC and non-random two-liquid model, NRTL as well as several popular theories for the modeling of the phase equilibria and excess molar enthalpy, HE in binary or ternary mixtures are presented: the group contribution method (Mod. UNIFAC) and modified UNIFAC model for pharmaceuticals and lattice theory based on non-random hydrogen bonding (NRHB). The SLE, LLE, or VLE and HE of these systems may be described by the Perturbed-Chain Polar Statistical Associating Fluid Theory (PC-SAFT), or a Conductor-like Screening Model for Real Solvents (COSMO-RS). The examples of the application of ILs as extractants for the separation of aromatic hydrocarbons from alkanes, sulfur compounds from alkanes, alkenes from alkanes, ethylbenzene from styrene, butan-1-ol from water phase, or 2-phenylethanol (PEA) from water are discussed on the basis of previously published data. The first information about the selectivity of extrahent for separation can be obtained from the measurements of the limiting activity coefficient measurements by the gas–liquid chromatography technique. This review outlines the main research work carried out over the last few years on direct measurements of phase equilibria, or HE and limiting activity coefficients, the possibility of thermodynamic modeling with emphasis on recent research achievements and potential for future research. Full article
(This article belongs to the Special Issue Thermodynamics: Modeling and Simulation)
Show Figures

Graphical abstract

Back to TopTop