Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (254)

Search Parameters:
Keywords = solid-phase fermentation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1056 KB  
Article
Kinetics of Lactic Acid, Acetic Acid and Ethanol Production During Submerged Cultivation of a Forest Litter-Based Biofertilizer
by Sophie Nafil, Lucie Miché, Loris Cagnacci, Martine Martinez and Pierre Christen
Fermentation 2026, 12(1), 52; https://doi.org/10.3390/fermentation12010052 - 16 Jan 2026
Viewed by 348
Abstract
Fermented forest litter (FFL) is a biofertilizer obtained by anaerobic fermentation of forest litter combined with agricultural by-products. Its production involves an initial one-month solid-state fermentation of oak litter mixed with whey, molasses and wheat bran, followed by a one-week submerged fermentation-called the [...] Read more.
Fermented forest litter (FFL) is a biofertilizer obtained by anaerobic fermentation of forest litter combined with agricultural by-products. Its production involves an initial one-month solid-state fermentation of oak litter mixed with whey, molasses and wheat bran, followed by a one-week submerged fermentation-called the “activation” phase-during which the solid FFL is fermented with sugarcane molasses diluted in water. This study aimed to evaluate the effects storage duration (6, 18 and 30 months), and temperature (ambient and 29 °C) on the activation phase. For this purpose, pH, sugar consumption and metabolite production dynamics were monitored. Under all experimental conditions, the pH dropped to values close to 3.5, sucrose was rapidly hydrolyzed, and glucose was preferentially consumed over fructose. Fructose was metabolized only after glucose was depleted, suggesting the involvement of fructophilic microorganisms. The time-course evolution of lactic acid (LA) concentration was adequately fitted by the Gompertz model (R2 > 0.970). The highest LAmax concentration (6.30 g/L) and production rate (2.16 g/L·d) were obtained with FFL stored for 6 months. Acetic acid (AA) and ethanol were also detected reaching maxima values of 1.19 g/L and 0.96 g/L, respectively. Their profiles varied depending on the experimental conditions. Notably, the AA/LA ratio increased with the age of the FFL. Overall, sugar consumption and metabolite production were significantly slower at ambient temperature, than at 29 °C. These results contribute to a better understanding of the metabolic dynamics during FFL activation and highlight key parameters that should be considered to optimize future biofertilizer production processes. Full article
Show Figures

Graphical abstract

20 pages, 873 KB  
Review
Enhancing Food Safety, Quality and Sustainability Through Biopesticide Production Under the Concept of Process Intensification
by Nathiely Ramírez-Guzmán, Mónica L. Chávez-González, Ayerim Y. Hernández-Almanza, Deepak K. Verma and Cristóbal N. Aguilar
Appl. Sci. 2026, 16(2), 644; https://doi.org/10.3390/app16020644 - 8 Jan 2026
Viewed by 395
Abstract
The worldwide population is anticipated to reach 10.12 billion by the year 2100, thereby amplifying the necessity for sustainable agricultural methodologies to secure food availability while reducing ecological consequences. Conventional synthetic pesticides, while capable of increasing crop yields by as much as 50%, [...] Read more.
The worldwide population is anticipated to reach 10.12 billion by the year 2100, thereby amplifying the necessity for sustainable agricultural methodologies to secure food availability while reducing ecological consequences. Conventional synthetic pesticides, while capable of increasing crop yields by as much as 50%, present considerable hazards such as toxicity, the emergence of resistance, and environmental pollution. This review examines biopesticides, originating from microbial (e.g., Bacillus thuringiensis, Trichoderma spp.), plant, or animal sources, as environmentally sustainable alternatives which address pest control through mechanisms including antibiosis, hyperparasitism, and competition. Biopesticides provide advantages such as biodegradability, minimal toxicity to non-target organisms, and a lower likelihood of resistance development. The global market for biopesticides is projected to be valued between USD 8 and 10 billion by 2025, accounting for 3–4% of the overall pesticide sector, and is expected to grow at a compound annual growth rate (CAGR) of 12–16%. To mitigate production costs, agro-industrial byproducts such as rice husk and starch wastewater can be utilized as economical substrates in both solid-state and submerged fermentation processes, which may lead to a reduction in expenses ranging from 35% to 59%. Strategies for process intensification, such as the implementation of intensified bioreactors, continuous cultivation methods, and artificial intelligence (AI)-driven monitoring systems, significantly improve the upstream stages (including strain development and fermentation), downstream processes (such as purification and drying), and formulation phases. These advancements result in enhanced productivity, reduced energy consumption, and greater product stability. Patent activity, exemplified by 2371 documents from 1982 to 2021, highlights advancements in formulations and microbial strains. The integration of circular economy principles in biopesticide production through process intensification enhances the safety, quality, and sustainability of food systems. Projections suggest that by the 2040s to 2050s, biopesticides may achieve market parity with synthetic alternatives. Obstacles encompass the alignment of regulations and the ability to scale in order to completely achieve these benefits. Full article
Show Figures

Figure 1

14 pages, 1339 KB  
Article
Biopesticide Production from Trichoderma harzianum by Solid-State Fermentation: Impact of Drying Process on Spore Viability
by Rayhane Hamrouni, Vincent Walker, Anne-Marie Farnet-Da Silva, Hervé Bresson, Sevastianos Roussos and Nathalie Dupuy
Fermentation 2026, 12(1), 19; https://doi.org/10.3390/fermentation12010019 - 30 Dec 2025
Viewed by 769
Abstract
Among the sustainable agricultural approaches, biological control agents are a promising new alternative to agrochemicals. However, expensive production methods, formulation, poor storage stability and short shelf life are limiting their adoption. One of the promising options for biopesticide production is solid-state fermentation (SSF). [...] Read more.
Among the sustainable agricultural approaches, biological control agents are a promising new alternative to agrochemicals. However, expensive production methods, formulation, poor storage stability and short shelf life are limiting their adoption. One of the promising options for biopesticide production is solid-state fermentation (SSF). This study was conducted to evaluate spore production by two Trichoderma harzianum, Rey 3 and TF2, under forced air drying in SSF. A mixture of agroindustrial byproducts (sugarcane bagasse, vine shoots, wheat bran, potato flour and chitin) were used as substrates. CO2 generated during fungi growth was recorded by respirometry. We also investigated the effect of hydric stress conditions on the decreasing phase of Trichoderma metabolism as an inducer of sporulation. In parallel, we analyzed the viability of T. harzianum TF2 and spores under different storage conditions (lyophilized, frozen and dried). Under the present culture conditions, the highest production of spores was 10.1 ± 0.3 × 109 spores/g DM (Dry Material) at 52 h for T. harzianum Rey 3 and 8.9 ± 0.6 × 109 spores/g DM at 72 h for T. harzianum TF2. The forced dry air during the fermentation process had no notable effect on spore production, but it did increase the spore viability (29% viability for T. harzianum Rey 3 and 33% viability for T. harzianum TF2). In parallel, the chitinase, cellulase, xylanase and lipase activities were evaluated, obtaining interesting results regarding enzymatic activities. Full article
Show Figures

Figure 1

15 pages, 770 KB  
Article
Exploring the Volatile Fingerprinting of Young Portuguese Monovarietal Red Wines by HS-SPME-GC×GC-TOFMS: A Five-Year Study
by Sousa Gastão-Muchecha, Nuno Martins, Raquel Garcia and Maria João Cabrita
Molecules 2025, 30(24), 4814; https://doi.org/10.3390/molecules30244814 - 18 Dec 2025
Cited by 1 | Viewed by 514
Abstract
The aroma of wine is a defining quality attribute, determined mainly by volatile organic compounds (VOCs) originating from grape metabolism, fermentation, and maturation. This study aimed to characterize the VOC composition of young monovarietal red wines from the Alentejo region (Portugal), produced from [...] Read more.
The aroma of wine is a defining quality attribute, determined mainly by volatile organic compounds (VOCs) originating from grape metabolism, fermentation, and maturation. This study aimed to characterize the VOC composition of young monovarietal red wines from the Alentejo region (Portugal), produced from Alicante Bouschet, Touriga Nacional, and Trincadeira across five consecutive vintages (2020–2024). Headspace solid-phase microextraction (HS-SPME) coupled with comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC×GC-ToFMS) was applied for VOC profiling, followed by multivariate statistical analyses. A strict identification and reproducibility criterion was applied to ensure longitudinal consistency over the five vintages. MANOVA analysis revealed significant effects (p < 0.001) of both grape variety and vintage on VOC distribution. Esters were the most abundant and discriminant group, while aldehydes and terpenes contributed markedly to varietal differentiation. Alicante Bouschet wines were associated with fruity ethyl esters, Touriga Nacional with monoterpenes (citronellol, terpinolene, α-farnesene) and aromatic alcohols, and Trincadeira with aldehydes and sesquiterpenes. Canonical discriminant analysis (CDA) achieved clear separation among varieties and vintages, with the first two canonical functions accounting for over 70% of the total variance. Heatmap analysis highlighted distinctive terpene and C13-norisoprenoid profiles across samples. These findings demonstrate the pivotal role of VOCs in defining Alentejo wine typicity and support their use as chemical markers for authenticity and PDO valorization. Full article
Show Figures

Figure 1

23 pages, 2666 KB  
Article
Investigation of a System Combining Separate Hydrolysis and Fermentation of Biomass with a Direct-Ethanol Solid Oxide Fuel Cell: Thermodynamic and Reaction Kinetic Studies
by Siwen Gu, Yuhao Lu and Yu Zhuang
Energies 2025, 18(24), 6456; https://doi.org/10.3390/en18246456 - 10 Dec 2025
Viewed by 265
Abstract
Bioethanol can be efficiently produced from lignocellulosic biomass via two-phase processes, consisting of enzymatic hydrolysis and fermentation. To enhance economic and energy efficiency, a system combining separate hydrolysis and fermentation of biomass with a direct-ethanol solid oxide fuel cell (SOFC) is proposed in [...] Read more.
Bioethanol can be efficiently produced from lignocellulosic biomass via two-phase processes, consisting of enzymatic hydrolysis and fermentation. To enhance economic and energy efficiency, a system combining separate hydrolysis and fermentation of biomass with a direct-ethanol solid oxide fuel cell (SOFC) is proposed in this work. The system comprises six units: a pretreatment reactor unit, a conditioning unit, a high-solids hydrolysis unit, a seed train unit, an ethanol recovery unit, and an SOFC unit. Exergy analysis based on a thermodynamic model indicates a total exergy efficiency of approximately 0.72. Within the high-solids hydrolysis unit, one piece of equipment exhibits the lowest exergy efficiency of 0.21, at a biomass flux of 71,510 kg/h. The other main exergy destruction exists in the conditioning unit and is followed by seed train unit, accounting for 5.61 and 2.77 of total exergy destruction ratios, respectively. In addition, the tentative parametric analysis for reaction kinetics is performed with varying reaction orders. The results indicate that ammonia gas in a specific unit can follow first- or second-reaction order, whereas acetic acid and sulfuric acid exhibit zero-reaction order, due to the gradual conversion of cellulose to glucose. This work provides key insights for the practical design and operation of the proposed separate hydrolysis and fermentation–SOFC system. Full article
Show Figures

Figure 1

17 pages, 991 KB  
Article
Potential of Acrocomia aculeata Pulp Waste for Fermentative Hydrogen Production and the Impact of Hydrothermal Pretreatment
by María Laura Correa-Quevedo, Danilo Cantero, Enkeledo Menalla, José de Jesús Montoya-Rosales, Osvaldo D. Frutos, Raúl Muñoz and Octavio García-Depraect
Appl. Sci. 2025, 15(23), 12523; https://doi.org/10.3390/app152312523 - 26 Nov 2025
Viewed by 502
Abstract
This study provides the first comprehensive evaluation of the biochemical hydrogen production (BHP) potential of Acrocomia aculeata pulp waste, a residue abundantly generated during fruit processing in Latin America. The valorization of this underused biomass is essential to promote circular bioeconomy strategies and [...] Read more.
This study provides the first comprehensive evaluation of the biochemical hydrogen production (BHP) potential of Acrocomia aculeata pulp waste, a residue abundantly generated during fruit processing in Latin America. The valorization of this underused biomass is essential to promote circular bioeconomy strategies and expand renewable energy sources in the region. The fermentative hydrogen potential of untreated pulp and of fractions obtained after subcritical water pretreatment was assessed under mesophilic conditions to quantify hydrogen yields and elucidate the energy distribution between solid and liquid phases. Pretreatments were performed at 150, 200, and 250 °C, and both fractions were individually tested. The untreated pulp achieved the highest BHP (125.1 NmL H2/g VS fed), while pretreated solids showed decreasing values of 118.1, 71.6, and 41.6 NmL H2/g VS fed at 150, 200, and 250 °C, respectively. The liquid fractions yielded 107.2, 79.4, and 76.0 NmL H2/g COD fed, showing a similar decline with increasing severity. A mass-energy balance revealed that 1 ton of residual pulp could produce up to 104 m3 H2, equivalent to 15 GJ/ha-year, while the combined solid plus liquid fractions from pretreatment at 150 °C recovered a comparable 14.5 GJ/ha-year, with 65% of hydrogen energy originating from the liquid phase. More severe conditions led to up to 40% lower total energy yields. These findings demonstrate that A. aculeata pulp waste inherently exhibits high fermentative hydrogen potential without requiring hydrothermal pretreatment, highlighting its direct applicability as a renewable substrate for sustainable biohydrogen production. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production Technologies for Green Energy)
Show Figures

Figure 1

26 pages, 9104 KB  
Review
Elastic Cytomatrix Dynamics Influences Metabolic Rate and Tumor Microenvironment Formation
by Tattym E. Shaiken, Tulendy T. Nurkenov, Meruyert S. Kurmanbayeva and David Y. Graham
Cancers 2025, 17(22), 3686; https://doi.org/10.3390/cancers17223686 - 18 Nov 2025
Viewed by 914
Abstract
In healthy cells, the cytomatrix mechanics utilize mitochondrial respiration to control cytosolic motion and fine-tune the chemical processes. In cancer, the cytosolic motion is energized by glycolytic fermentation (the Warburg effect), which provides additional energy to supply the needs of the cytomatrix. Here, [...] Read more.
In healthy cells, the cytomatrix mechanics utilize mitochondrial respiration to control cytosolic motion and fine-tune the chemical processes. In cancer, the cytosolic motion is energized by glycolytic fermentation (the Warburg effect), which provides additional energy to supply the needs of the cytomatrix. Here, we describe the physical and chemical processes of the integrated and cooperative cytomatrix cytoarchitecture, in which structure and function are inseparable. The extracellular matrix is interconnected with the intracellular cytomatrix and functions as two integrated elastic solid phases. This finding led us to propose mechanisms of tumor microenvironment formation resulting from the mutational burden, in which altered proteins with corresponding post-translational modifications translocate to the cell surface, where they attract immunocompetent cells and activated fibroblasts, producing a tumor-insulating niche. This insulation disrupts cell-to-cell recognition and other signaling pathways that affect the intracellular cytomatrix, particularly actin dynamics, which influence both cell size and shape, recognized as the dedifferentiated state of cancer cells. We also discuss the perspectives of AI in cytomatrix modeling and neural network modeling, focusing on the effects of intracellular and extracellular matrices on the development of the tumor microenvironment. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Graphical abstract

19 pages, 2039 KB  
Article
Decarbonising Sustainable Aviation Fuel (SAF) Pathways: Emerging Perspectives on Hydrogen Integration
by Madhumita Gogoi Saikia, Marco Baratieri and Lorenzo Menin
Energies 2025, 18(21), 5742; https://doi.org/10.3390/en18215742 - 31 Oct 2025
Viewed by 1005
Abstract
The growing demand for air connectivity, coupled with the forecasted increase in passengers by 2040, implies an exigency in the aviation sector to adopt sustainable approaches for net zero emission by 2050. Sustainable Aviation Fuel (SAF) is currently the most promising short-term solution; [...] Read more.
The growing demand for air connectivity, coupled with the forecasted increase in passengers by 2040, implies an exigency in the aviation sector to adopt sustainable approaches for net zero emission by 2050. Sustainable Aviation Fuel (SAF) is currently the most promising short-term solution; however, ensuring its overall sustainability depends on reducing the life cycle carbon footprints. A key challenge prevails in hydrogen usage as a reactant for the approved ASTM routes of SAF. The processing, conversion and refinement of feed entailing hydrodeoxygenation (HDO), decarboxylation, hydrogenation, isomerisation and hydrocracking requires substantial hydrogen input. This hydrogen is sourced either in situ or ex situ, with the supply chain encompassing renewables or non-renewables origins. Addressing this hydrogen usage and recognising the emission implications thereof has therefore become a novel research priority. Aside from the preferred adoption of renewable water electrolysis to generate hydrogen, other promising pathways encompass hydrothermal gasification, biomass gasification (with or without carbon capture) and biomethane with steam methane reforming (with or without carbon capture) owing to the lower greenhouse emissions, the convincing status of the technology readiness level and the lower acidification potential. Equally imperative are measures for reducing hydrogen demand in SAF pathways. Strategies involve identifying the appropriate catalyst (monometallic and bimetallic sulphide catalyst), increasing the catalyst life in the deoxygenation process, deploying low-cost iso-propanol (hydrogen donor), developing the aerobic fermentation of sugar to 1,4 dimethyl cyclooctane with the intermediate formation of isoprene and advancing aqueous phase reforming or single-stage hydro processing. Other supportive alternatives include implementing the catalytic and co-pyrolysis of waste oil with solid feedstocks and selecting highly saturated feedstock. Thus, future progress demands coordinated innovation and research endeavours to bolster the seamless integration of the cutting-edge hydrogen production processes with the SAF infrastructure. Rigorous techno-economic and life cycle assessments, alongside technological breakthroughs and biomass characterisation, are indispensable for ensuring scalability and sustainability. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

22 pages, 1099 KB  
Review
Synergistic Conversion and Catalytic Upgrading of Seaweed Biomass for Sustainable Bioenergy: Advances, Challenges, and Future Prospects
by Qing Xu, Shenwei Zhang and Shengxian Xian
Catalysts 2025, 15(11), 1008; https://doi.org/10.3390/catal15111008 - 24 Oct 2025
Cited by 1 | Viewed by 1657
Abstract
Seaweed holds significant promise as a renewable feedstock for bioenergy due to its rapid growth, carbon sequestration capacity, and non-competition with terrestrial agriculture. This review examines recent progress in multi-method synergies for optimized energy conversion from seaweed biomass. Physical pre-treatments (e.g., drying, milling, [...] Read more.
Seaweed holds significant promise as a renewable feedstock for bioenergy due to its rapid growth, carbon sequestration capacity, and non-competition with terrestrial agriculture. This review examines recent progress in multi-method synergies for optimized energy conversion from seaweed biomass. Physical pre-treatments (e.g., drying, milling, ultrasound, microwave) enhance substrate accessibility but face energy intensity constraints. Chemical processes (acid/alkali, solvent extraction, catalysis) improve lipid/sugar recovery and bio-oil yields, especially via hydrodeoxygenation (HDO) and catalytic cracking over tailored catalysts (e.g., ZSM-5), though cost and byproduct management remain challenges. Biological methods (enzymatic hydrolysis, fermentation) enable eco-friendly valorization but suffer from scalability and enzymatic cost limitations. Critically, integrated approaches—such as microwave-solvent systems or hybrid thermochemical-biological cascades—demonstrate superior efficiency over singular techniques. Upgrading pathways for liquid bio-oil (e.g., HDO, catalytic pyrolysis) show considerable potential for drop-in fuel production, while solid-phase biochar and biogas offer carbon sequestration and circular economy benefits. Future priorities include developing low-cost catalysts, optimizing process economics, and scaling synergies like hydrothermal liquefaction coupled with catalytic upgrading to advance sustainable seaweed biorefineries. Full article
(This article belongs to the Topic Advanced Bioenergy and Biofuel Technologies)
Show Figures

Graphical abstract

21 pages, 4237 KB  
Article
Research on Anaerobic Digestion Characteristics and Biogas Engineering Treatment of Steroidal Pharmaceutical Wastewater
by Yuzhou Zhang, Wei Xiong, Weiwei Liu, Xiangsong Chen and Jianming Yao
Energies 2025, 18(21), 5555; https://doi.org/10.3390/en18215555 - 22 Oct 2025
Viewed by 674
Abstract
Steroidal pharmaceutical wastewater, such as stock liquid and cell lysate, is conventionally treated at a high cost due to its complex composition and high organic content. To treat steroidal pharmaceutical wastewater, make it harmless, and utilize it as a resource, engineering exploration of [...] Read more.
Steroidal pharmaceutical wastewater, such as stock liquid and cell lysate, is conventionally treated at a high cost due to its complex composition and high organic content. To treat steroidal pharmaceutical wastewater, make it harmless, and utilize it as a resource, engineering exploration of large-scale biogas engineering was carried out based on its anaerobic digestion characteristics, and the microbial population in the digestion process was analyzed. The results showed that, at a medium temperature of 35 °C and a total solid percentage of 6.5% ± 0.5%, both stock liquid and cell lysate wastewater could be anaerobically fermented normally, with the potential for anaerobic digestion treatment. The cumulative biogas production of lysate gas from the supernatant could reach 758 mL/gVS, which was significantly better than that of traditional raw materials such as straw and feces. The methane content reached 78.9%, and the total VFAs reached 10,204 mg/L on the ninth day. Moreover, we found that co-digestion of steroidal pharmaceutical wastewater with corn straw (CS) significantly enhanced system stability and biogas production efficiency, with synergistic improvement reaching up to 42%. This approach effectively shortened the lag phase observed in the mono-digestion of steroidal pharmaceutical wastewater. Actual treatment in a large-scale biogas project revealed that, after the addition of two kinds of wastewater, the main and auxiliary reactors presented serious acidification problems. Of these, the total volatile fatty acids in the main reactor reached up to 21,000 mg/L, and the methane content in the biogas production decreased to 25%. Additionally, 16S rRNA high-throughput sequencing analysis showed that, after the addition of steroidal pharmaceutical wastewater, the archaea community in the anaerobic reactor changed significantly due to the stress of changes in the fermentation environment. Euryarchaeota became the absolute dominant bacteria, and the methanogenic pathway also changed to the hydrogen trophic methanogenic pathway with Methanothermobacter as the absolute dominant bacterium. This is the first successful industrial-scale application of biogas engineering for treating steroid wastewater, demonstrating its technical feasibility and energy recovery potential. These research outcomes provide critical engineering parameters and practical experience for large-scale resource recovery from similar wastewater streams, offering important reference values for advancing pharmaceutical wastewater treatment from compliance discharge to energy utilization. Full article
Show Figures

Figure 1

18 pages, 1916 KB  
Article
Differential Modulation of Maize Silage Odor: Lactiplantibacillus plantarum vs. Lactiplantibacillus buchneri Drive Volatile Compound Change via Strain-Specific Fermentation
by Shuyuan Xue, Jianfeng Wang, Jing Yang, Yunjie Li, Jian He, Jiyu Han, Hongyan Xu, Xun Zhu and Nasi Ai
Agriculture 2025, 15(20), 2109; https://doi.org/10.3390/agriculture15202109 - 10 Oct 2025
Cited by 1 | Viewed by 783
Abstract
Volatile organic compounds (VOCs) are critical indicators of the metabolic status of whole-plant maize silage (WPMS). However, the impact of inoculating various strains of fermentation agents on VOC changes has not been systematically explored. This study aimed to determine how inoculation with Lactiplantibacillus [...] Read more.
Volatile organic compounds (VOCs) are critical indicators of the metabolic status of whole-plant maize silage (WPMS). However, the impact of inoculating various strains of fermentation agents on VOC changes has not been systematically explored. This study aimed to determine how inoculation with Lactiplantibacillus plantarum and Lentilactobacillus buchneri modulates the VOC profile and odor of WPMS after 90 days. VOCs were extracted by headspace solid-phase microextraction and analyzed by gas chromatography-mass spectrometry (HS-SPME-GC-MS). Key VOCs were screened using the variable importance in projection (VIP) and substantiated by relative odor activity values (rOAV) and odor descriptions. A total of 82 compounds were identified, including 22 esters, 19 alcohols, 3 acids, 9 aldehydes, 2 ethers, 6 hydrocarbons, 4 ketones, 10 phenols, and 8 terpenoids. L. plantarum enhanced green/fruity odors while strain L. buchneri significantly reduced undesirable phenolic and aldehydic compounds. Six key VOCs influencing the odor of WPMS were selected: 4-ethyl-2-methoxyphenol and benzaldehyde, which contribute smoky, bacon, and bitter almond aromas, and (E)-3-hexen-1-ol, benzyl alcohol, (E, E)-2,4-heptadienal and methyl salicylate, which impart green, fruity, and nutty aromas. These findings highlight the effects and contributions of various strain additives on VOCs in WPMS, providing new theoretical insights for regulating the flavor profile of WPMS. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

19 pages, 2830 KB  
Article
High-Performance Indigenous Lactiplantibacillus plantarum Strains for Enhanced Malolactic Fermentation and Wine Quality
by Yongzhang Zhu, Ni Chen, Zhenghua Xu, Jingyue Liu, Shuwen Liu and Kan Shi
Microorganisms 2025, 13(10), 2328; https://doi.org/10.3390/microorganisms13102328 - 9 Oct 2025
Viewed by 736
Abstract
Malolactic fermentation (MLF), a key enological process for wine deacidification and aroma and flavor development, is predominantly mediated by lactic acid bacteria. This study characterized 342 indigenous Lactiplantibacillus plantarum (L. plantarum) isolates, a potential starter species underexploited for MLF, from China’s [...] Read more.
Malolactic fermentation (MLF), a key enological process for wine deacidification and aroma and flavor development, is predominantly mediated by lactic acid bacteria. This study characterized 342 indigenous Lactiplantibacillus plantarum (L. plantarum) isolates, a potential starter species underexploited for MLF, from China’s Jiaodong Peninsula wine regions through polyphasic analysis. Thirty strains with high tolerance to wine stress conditions and efficient malate metabolism were selected. Among these, two high-performance strains, P101 and J43, exhibited superior MLF kinetics. Their applications had almost no effect on the wine’s basic physicochemical parameters, color parameters, and individual phenolic contents. Solid-phase microextraction–gas chromatography–mass spectrometry (SPME-GC-MS) analysis revealed that these strains significantly enhance key aroma compound contents in wines, including ethyl acetate, ethyl lactate, ethyl 2-methylbutyrate, and nerol, contributing more floral and fruity aroma characteristics. These indigenous L. plantarum strains, novel microbial starter cultures, demonstrate dual functionality in enhancing wine quality through controlled fermentation while supporting microbial biodiversity through the development of region-specific strain resources. Full article
(This article belongs to the Special Issue Fruit Wine Fermentation and Microbial Communities)
Show Figures

Figure 1

13 pages, 1866 KB  
Article
Development of Freshness Indicator (FI) for Skate Sashimi (Zearaja chilensis) to Detect Trimethylamine Content During Storage
by Kyung-Jik Lim, Yoon-Gil Kim, Yu-Jin Heo and Han-Seung Shin
Biosensors 2025, 15(10), 659; https://doi.org/10.3390/bios15100659 - 2 Oct 2025
Viewed by 933
Abstract
The seafood industry is increasingly adopting intelligent packaging to preserve product quality and improve freshness transparency. This study developed and evaluated a pH-sensitive freshness indicator (FI) for skate sashimi (Zearaja chilensis). This product is consumed at varying stages of fermentation. The [...] Read more.
The seafood industry is increasingly adopting intelligent packaging to preserve product quality and improve freshness transparency. This study developed and evaluated a pH-sensitive freshness indicator (FI) for skate sashimi (Zearaja chilensis). This product is consumed at varying stages of fermentation. The FI incorporated bromothymol blue (BTB) and bromocresol purple (BCP) in a polymer matrix. It targeted volatile basic nitrogen (VBN) compounds, with trimethylamine (TMA) as the primary marker. As freshness declined, VBN compounds accumulated in the package headspace and caused a gradual FI color change from yellow to blue through pH variation. ΔE increased from 7.72 on day 2 to 23.52 on day 3. This marked the onset of visible color change and the FI reached full blue by day 7. Headspace solid-phase microextraction (HS-SPME) and gas chromatography–flame ionization detection (GC-FID) quantified monomethylamine (MMA), dimethylamine (DMA) and TMA throughout storage. ΔE correlated strongly with total bacterial count (TBC, r = 0.978), pH (r = 0.901) and TMA (r = 0.888). These results indicate that microbial growth, alkalinity increase and amine production were closely associated with color transitions. The FI reliably tracked freshness loss in skate sashimi. It has potential to enhance consumer transparency and strengthen quality control in the seafood supply chain. Full article
(This article belongs to the Special Issue Biosensors for Environmental Monitoring and Food Safety)
Show Figures

Figure 1

23 pages, 1535 KB  
Article
Investigating the Volatiles of Kombucha During Storage Under Refrigerated Conditions
by Massimo Mozzon, Luigi Rinaldi, Abdelhakam Esmaeil Mohamed Ahmed, Béla Kovács and Roberta Foligni
Beverages 2025, 11(5), 143; https://doi.org/10.3390/beverages11050143 - 1 Oct 2025
Cited by 2 | Viewed by 2038
Abstract
This study investigates the evolution of the chemical components of kombucha aroma during refrigerated storage. Two preparation methods (MT1 and MT2) were used to produce kombucha from a 1:1 mixture of black and green tea. The bottled beverages were stored at 4 °C [...] Read more.
This study investigates the evolution of the chemical components of kombucha aroma during refrigerated storage. Two preparation methods (MT1 and MT2) were used to produce kombucha from a 1:1 mixture of black and green tea. The bottled beverages were stored at 4 °C for three months, and changes in headspace (HS) volatiles were monitored at different time points using solid-phase microextraction (SPME) and GC-MS. A total of 68 volatile substances were identified, with alcohols, acids, and esters dominating the aroma profile. The study revealed significant changes in flavor composition during cold storage, particularly in the first two weeks, with an increase in the number of esters, acids, ketones and terpenoids, as well as the total amount of esters and alkanols. While some changes contribute to the desirable “cider-like” characteristics, others, like certain volatile acids, aliphatic aldehydes and ketones, are associated with off-flavors. These findings suggest that refrigeration alone is not sufficient to completely inhibit microbial activity in freshly prepared kombucha, highlighting the need for further research to correlate chemical changes with sensory properties to establish optimal organoleptic standards and shelf life. Full article
Show Figures

Figure 1

23 pages, 3210 KB  
Article
Microbial, Physicochemical, and Flavor Interactions in High-Temperature Sauce-Flavor Daqu
by Youwei Chen, Limei Zou, Luyao Wang, Weiwei Dong, Yanli Feng, Xiang Yu, Jun Liu, Yu Zhang, Yuanliang Hu and Shenxi Chen
Biology 2025, 14(10), 1324; https://doi.org/10.3390/biology14101324 - 25 Sep 2025
Viewed by 1196
Abstract
Sauce-flavor Daqu is the solid-state fermentation starter for sauce-flavor Baijiu. Its microbial community influences flavor formation, yet links between community change, process conditions, and flavor development during high-temperature fermentation remain unclear. We investigated Daqu fermentation by integrating high-throughput sequencing, monitoring of physicochemical parameters, [...] Read more.
Sauce-flavor Daqu is the solid-state fermentation starter for sauce-flavor Baijiu. Its microbial community influences flavor formation, yet links between community change, process conditions, and flavor development during high-temperature fermentation remain unclear. We investigated Daqu fermentation by integrating high-throughput sequencing, monitoring of physicochemical parameters, and analysis of volatile compounds. Fermentation temperature showed three phases: rapid rise, fluctuating plateau, and gradual decline. High temperatures were associated with increased thermophilic microbes such as Bacillus and Thermoascus and with higher levels of reducing sugars and amino acid nitrogen; amylase, protease, and other hydrolase activities were detected. Bacterial composition varied more than fungal composition; Firmicutes and Ascomycota were the dominant phyla, and Bacillus and Thermoascus were abundant genera. Canonical correspondence analysis associated reducing sugars, acidity, and moisture with early community shifts, and amino acid nitrogen with later shifts; reducing sugars and moisture showed the strongest associations. Filamentous fungi and Bacillus correlated with pyrazine-type compounds. These results link microbial composition, process parameters, and flavor profiles, and may inform the standardization and mechanization of Daqu production. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

Back to TopTop