Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (515)

Search Parameters:
Keywords = solid-state lasers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3088 KB  
Article
256.5-W Chirped Amplitude-Modulated Fiber Laser for Single-Photon Differential Ranging
by Wenjuan Wu, Shuzhen Zou, Haijuan Yu, Chaojian He and Song Yang
Photonics 2026, 13(2), 150; https://doi.org/10.3390/photonics13020150 - 3 Feb 2026
Viewed by 128
Abstract
High-power chirped amplitude-modulated (CAM) lasers serve as essential sources for the promising high-precision single-photon differential ranging technique. However, the development of high-power CAM lasers is fundamentally constrained by the stimulated Brillouin scattering (SBS) effect and the degradation of the CAM waveform during amplification. [...] Read more.
High-power chirped amplitude-modulated (CAM) lasers serve as essential sources for the promising high-precision single-photon differential ranging technique. However, the development of high-power CAM lasers is fundamentally constrained by the stimulated Brillouin scattering (SBS) effect and the degradation of the CAM waveform during amplification. In this work, we propose a high-power CAM fiber laser system based on a dual linear frequency modulation (dual-LFM) architecture, wherein LFM signals are applied simultaneously to both the phase modulator and the intensity modulator. The experimental results demonstrate effective suppression of SBS, which enables an approximately eightfold enhancement in average output power—from 32.1 W to 256.5 W—while maintaining well-preserved CAM waveforms and a near-diffraction-limited beam quality (M2 = 1.073). To the best of our knowledge, this represents the highest output power reported to date for CAM lasers. Significantly, after amplification, the system exhibits a mere ~2% reduction in average modulation depth, attaining a final modulation depth of over 82%, a total harmonic distortion below 7%, and excellent CAM linearity across the 100 MHz to 1 GHz modulation frequency range. Furthermore, the proposed laser system enables single-photon differential ranging with millimeter-level precision over distances exceeding 100 km. This work represents a significant advancement in CAM laser power scaling, with potential applications in advanced precision ranging, quantum technology, and related emerging fields. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications, 3rd Edition)
Show Figures

Figure 1

11 pages, 2292 KB  
Article
Experimental Study on Laser-Controlled Explosive Welding of Microscale Metallic Foils Driven by Energetic Materials
by Xiaojun Ye, Dongxian Ye, Yanshu Fu, Penglong Zhao, Xianfeng Xiao, Daomin Shi and Rui Zhang
Materials 2026, 19(3), 527; https://doi.org/10.3390/ma19030527 - 28 Jan 2026
Viewed by 167
Abstract
In response to the challenge of achieving highly reliable interface fabrication in the fields of microelectronics and micro-electromechanical system (MEMS) packaging, this study harnesses the superior characteristics of solid-state bonding inherent in explosive welding (EXW) technology. This study investigates the precise EXW of [...] Read more.
In response to the challenge of achieving highly reliable interface fabrication in the fields of microelectronics and micro-electromechanical system (MEMS) packaging, this study harnesses the superior characteristics of solid-state bonding inherent in explosive welding (EXW) technology. This study investigates the precise EXW of milligram-scale metallic foils by employing focused laser energy to control the explosion behavior of liquid energetic materials, thereby generating shockwaves that induce high-velocity oblique collisions between metallic foils and base plates. Laser-focused energy was utilized to regulate energetic materials for conducting precision EXW experiments on Al/Cu couples. The technical feasibility and interfacial quality of this method for fabricating Al/Cu bonding interfaces were systematically evaluated through in situ observation of the dynamic welding process, comprehensive analysis of interfacial microstructures, and numerical simulations. The results reveal distinct Al/Cu elemental diffusion at the bonding interface, confirming the technical viability of the approach. However, an unloading rebound phenomenon is observed at the interface, which is inherently associated with the dynamic impact process, indicating the need for further optimization in the precise control of impact loading. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

13 pages, 4845 KB  
Article
Efficient Solid-State Far-Field Macroscopic Fourier Ptychographic Imaging via Programmable Illumination and Camera Array
by Di You, Ge Ren and Haotong Ma
Photonics 2026, 13(1), 73; https://doi.org/10.3390/photonics13010073 - 14 Jan 2026
Viewed by 186
Abstract
The macroscopic Fourier ptychography (FP) is regarded as a highly promising approach of creating a synthetic aperture for macro visible imaging to achieve sub-diffraction-limited resolution. However most existing macro FP techniques rely on the high-precision translation stage to drive laser or camera scanning, [...] Read more.
The macroscopic Fourier ptychography (FP) is regarded as a highly promising approach of creating a synthetic aperture for macro visible imaging to achieve sub-diffraction-limited resolution. However most existing macro FP techniques rely on the high-precision translation stage to drive laser or camera scanning, thereby increasing system complexity and bulk. Meanwhile, the scanning process is slow and time-consuming, hindering the ability to achieve rapid imaging. In this paper, we introduce an innovative illumination scheme that employs a spatial light modulator to achieve precise programmable variable-angle illumination at a relatively long distance, and it can also freely adjust the illumination spot size through phase coding to avoid the issues of limited field of view and excessive dispersion of illumination energy. Coupled with a camera array, this could significantly reduce the number of shots taken by the imaging system and enable a lightweight and highly efficient solid-state macro FP imaging system with a large equivalent aperture. The effectiveness of the method is experimentally validated using various optically rough diffuse objects and a USAF target at laboratory-scale distances. Full article
Show Figures

Figure 1

40 pages, 4728 KB  
Review
Crystallographic Texture and Phase Transformation in Titanium Alloys Fabricated via Powder Bed Fusion Processes: A Comprehensive Review
by Rajesh Kannan Arasappan, Hafiz Muhammad Rehan Tariq, Ha-Seong Baek, Minki Kim and Tea-Sung Jun
Metals 2026, 16(1), 25; https://doi.org/10.3390/met16010025 - 26 Dec 2025
Viewed by 619
Abstract
Additive manufacturing (AM) of titanium alloys enables the production of complex, high-performance components, but the steep thermal gradients and rapid solidification involved make it challenging to control crystallographic texture and phase evolution. This review synthesizes the current understanding of how these thermal conditions [...] Read more.
Additive manufacturing (AM) of titanium alloys enables the production of complex, high-performance components, but the steep thermal gradients and rapid solidification involved make it challenging to control crystallographic texture and phase evolution. This review synthesizes the current understanding of how these thermal conditions influence grain morphology, texture intensity, and solid-state transformations in key alloys such as Ti-6Al-4V (Ti64), Ti-6Al-2Sn-4Zr-2Mo (Ti6242), Ti-5Al-5Mo-5V-3Cr (Ti5553), and metastable β-Ti systems processed by powder bed fusion-based processes (PBF) such as laser powder bed fusion (LPBF) and electron beam powder bed fusion (EBPBF/EBM). Emphasis is placed on mechanisms governing epitaxial columnar β-grain growth, α′ martensite formation, and the development of heterogeneous α/β distributions. The impact of processing variables on texture development and transformation kinetics is critically examined, alongside phase fractions. Across studies, AM-induced textures are consistently linked to mechanical anisotropy, with performance strongly dependent on build direction and alloy chemistry. Post-processing strategies, including tailored heat treatments and hot isostatic pressing (HIP), show clear potential to modify grain structure, reduce texture intensity, and stabilize desirable phase balances in titanium alloys. These insights highlight the emerging ability to deliberately engineer microstructures for reliable, application-specific properties in powder-based AM titanium alloys. Full article
Show Figures

Figure 1

25 pages, 11724 KB  
Review
Tab-to-Busbar Interconnections in EV Battery Packs: An Introductory Review of Typical Welding Methods
by Sooyong Choi, Sooman Lim, Ali Shan, Jinkyu Lee, Tae Gwang Yun and Byungil Hwang
Micromachines 2026, 17(1), 2; https://doi.org/10.3390/mi17010002 - 19 Dec 2025
Viewed by 1030
Abstract
This paper reviews tab-to-busbar interconnections in lithium-ion battery packs, focusing on resistance welding (RW), laser beam welding (LBW), and ultrasonic welding (USW). The functional roles of tabs and busbars and typical material choices (Al-, Cu-, and Ni-plated Cu) are outlined. Subsequently, the processes [...] Read more.
This paper reviews tab-to-busbar interconnections in lithium-ion battery packs, focusing on resistance welding (RW), laser beam welding (LBW), and ultrasonic welding (USW). The functional roles of tabs and busbars and typical material choices (Al-, Cu-, and Ni-plated Cu) are outlined. Subsequently, the processes are compared in terms of heat input, interfacial metallurgy, electrical resistance, mechanical robustness, and manufacturability. USW, as a solid-state method, suppresses porosity and limits Al-Cu intermetallic growth, but is sensitive to thickness, stack geometry, and tool wear. LBW enables high-speed, automated production with precise energy delivery, yet requires careful control to mitigate spatter, porosity, and brittle IMCs in dissimilar joints. RW remains cost-effective and flexible but can suffer from electrode wear and variability with highly conductive stacks. This review also summarizes the effect of the busbar material (Al versus Cu) and thickness on the connection resistance and temperature increase under a high current. No single process is universally superior, and the selection should match the stack-up, reliability targets, and production constraints. This paper aims to provide an overview of recent and conventional research trends for each welding method and to introduce selected non-traditional approaches, thereby presenting a range of viable options for future applications. Full article
(This article belongs to the Special Issue Micro/Nano Manufacturing of Electronic Devices)
Show Figures

Figure 1

13 pages, 1825 KB  
Article
Spectral-Based Temperature Sensing in Cr:LiCAF Crystals Using Fluorescence Peak Shift Calibration
by Yusuf Öztürk
Crystals 2025, 15(12), 1047; https://doi.org/10.3390/cryst15121047 - 9 Dec 2025
Viewed by 303
Abstract
In this study, we present a non-invasive and contactless method for estimating the internal temperature of Cr:LiCAF laser crystals using temperature-dependent shifts in fluorescence emission peaks. A high-resolution calibration dataset was created with 181 spectral points from 10 to 100 °C. Linear regression [...] Read more.
In this study, we present a non-invasive and contactless method for estimating the internal temperature of Cr:LiCAF laser crystals using temperature-dependent shifts in fluorescence emission peaks. A high-resolution calibration dataset was created with 181 spectral points from 10 to 100 °C. Linear regression yielded a temperature estimation model with an R2 of 0.73, which was validated under both lasing and non-lasing conditions. To further evaluate the reliability of this optical thermometry method, thermal imaging data from a FLIR E75 infrared camera were incorporated. Surface temperatures measured at various diode current levels closely matched the internal temperature predictions based on fluorescence shifts (MAE = 0.775 °C, R2 = 0.993), confirming the robustness of the method. This dual-approach validation enhances confidence in using fluorescence-based diagnostics for real-time thermal monitoring in laser systems. The combined use of spectrometer-based and thermal camera measurements suggests potential for hybrid diagnostics in laser research and development, offering improved thermal feedback for optimizing high-power laser performance. Full article
(This article belongs to the Special Issue Research Progress of Laser Crystals)
Show Figures

Figure 1

16 pages, 2519 KB  
Article
Optical Limiting in a Novel Photonic Material—DNA Biopolymer Functionalized with the Spirulina Natural Dye
by Petronela Gheorghe and Adrian Petris
Molecules 2025, 30(23), 4577; https://doi.org/10.3390/molecules30234577 - 28 Nov 2025
Viewed by 338
Abstract
The results of an experimental comparative study on absorptive nonlinear optical properties of deoxyribonucleic acid (DNA)–cetyltrimethylammonium chloride (CTMA) biopolymer functionalized with spirulina natural dye, as solutions in butanol, and on the same nonlinear optical properties of similar solutions with spirulina only, are presented. [...] Read more.
The results of an experimental comparative study on absorptive nonlinear optical properties of deoxyribonucleic acid (DNA)–cetyltrimethylammonium chloride (CTMA) biopolymer functionalized with spirulina natural dye, as solutions in butanol, and on the same nonlinear optical properties of similar solutions with spirulina only, are presented. The spectroscopic characterisation of the investigated complexes is performed by Ultraviolet–Visible-Near-Infrared (UV-VIS-NIR) spectroscopy and Attenuated Total Reflection Fourier-transform Infrared (ATR-FTIR) spectroscopy. Their optical limiting functionality is experimentally demonstrated at the wavelength of 1550 nm (an important telecommunication wavelength) using ultrashort laser pulses (~120 fs). Important parameters that characterise the optical limiting (nonlinear absorption coefficient β, and saturation intensity, Isat) are determined by the Intensity-scan (I-scan) method in the investigated materials. The results of our experimental investigation reveal, for the first time to the best of our knowledge, a significant absorptive nonlinear optical response of spirulina natural dye and its potential for optical limiting. The favourable effect of the DNA biopolymer on the nonlinear optical response of the investigated solutions, resulting in the enhancement of their nonlinear optical properties, is demonstrated. Thus, the investigated DNA–CTMA–spirulina liquid compound is a promising novel “green” material for passive optical limiting devices to protect sensitive optical and optoelectronic devices from high-intensity near-infrared laser beams. Also, from dye-doped DNA compounds as solutions it is possible to obtain, by different methods (e.g., spin-coating, drop casting), thin films as the base of all-optical solid-state limiting devices. Full article
Show Figures

Figure 1

15 pages, 11821 KB  
Article
High-Magnification In Situ Observation of Welding Solidification
by Tamaki Ito, Shaowei Yang, Keita Marumoto, Kenji Shinozaki and Motomichi Yamamoto
Metals 2025, 15(11), 1269; https://doi.org/10.3390/met15111269 - 20 Nov 2025
Viewed by 438
Abstract
In welding solidification, the morphology of residual liquid in the solid–liquid coexistence region affects the susceptibility to solidification cracking because this cracking is due to localized shrinkage strain in the residual liquid. Therefore, it is important to observe the residual liquid state during [...] Read more.
In welding solidification, the morphology of residual liquid in the solid–liquid coexistence region affects the susceptibility to solidification cracking because this cracking is due to localized shrinkage strain in the residual liquid. Therefore, it is important to observe the residual liquid state during solidification in detail to elucidate the occurrence of solidification cracking. In this study, a high-magnification in situ observation system was developed by combining an optical microscope and a high-speed camera. This system enables continuous, high-magnification, and high-resolution observation of welding solidification, because the objective lens of a microscope is attached to a high-speed camera. Laser welding solidification of stainless steel sheets was observed using this system and the morphology of residual liquid was visualized with higher magnification and higher definition than previous observation methods. Compared with a high-magnification image and quenched solidification microstructure, the residual state of the liquid phase during solidification could be observed in detail and dynamically. Additionally, the difference in solidification between two types of stainless sheets could be observed with high magnification in situ at one point. Finally, the combination of the observation results from this system and a high-temperature ductility curve revealed the relationship between the morphology of residual liquid and solidification cracking susceptibility. Full article
(This article belongs to the Special Issue Advances in Welding and Joining of Alloys and Steel)
Show Figures

Figure 1

8 pages, 419 KB  
Communication
Parallel DNA Molecular Analysis Platform Based on a Plano-Concave Fabry–Pérot Microcavity Laser Array
by Chan Seok Jun and Wonsuk Lee
Photonics 2025, 12(11), 1144; https://doi.org/10.3390/photonics12111144 - 20 Nov 2025
Viewed by 381
Abstract
We present a parallel DNA molecular analysis platform based on an array of plano-concave Fabry–Pérot (PC-FP) microcavity lasers that enables the simultaneous, sequence-specific detection of multiple DNA targets. Each PC-FP cavity is functionalized with a distinct probe DNA and integrated within a microfluidic [...] Read more.
We present a parallel DNA molecular analysis platform based on an array of plano-concave Fabry–Pérot (PC-FP) microcavity lasers that enables the simultaneous, sequence-specific detection of multiple DNA targets. Each PC-FP cavity is functionalized with a distinct probe DNA and integrated within a microfluidic channel, allowing localized hybridization and lasing emission upon optical pumping. When Cy3-labeled complementary targets were introduced, distinct lasing peaks emerged from corresponding cavities at ~607 nm, whereas single-base-mismatched sequences produced no measurable signal. The lasing threshold was approximately 0.6 µJ/mm2, confirming highly efficient optical feedback and cavity-enhanced signal amplification. The parallel operation of three PC-FP cavities demonstrated independent, multiplexed detection without optical crosstalk. The plano-concave geometry provides mode stability, compact alignment tolerance, and a tenfold reduction in threshold compared to flat FP mirrors. These results highlight the potential of PC-FP microcavity laser arrays as a scalable alternative to fluorescence-based assays, offering rapid, high-throughput DNA hybridization and melting analysis within a miniaturized solid-state architecture. Full article
Show Figures

Figure 1

15 pages, 2211 KB  
Article
Structural and Spectroscopic Study of Benzoperimidines Derived from 1-Aminoanthraquinone and Their Application to Bioimaging
by Elena Kirilova, Armands Maļeckis, Muza Kirjušina, Ligita Mežaraupe, Ilze Rubeniņa, Aija Brakovska, Veronika Pavlova, Sanita Kecko, Inta Umbraško, Vladimir Kiyan, Lyudmila Lider, Aleksandrs Pučkins and Sergey Belyakov
Molecules 2025, 30(22), 4472; https://doi.org/10.3390/molecules30224472 - 19 Nov 2025
Viewed by 507
Abstract
In this research, we studied the synthesis and characterization of a novel amidine derivative of benzoperimidine derived from 1-aminoanthraquinone, focusing on its emission properties and potential applications in confocal laser scanning microscopy. The synthesized compound exhibited pronounced solvatochromic behavior in various solvents. Spectroscopic [...] Read more.
In this research, we studied the synthesis and characterization of a novel amidine derivative of benzoperimidine derived from 1-aminoanthraquinone, focusing on its emission properties and potential applications in confocal laser scanning microscopy. The synthesized compound exhibited pronounced solvatochromic behavior in various solvents. Spectroscopic analysis, including 1H-, 13C-, and mass spectrometry, confirmed the chemical structure. The structure of three compounds was also determined using X-ray diffraction analysis; this study revealed the structural features of these substances in the solid state. The compound’s antimicrobial activity was evaluated using the agar diffusion method with the bacterium Bacillus subtilis subsp. Spizizenii. Furthermore, the study introduces a dye designed for imaging of the parasitic flatworm Opisthorchis felineus, demonstrating its potential in visualizing biological specimens. Full article
Show Figures

Figure 1

18 pages, 5120 KB  
Article
Harmonics-Assisted 50-Fold Optical Phase Amplification with a Self-Mixing Thin-Slice Nd:GdVO4 Laser with Wide-Aperture Laser-Diode Pumping
by Kenju Otsuka and Seiichi Sudo
Photonics 2025, 12(11), 1098; https://doi.org/10.3390/photonics12111098 - 7 Nov 2025
Viewed by 541
Abstract
Harmonic-assisted phase amplification was investigated in a 300-µm-thick Nd:GdVO4 laser with coated end mirrors in the self-mixing interference scheme. The key event is the self-induced hybrid skew cosh Gaussian (abbreviated as skew ch-G)-type transverse mode oscillation in a thin-slice solid-state laser with [...] Read more.
Harmonic-assisted phase amplification was investigated in a 300-µm-thick Nd:GdVO4 laser with coated end mirrors in the self-mixing interference scheme. The key event is the self-induced hybrid skew cosh Gaussian (abbreviated as skew ch-G)-type transverse mode oscillation in a thin-slice solid-state laser with wide-aperture laser-diode pumping. The present hybrid skew-chG mode was proved to be formed by the locking of nearly frequency-degenerate TEM00 and annular fields. The resultant modal-interference-induced gain modulation at the beat frequency between the two modal fields, which is far above the relaxation oscillation frequency, increased the experimental self-mixing modulation bandwidth accordingly. Fifty-fold phase amplification was achieved in a strong optical feedback regime. Full article
Show Figures

Figure 1

19 pages, 7806 KB  
Article
Investigation on the Microstructure and Mechanical Properties of X70 Pipeline Steel Fabricated by Laser-Directed Energy Deposition
by Zhandong Wang, Chunke Wang, Linzhong Wu and Guifang Sun
Materials 2025, 18(21), 4997; https://doi.org/10.3390/ma18214997 - 31 Oct 2025
Viewed by 715
Abstract
The laser-directed energy deposition (L-DED) technique, with its excellent environmental adaptability and superior repair capability, shows great potential for the repair of damaged X70 pipeline steel. In this work, the microstructure and mechanical properties of L-DED repaired X70 steel were systematically investigated. The [...] Read more.
The laser-directed energy deposition (L-DED) technique, with its excellent environmental adaptability and superior repair capability, shows great potential for the repair of damaged X70 pipeline steel. In this work, the microstructure and mechanical properties of L-DED repaired X70 steel were systematically investigated. The deposited material exhibited inhomogeneity along the building direction. From the bottom to the top, the grains gradually coarsened, and the proportion of polygonal ferrite increased. This was mainly attributed to increasing thermal accumulation with deposition height, which reduced the cooling rate and promoted solid-state transformations at higher temperatures. Meanwhile, the heat accumulation and intrinsic heat treatment reduced the dislocation density and promoted Fe3C precipitation within grains and along boundaries. Microhardness was highest in the bottom region and decreased along the building direction due to the gradual coarsening of microstructure and decreasing in dislocation density. The L-DED X70 showed lower yield strength (435 MPa) and ultimate tensile strength (513 MPa) compared to the base material and API 5L requirements. The elongation of the L-DED X70 was 42.9%, which was 58% higher than that of the base material, indicating excellent ductility. These results revealed a thermal history-dependent strength–ductility trade-off in the L-DED repaired X70 steel. Therefore, more efforts are needed to control the L-DED thermal process, tailor the microstructure, enhance strength, and meet the service requirements of harsh environments. Full article
Show Figures

Figure 1

27 pages, 7061 KB  
Article
Evaluation of the Influence of Different Color Glass on Cementitious Mortar Properties
by Leonardo Caniato Martioli, Maria Eduarda Almeida Gomes, Cézar Augusto Casagrande, Marcelo Henrique F. Medeiros and Lidiane Fernanda Jochem
Buildings 2025, 15(21), 3925; https://doi.org/10.3390/buildings15213925 - 30 Oct 2025
Viewed by 548
Abstract
The growing generation of solid waste, driven by urbanization and industrialization, represents one of today’s greatest environmental challenges. The construction industry can play a key role in this scenario by incorporating recycling and waste reuse practices. Glass, a fully recyclable material, is still [...] Read more.
The growing generation of solid waste, driven by urbanization and industrialization, represents one of today’s greatest environmental challenges. The construction industry can play a key role in this scenario by incorporating recycling and waste reuse practices. Glass, a fully recyclable material, is still largely disposed of in landfills. A promising alternative is the use of ground glass in cementitious materials, partially or completely replacing cement or aggregates. Thus, in this paper, the effect of partially replacing Portland cement with ground glass of different colors including green, blue, transparent, amber, and colorful (all colors used mixed) in proportions of 15 and 35% in mortars was evaluated. The ground glasses were characterized by laser granulometry and chemical analysis. The properties of the mortars were then evaluated in the fresh and hardened state (apparent specific gravity, mechanical strength, water absorption, and open porosity). Regarding workability, the highest improvement observed was 6.8% for the 35% colored glass series compared to the reference series. In terms of entrapped air, there was an increase of up to 18.8% in the 35% green glass series. At 28 days of hydration, the 15% colored glass series obtained a 33% increase in flexural strength compared to the REF series. In the microstructure, it was found that a 15% glass presence was sufficient to reduce the portlandite index from 16.04 to 13.53, while a 35% glass presence was sufficient to reduce it to 7.51% portlandite, equivalent to a 54% reduction, suggesting significant potential for the reaction of the finer glass fractions with portlandite. This study suggests that the use of glass waste in a cementitious matrix can provide an environmentally appropriate alternative for recycling this material, contributing to a sustainable application and increased recycling rates of glass waste. Full article
Show Figures

Figure 1

18 pages, 13989 KB  
Article
Synergistic Effect of Pre-Aging and Nitriding on the Microstructure and Wear Resistance of L-PBF Manufactured 18Ni300
by Xi Gao, Cheng Chen, Zhengxing Men, Quan Kang and Zhi Jia
Metals 2025, 15(11), 1200; https://doi.org/10.3390/met15111200 - 28 Oct 2025
Viewed by 498
Abstract
Additively manufactured maraging steel components often require surface engineering to achieve superior wear resistance for demanding industrial applications. This study investigates 18Ni300 maraging steel manufactured by Laser Powder Bed Fusion (L-PBF), comparing non-aged and pre-aged (480 °C × 6 h) specimens to systematically [...] Read more.
Additively manufactured maraging steel components often require surface engineering to achieve superior wear resistance for demanding industrial applications. This study investigates 18Ni300 maraging steel manufactured by Laser Powder Bed Fusion (L-PBF), comparing non-aged and pre-aged (480 °C × 6 h) specimens to systematically analyze the effects of nitriding duration (0 h, 24 h, 48 h, 60 h) on nitride layer microstructure, hardness, and wear resistance. Results show that the non-aged specimen, with its supersaturated solid solution matrix, exhibits slower nitride layer growth; a thin, dense nitride layer formed after 24 h of nitriding minimizes the wear depth (−9.043 μm) for optimal friction reduction. In the pre-aged specimen, matrix refinement, through intermetallic compound precipitation, enables a 211 μm nitride layer to form after 48 h of nitriding, elevating surface hardness to 650 HV, and creating a gradient structure (“high-hardness surface + strengthened matrix”), which yields the narrowest and shallowest wear scars and superior wear resistance. The experiments demonstrate that nitriding processes must align with matrix states; 24 h nitriding suits non-aged steel, while 48 h is optimal for aged steel, providing critical guidance for optimizing surface strengthening in additively manufactured 18Ni300 steel. Full article
Show Figures

Figure 1

10 pages, 5463 KB  
Article
High-Power Single-Frequency Continuous-Wave Tunable 1064/532 nm Dual-Wavelength Laser
by Weina Peng, Pixian Jin, Jing Su, Jiao Wei and Huadong Lu
Micromachines 2025, 16(11), 1201; https://doi.org/10.3390/mi16111201 - 23 Oct 2025
Cited by 1 | Viewed by 913
Abstract
A high-power single-frequency continuous-wave wideband continuously tunable dual-wavelength laser at 1064/532 nm is presented in this paper. Firstly, a thermally insensitive cavity containing a type-I phase-matching LiB3O5 crystal and an uncoated quartz etalon was specially designed, which provided the fundamental [...] Read more.
A high-power single-frequency continuous-wave wideband continuously tunable dual-wavelength laser at 1064/532 nm is presented in this paper. Firstly, a thermally insensitive cavity containing a type-I phase-matching LiB3O5 crystal and an uncoated quartz etalon was specially designed, which provided the fundamental condition for the generation of a high-power single-frequency 1064 nm and 532 nm laser. By carefully optimizing the mode matching, the maximal output powers of 13.3 W at 1064 nm and 12.5 W at 532 nm were achieved when the pump power was 63.7 W, and the total optical–optical efficiency of 40.5% was achieved. After the transmission peak of etalon was locked to the oscillating frequency of the resonator, the continuous frequency tuning ranges of the achieved laser were as wide as 26.75 GHz at 1064 nm and 53.5 GHz at 532 nm. Full article
(This article belongs to the Special Issue Advanced Optoelectronic Materials/Devices and Their Applications)
Show Figures

Figure 1

Back to TopTop