Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (512)

Search Parameters:
Keywords = soluble sugars metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1625 KB  
Article
The Age-Dependent Response of Carbon Coordination in the Organs of Pinus yunnanensis Seedlings Under Shade Stress
by Juncheng Han, Yuanxi Liu, Wenhao Zhang, Guihe Duan, Jialan Chen, Weisong Zhu and Junwen Wu
Plants 2025, 14(17), 2679; https://doi.org/10.3390/plants14172679 - 27 Aug 2025
Abstract
To elucidate shade adaptation mechanisms in Pinus yunnanensis seedlings across different ages, this study established five light gradients (100% full sunlight as control or CK, 80% as L1, 45% as L2, 30% as L3, and 5% as L4) for experimental treatments on one- [...] Read more.
To elucidate shade adaptation mechanisms in Pinus yunnanensis seedlings across different ages, this study established five light gradients (100% full sunlight as control or CK, 80% as L1, 45% as L2, 30% as L3, and 5% as L4) for experimental treatments on one- and three-year-old seedlings. By analyzing dynamic changes in non-structural carbohydrates (NSCs) and their components within needles, stems, and roots—combined with a phenotypic plasticity assessment, a correlation analysis, and a principal component analysis—we explored the carbon metabolic adaptations under shade stress. The key results demonstrate the following: (1) Increasing shade intensity significantly reduced the NSCs in the needles and roots of both age groups. The stem NSCs markedly decreased under L1 and L2, indicating “carbon limitation.” However, under severe shade (L3 and L4), the stem NSCs stabilized while the stem soluble sugars gradually increased. In three-year-old Pinus yunnanensis seedlings under the L3 treatment, the ratio of soluble sugars to starch in the stems reached as high as 5.772 g·kg−1, yet the stem NSC content showed no significant change. This pattern exhibited “growth stagnation-carbon enrichment” characteristics. This reveals a physiological strategy for maintaining stem carbon homeostasis through a “structure–metabolism” trade-off under carbon limitation. (2) Shade adaptations diverged by age: one-year-old seedlings employed a short-term “needle–root source–sink reallocation” strategy, whereas three-year-old seedlings developed a “root–stem–needle closed-loop homeostasis regulation” mechanism. (3) Age-specific shade thresholds were identified: one-year-old seedlings required >80% full light to maintain a carbon balance, while three-year-old seedlings exhibited enhanced root carbon storage under moderate shade (45–80% full light). This study clarifies the physiological mechanisms by which P. yunnanensis seedlings of varying ages optimize shade adaptation through organ-specific carbon allocation, providing a theoretical foundation for shade management in artificial forests and understory seedling conservation. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants—Second Edition)
29 pages, 6669 KB  
Article
Molecular Regulation of Phenylpropanoid and Flavonoid Biosynthesis Pathways Based on Transcriptomic and Metabolomic Analyses in Oat Seedlings Under Sodium Selenite Treatment
by Jianxia Ma, Xiaozhuo Wu, Huichun Xie, Guigong Geng and Feng Qiao
Biology 2025, 14(9), 1131; https://doi.org/10.3390/biology14091131 - 26 Aug 2025
Abstract
Selenium can be absorbed and utilized by plants, influencing their growth by altering their physiological metabolism. In this study, based on plant physiology methods, compared to the CK treatment, the height and leaf length of oat seedlings under the T0.02 (0.02 g/kg Na [...] Read more.
Selenium can be absorbed and utilized by plants, influencing their growth by altering their physiological metabolism. In this study, based on plant physiology methods, compared to the CK treatment, the height and leaf length of oat seedlings under the T0.02 (0.02 g/kg Na2SeO3) treatment significantly increased by 18.36% and 15.81%, respectively (p < 0.05). Under the T0.1 (0.1 g/kg Na2SeO3) treatment, the levels of malondialdehyde (MDA), proline, soluble sugar content, and peroxidase (POD) activity significantly increased (p < 0.05). However, the seedling height and leaf length under the T0.1 treatment significantly decreased by 33.24% and 23.25%, respectively. Additionally, the contents of chlorophyll a, chlorophyll b, and carotenoids, as well as ascorbate peroxidase (APX) activity and the superoxide anion radical generation rate (O2) significantly decreased (p < 0.05). The total selenium, organic selenium, and inorganic selenium contents, as measured by the atomic fluorescence spectroscopy method, were also increased in oat seedling roots and leaves under T0.1 treatment (p < 0.05). Selenium had a high coefficient of mobility from root to leaf of 6.01 under T0.02 and 4.65 under T0.1 treatment, and from soil to leaf of 4.98 under T0.02 and 4.55 under T0.1 treatment. Through untargeted metabolomics, six differential phenylpropanoid compounds and 18 differential flavonoid compounds were found in oat seedlings. Based on transcriptomic analysis of oat seedlings, 29 DEGs associated with phenylpropanoid metabolism and 13 DEGs related to flavonoid biosynthesis were identified. Over 60% of the genes (25/42) in the phenylpropanoid and flavonoid biosynthesis pathway were associated with the accumulation of about 74% (20/27) of the compounds in oat leaves. Based on transcriptomic and metabolomics analysis, there were nine major genes (including PAL1, PAL4, CHS2, PAL7, POD3, PAL6, CCR1, CCR4, POD4) modulating the metabolism of phenylpropanoid and flavonoid biosynthesis pathway. This study offers novel insights and genetic resources for exploring the mechanisms underlying plant responses to selenium treatment, thereby further enhancing selenium tolerance in plants. Full article
Show Figures

Figure 1

21 pages, 1464 KB  
Review
Advancements on the Mechanism of Soluble Sugar Metabolism in Fruits
by Jiaqi Wu, Liushan Lu, Zixin Meng, Yuming Qin, Limei Guo, Mengyang Ran, Peng Peng, Yingying Tang, Guodi Huang, Weiming Li and Li Li
Horticulturae 2025, 11(9), 1001; https://doi.org/10.3390/horticulturae11091001 - 23 Aug 2025
Viewed by 277
Abstract
Soluble sugars, primarily fructose, glucose, sucrose, and sorbitol, are crucial determinants of fruit flavor and quality. As a core component of biological metabolism, sugar metabolism provides energy and carbon for fruit development, ultimately governing carbohydrate accumulation in mature fruits. This process requires the [...] Read more.
Soluble sugars, primarily fructose, glucose, sucrose, and sorbitol, are crucial determinants of fruit flavor and quality. As a core component of biological metabolism, sugar metabolism provides energy and carbon for fruit development, ultimately governing carbohydrate accumulation in mature fruits. This process requires the coordinated activities of multiple enzymes and transporters, modulated by the spatiotemporal expression patterns of their encoding genes. Therefore, it is essential to elucidate both the activities of these enzymes across different fruits and their underlying gene expression patterns. While significant progress has been made in functional genes involved in soluble sugar metabolism and deciphering their regulatory networks, an overall introduction of this knowledge remains lacking. This review presents an integrative analysis of soluble sugar accumulation during fruit development, encompassing spatiotemporal dynamics of key metabolic enzymes, functional characterization of encoding genes, signaling response mechanisms governing gene regulation, and the overarching genetic network. Full article
Show Figures

Figure 1

16 pages, 3508 KB  
Article
Metabolomic Profiling Reveals Dynamic Changes in Organic Acids During Zaolajiao Fermentation: Correlation with Physicochemical Properties and CAZymes
by Ju Chen, Xueya Wang, Wenxin Li, Jianwen He, Yong Yin, Min Lu and Yubing Huang
Fermentation 2025, 11(8), 479; https://doi.org/10.3390/fermentation11080479 - 20 Aug 2025
Viewed by 282
Abstract
Zaolajiao (ZLJ) is a traditional national specialty fermented condiment in Guizhou, and organic acid is one of its main flavor substances. In the study, we used metabolomics and multivariate analysis to identify differential organic acids (DOAs) during ZLJ fermentation and explored their correlations [...] Read more.
Zaolajiao (ZLJ) is a traditional national specialty fermented condiment in Guizhou, and organic acid is one of its main flavor substances. In the study, we used metabolomics and multivariate analysis to identify differential organic acids (DOAs) during ZLJ fermentation and explored their correlations with physicochemical indices and CAZymes. Eight DOAs were detected, with citric acid prominent early and lactic acid dominant late in fermentation. Citric acid exhibited a highly significant negative correlation (p < 0.01, |r| > 0.955) with AA3, GT4, and CE1, while showing significant positive correlation (p < 0.05) with GH1, soluble sugars, and total acids. Lactic acid exhibited a highly significant positive correlation with total acid, AA3, and GT4 (p < 0.05, |r| > 0.955). Conversely, it showed a significant negative correlation with soluble sugar (p < 0.05) and a highly significant negative correlation with GH1 (p < 0.05, |r| > 0.955). The most significant metabolic pathway for DOAs enrichment was the citrate cycle (TCA cycle). Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

18 pages, 10425 KB  
Article
Synergistic Response Mechanism and Gene Regulatory Network of Arundo donax Leaf Under Multiple Stresses
by Yixin Huangfu, Yibo Sun, Weiwei Chen, Gongyao Shi, Baoming Tian, Gangqiang Cao, Luyue Zhang, Jialin Guo, Fang Wei and Zhengqing Xie
Horticulturae 2025, 11(8), 985; https://doi.org/10.3390/horticulturae11080985 - 19 Aug 2025
Viewed by 222
Abstract
Arundo donax exhibits strong comprehensive stress resistance and high levels of crude protein and crude fiber, making it an ideal perennial forage crop. It adapts to various abiotic stresses and serves as a new model for studying plant stress response mechanisms. A. donax [...] Read more.
Arundo donax exhibits strong comprehensive stress resistance and high levels of crude protein and crude fiber, making it an ideal perennial forage crop. It adapts to various abiotic stresses and serves as a new model for studying plant stress response mechanisms. A. donax frequently encounters diverse environmental stresses during agricultural production, including drought, waterlogging, and temperature extremes. However, the response mechanisms of A. donax to multiple stresses remains elusive. By analyzing publicly available transcriptome data, we identified 9089, 19,272, and 8585 differentially expressed genes (DEGs) and 742 DEGs shared in the leaves of A. donax under drought, waterlogging, and cold conditions. The data showed that A. donax exhibits differential activation patterns in endogenous hormone signaling (jasmonate/gibberellin), energy metabolism (UDP-glucosyltransferase), and nitrogen metabolism pathways (acyltransferase) under these stresses. DEGs involved in the nitrogen metabolism and phenylpropanoid metabolism pathways were significantly enriched, while the gene expression patterns of these pathways varied among the drought, waterlogging, and cold stress conditions. Different stresses could affect the nitrogen accumulation in A. donax leaves. In addition, pairwise DEG comparisons indicated active roles of antioxidant defense and photosynthetic system in multiple stress responses. Physiological measurements validated these transcriptional changes: the activities of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD)) increased significantly, minimizing oxidative damage. Meanwhile, the photosynthetic pigments content also decreased in response to the three stresses. Soluble sugars, pyruvate, malate, and citrate, which are involved in energy metabolism in the leaves of A. donax, accumulated to sustain themaintenance of the plant’s own energy metabolism. In conclusion, our study revealed the transcriptome-based regulatory network related with synergistic response mechanisms of A. donax leaves under multiple stress conditions. Full article
Show Figures

Figure 1

16 pages, 4802 KB  
Article
Identification of Candidate Gene Networks Controlling Soluble Sugar Metabolism During Brassica napus L. Development by Integrated Analysis of Metabolic and Transcriptomic Analyses
by Bingqian Zhou, Chunyun Guan and Mei Guan
Foods 2025, 14(16), 2874; https://doi.org/10.3390/foods14162874 - 19 Aug 2025
Viewed by 227
Abstract
Soluble sugars are among the key components determining the flavor quality of rapeseed bolting. However, the potential regulatory network governing the biosynthesis of soluble sugars during the growth and development of rapeseed bolting remains largely unknown. In this study, the total soluble sugar [...] Read more.
Soluble sugars are among the key components determining the flavor quality of rapeseed bolting. However, the potential regulatory network governing the biosynthesis of soluble sugars during the growth and development of rapeseed bolting remains largely unknown. In this study, the total soluble sugar and starch contents were measured at the seedling and bolting stages in 203 Brassica napus germplasms. Among them, the inbred lines No51 and No106 were identified as high- and low-sugar materials, respectively. A comparative analysis of the soluble sugar composition between these two extreme lines revealed that sucrose and glucose are the key metabolites contributing to differences in the soluble sugar content. A total of 36,893 differentially expressed genes (DEGs) were identified by transcriptomics, including 19,031 significantly upregulated genes and 17,862 downregulated genes. Metabolomics has identified 25 common and unique metabolites. The combined analysis of transcriptomics and metabolomics showed that differentially expressed genes and metabolites were mainly concentrated in starch and sucrose metabolism, galactose metabolism, and the interconversion of pentose and glucuronic acid. The expression patterns obtained by RNA seq and qRT PCR are highly consistent. A regulatory network related to soluble sugar synthesis and metabolism was constructed, leading to the identification of BnaC02G0100500ZS, BnaC02G0100700ZS, and BnaC02G0092700ZS as potential key genes involved in the regulation of soluble sugar biosynthesis. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

14 pages, 2719 KB  
Article
Karrikins Regulate the Redox Balance and Sugar Metabolism of Postharvest Kiwifruit (Actinidia deliciosa)
by Mingxia Shao, Hongli Li, Shuhua Zhu, Dandan Huang and Chengkun Li
Plants 2025, 14(16), 2567; https://doi.org/10.3390/plants14162567 - 18 Aug 2025
Viewed by 306
Abstract
Karrikins, a class of butenolide compounds derived from plant-derived smoke, positively regulate plant development and stress tolerance. However, their effects on postharvest fruit have scarcely been reported. In this study, karrikin solution was prepared by absorbing maize straw smoke into water, and kiwifruits [...] Read more.
Karrikins, a class of butenolide compounds derived from plant-derived smoke, positively regulate plant development and stress tolerance. However, their effects on postharvest fruit have scarcely been reported. In this study, karrikin solution was prepared by absorbing maize straw smoke into water, and kiwifruits (Actinidia deliciosa) were immersed in different concentrations of this solution to determine the optimal concentration based on respiratory rate, relative conductivity, firmness, soluble solids content, and appearance of the kiwifruits. Subsequently, the regulation of reactive oxygen species (ROS) and soluble sugars metabolism by karrikins were studied. The results showed that the optimal dose of karrikins for kiwifruit was 1.20 μmol L−1. Karrikins enhanced the activities of superoxide dismutase, catalase, enzymes in the ascorbate–glutathione pathway, and soluble sugars metabolism, increased the concentrations of reducing ascorbate, glutathione, sucrose, and fructose-6-phosphate, suppressed ROS concentrations, and maintained the quality of kiwifruit during storage. These results suggest that karrikins could be a potential tool to modulate fruit ripening, with their effects depending on the dosage used. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

19 pages, 3177 KB  
Article
Phosphorus-Driven Stem-Biased Allocation: NPK Synergy Optimizes Growth and Physiology in Dalbergia odorifera T. C. Chen Seedlings
by Mengwen Zhang, Chuanteng Huang, Ling Lin, Lin Chen, Xiaoli Yang, Xiaona Dong, Jiaming Song and Feifei Chen
Plants 2025, 14(16), 2545; https://doi.org/10.3390/plants14162545 - 15 Aug 2025
Viewed by 311
Abstract
Valued for furniture, crafts, and medicine, Dalbergia odorifera T. C. Chen confronts critically depleted wild populations and slow cultivation growth, necessitating precision nutrient formulation to overcome physiological constraints. Using a ‘3414’ regression design with four levels of N, P, and K, this study [...] Read more.
Valued for furniture, crafts, and medicine, Dalbergia odorifera T. C. Chen confronts critically depleted wild populations and slow cultivation growth, necessitating precision nutrient formulation to overcome physiological constraints. Using a ‘3414’ regression design with four levels of N, P, and K, this study identified phosphorus (P) as the most influential nutrient in regulating growth (P > N > K). Maximal growth enhancement occurred under T7 (N2P3K2), with height and basal diameter increments increasing by 239% and 128% versus controls (p < 0.05). Both traits exhibited progressive gains with rising P but unimodal responses to N and K, initially increasing then declining. T7 boosted total biomass by 50% (p < 0.05) with stem-biased partitioning (stem > root > leaf; 52%, 26%, 22%). Photosynthetic capacity increased significantly under T7 (p < 0.05), driven by P-mediated chlorophyll gains (Chla + 70%; Chlb + 75%) and an 82% higher net photosynthetic rate. Metabolic shifts revealed peak soluble sugar in T7 (+139%) and soluble protein in T9 (+226%) (p < 0.05), associated primarily with P and K availability, respectively. Correlation networks revealed significant associations among structural growth, photosynthesis, and metabolism. Principal component analysis established T7 as optimal, defining a “medium-N, high-P medium-K” precision fertilization protocol. These findings elucidate a phosphorus-centered regulatory mechanism governing growth in D. odorifera, providing a scientific foundation for efficient cultivation. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

11 pages, 1967 KB  
Article
Exogenous Melatonin Affects Fruit Enlargement and Sugar Metabolism in Melt Peach
by Yanfei Guo, Baoxin Jiang, Qinghao Wang, Huilian Xu and Wangshu Zhang
Horticulturae 2025, 11(8), 964; https://doi.org/10.3390/horticulturae11080964 - 14 Aug 2025
Viewed by 265
Abstract
Peach (Prunus persica (L.)) fruits are abundant in nutrients, with fruit shape and sugar content serving as critical indicators of fruit quality. Melatonin plays a pivotal role in peach fruit development; however, the mechanisms by which it regulates fruit shape development, sugar [...] Read more.
Peach (Prunus persica (L.)) fruits are abundant in nutrients, with fruit shape and sugar content serving as critical indicators of fruit quality. Melatonin plays a pivotal role in peach fruit development; however, the mechanisms by which it regulates fruit shape development, sugar metabolism, and secondary metabolites remain largely unknown. In this study, peach trees were sprayed with 150 µM melatonin 20 days after pollination. Traditional methods were used to investigate fruit morphology, total soluble solids (TSSs), and titratable acidity content (TAC), while liquid chromatography–mass spectrometry (LC-MS) was employed to analyze sugar metabolites during fruit development. The results indicated that melatonin treatment augmented the transverse and longitudinal diameters of peach fruits by 12% and 6%, respectively, and elevated the contents of soluble solids and titratable acid by 7% and 6%, respectively. The single fruit weight experienced a significant increase of 29.4%, whereas fruit firmness at maturity remained unchanged. Metabolite analysis demonstrated that melatonin decreased the levels of sucrose and D-sorbitol in mature fruits but enhanced the accumulation of D-fructose, L-rhamnose, and xylose. Significantly, melatonin expedited the degradation of galactose, D-mannose, and methyl-D-pyranogalactoside prior to maturity (all three substances naturally decline with fruit ripening), highlighting its role in promoting fruit ripening. In conclusion, exogenous melatonin improves the internal nutrition and flavor quality of fruit by regulating the accumulation of primary and secondary metabolites during fruit ripening. Specifically, the increase in D-fructose (a major contributor to sweetness) and L-rhamnose (a potential precursor for aroma compounds) enhances fruit flavor profile. The accelerated degradation of galactose, D-mannose, and methyl-D-pyranogalactoside (components of cell wall polysaccharides) prior to maturity, alongside the metabolic shift favoring fructose accumulation over sucrose, highlights melatonin’s role in promoting fruit ripening and softening processes. It also promotes fruit enlargement and single fruit weight without affecting fruit firmness. This study establishes a theoretical basis for the further investigation of the molecular mechanisms underlying melatonin’s role in peach fruits and for enhancing quality-focused breeding practices. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

32 pages, 445 KB  
Article
Impact of Soil Drought on Yield and Leaf Sugar Content in Wheat: Genotypic and Phenotypic Relationships Compared Using a Doubled Haploid Population
by Magdalena Grela, Steve Quarrie, Katarzyna Cyganek, Jan Bocianowski, Małgorzata Karbarz, Mirosław Tyrka, Dimah Habash, Michał Dziurka, Edyta Kowalczyk, Wojciech Szarski and Ilona Mieczysława Czyczyło-Mysza
Int. J. Mol. Sci. 2025, 26(16), 7833; https://doi.org/10.3390/ijms26167833 - 13 Aug 2025
Viewed by 226
Abstract
Improving yield stability under water-limited conditions is a key objective of wheat breeding programmes. One trait of particular interest is carbohydrate accumulation and remobilisation. This study assessed the genetic basis of aspects of yield and flag leaf sugar contents under drought and well-watered [...] Read more.
Improving yield stability under water-limited conditions is a key objective of wheat breeding programmes. One trait of particular interest is carbohydrate accumulation and remobilisation. This study assessed the genetic basis of aspects of yield and flag leaf sugar contents under drought and well-watered conditions using QTL mapping in a population of 90 doubled haploid lines derived from the cross Chinese Spring × SQ1. As well as soluble sugar content, glucose, fructose, sucrose, and maltose, the traits grain yield (Yld), biomass (Bio), and thousand grain weight (TGW) were also analysed. Analysis of variance showed that genotype, environment and their interactions significantly influenced all the traits studied, with environmental effects explaining up to 74.4% of the total variation. QTL analysis identified 40 QTLs for Yld, TGW, and Bio as well as 53 QTLs for soluble carbohydrates, accounting for up to 40% of phenotypic variation. QTLs coincident for more than one trait were identified on 21 chromosome regions, associated with carbohydrate metabolism and yield performance under drought, particularly on chromosomes 2D, 4A, 4B, 5B, 5D, 6B, and 7A. Candidate genes for several yield-related QTLs were identified. These results provide useful genetic markers for the development of more drought-resistant wheat cultivars. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Abiotic Stress Tolerance: 2nd Edition)
23 pages, 11380 KB  
Article
Integrated Analysis of Physiological Responses and Transcriptome of Cotton Seedlings Under Drought Stress
by Xin Li, Yuhao Zhao, Chen Gao, Xiaoya Li, Kunkun Wu, Meiwei Lin and Weihong Sun
Int. J. Mol. Sci. 2025, 26(16), 7824; https://doi.org/10.3390/ijms26167824 - 13 Aug 2025
Viewed by 329
Abstract
Investigating the physiological responses and resistance mechanisms in plants under drought stress provides critical insights for optimizing irrigation water utilization efficiency and promoting the development of irrigation science. In this study, cotton seedlings were cultivated in a light incubator. Three drought stress levels [...] Read more.
Investigating the physiological responses and resistance mechanisms in plants under drought stress provides critical insights for optimizing irrigation water utilization efficiency and promoting the development of irrigation science. In this study, cotton seedlings were cultivated in a light incubator. Three drought stress levels were applied: mild (M1, 50–55% field moisture), moderate (M2, 45–50%), and severe (M3, 40–45%). Transcriptome analysis was performed under mild and severe stress. The results revealed that differentially expressed genes (DEGs) related to proline degradation were down-regulated and proline content increased in cotton. Under different stress treatments, cotton exhibited a stress-intensity-dependent regulation of carbohydrate metabolism and soluble sugar content decreased and then increased. And the malondialdehyde content analysis revealed a dose-dependent relationship between stress intensity and membrane lipid peroxidation. Stress activated the antioxidant system, leading to the down-regulation of DEGs for reactive oxygen species production in the mitogen-activated protein kinase (MAPK) signaling pathway. Concurrently, superoxide dismutase activity and peroxidase content increased to mitigate oxidative damage. Meanwhile, the photosynthetic performance of cotton seedlings was inhibited. Chlorophyll content, stomatal conductance, the net photosynthetic rate, the transpiration rate and water use efficiency were significantly reduced; intercellular carbon dioxide concentration and leaf stomatal limitation value increased. But photosynthesis genes (e.g., PSBO (oxygen-evolving enhancer protein 1), RBCS (ribulose bisphosphate carboxylase small chain), and FBA2 (fructose-bisphosphate aldolase 1)) in cotton were up-regulated to coordinate the photosynthetic process. Furthermore, cotton seedlings differentially regulated key biosynthesis and signaling components of phytohormonal pathways including abscisic acid, indoleacetic acid and gibberellin. This study elucidates the significant gene expression of drought-responsive transcriptional networks and relevant physiological response in cotton seedlings and offers a theoretical basis for developing water-saving irrigation strategies. Full article
(This article belongs to the Special Issue Plant Responses to Biotic and Abiotic Stresses)
Show Figures

Figure 1

16 pages, 1331 KB  
Article
Sodium Alginate Composite Coating Inhibited Postharvest Greening and Improved Nutritional Quality of Potato Tubers by Regulating Chlorophyll Biosynthesis
by Chuhan Kang, Xinyu Xia, Dongdong Zhang, Yurong Zhang and Qiong Wu
Horticulturae 2025, 11(8), 950; https://doi.org/10.3390/horticulturae11080950 - 12 Aug 2025
Viewed by 327
Abstract
Potato tuber (Solanum tuberosum L.) was prone to greening and quality deterioration during postharvest storage due to various factors, affecting the regulation of chlorophyll biosynthesis. In the present study, potato tubers were placed at 600 lux and 25 °C after sodium alginate—xanthan [...] Read more.
Potato tuber (Solanum tuberosum L.) was prone to greening and quality deterioration during postharvest storage due to various factors, affecting the regulation of chlorophyll biosynthesis. In the present study, potato tubers were placed at 600 lux and 25 °C after sodium alginate—xanthan gum—glycerin composite coating. During storage, the apparent color changes and a* value of the surface were observed and determined, meanwhile the contents of nutrients, chlorophyll, and its intermediates in photosynthetic metabolism were analyzed. The results showed that after 9 d, compared to the control group, the sodium alginate coating treatment significantly inhibited greening, delayed the decline of appearance quality and nutrients including dry matter, starch, reducing sugar, soluble protein, and ascorbic acid. Furthermore, the sodium alginate coating promoted the contents of 5-aminolevulinic acid (ALA) (1.33 fold), porphobilinogen (PBG) (1.06 fold), and uroporphyrinogen III (Uro III) (1.07 fold), meanwhile, inhibited the production of protoporphyrin IX (Proto IX) (13.86%), Mg-protoporphyrin IX (Mg-Proto IX) (14.15%) and protochlorophyllide (Pchlide) (25.97%), which were key intermediates in the chlorophyll synthesis, indicating that the sodium alginate coating delay the greening by blocking the conversion of Uro III to Proto IX. These results provided valuable insights for the postharvest preservation of potato tuber. Full article
Show Figures

Figure 1

15 pages, 4303 KB  
Article
The Endosperm-Specific Gene OsEnS-42 Regulates Seed Vigor and Grain Quality
by Minhua Zheng, Xiaodan Hu, Luo Chen, Jiale Xing, Shuai Nie, Lukai Ma, Wei Sun, Dilin Liu, Xiumei Li, Weerachai Matthayatthaworn, Wu Yang and Wei Liu
Plants 2025, 14(16), 2492; https://doi.org/10.3390/plants14162492 - 11 Aug 2025
Viewed by 271
Abstract
Seed vigor critically determines sowing performance, while grain quality fundamentally influences commercial value. Elucidating the genetic mechanisms governing these traits is critical for enhancing both seed vigor and grain quality in rice cultivation. Here, we demonstrate that the endosperm-specific gene OsEnS-42 is highly [...] Read more.
Seed vigor critically determines sowing performance, while grain quality fundamentally influences commercial value. Elucidating the genetic mechanisms governing these traits is critical for enhancing both seed vigor and grain quality in rice cultivation. Here, we demonstrate that the endosperm-specific gene OsEnS-42 is highly expressed in germinating seeds and developing seeds at the early filling stage. OsEnS-42 is localized in the nucleus and cytoplasm. The seed vigor of OsEnS-42 knockout plants decreased, manifested as decreases in germination rate, seedling length, and root length. In addition, OsEnS-42 knockout plants showed increased chalkiness and amylose content. The transcriptome and physiological indicators showed that OsEnS-42 regulates seed vigor through soluble sugars and redox metabolism, and regulates grain quality via soluble sugars and seed development-related enzymes. Haplotype analysis of OsEnS-42 across global rice germplasm revealed four distinct haplotypes (Hap 1–4) with subspecies-specific distributions. Crucially, accessions with Hap 4 exhibit a lower percentage of grain with chalkiness than accessions with Hap 1 (predominantly indica), enabling marker-assisted introgression to reduce chalkiness without subspecies barriers. Meanwhile, accessions with Hap 2 show lower amylose content, providing targets for specialty rice breeding. Our findings elucidate the pathways through which OsEnS-42 regulates seed vigor and grain quality, and provide new molecular breeding targets for improving seed vigor and grain quality in rice. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

16 pages, 1592 KB  
Article
Differential Responses of Rice Genotypes to Nitrogen Supply: Impacts on Nitrogen Metabolism and Chlorophyll Fluorescence Kinetics
by Zexin Qi, Wenzheng Sun, Chun Luo, Qiang Zhang, Feisal Mohamed Osman, Chenglong Guan, Ye Wang, Mengru Zhang, Xiaotong Zhang, Jiale Ding, Yuankai Zhang, Fenglou Ling, Xiaolong Liu, Zhian Zhang and Chen Xu
Plants 2025, 14(16), 2467; https://doi.org/10.3390/plants14162467 - 8 Aug 2025
Viewed by 343
Abstract
Nitrogen (N) availability significantly influences plant metabolism and productivity. The aim of this study was to assess the effects of low N stress and subsequent N supplementation on key enzymes of nitrogen metabolism, nitrogen metabolism-related substances, and chlorophyll a fluorescence kinetic parameters in [...] Read more.
Nitrogen (N) availability significantly influences plant metabolism and productivity. The aim of this study was to assess the effects of low N stress and subsequent N supplementation on key enzymes of nitrogen metabolism, nitrogen metabolism-related substances, and chlorophyll a fluorescence kinetic parameters in rice genotypes with different nitrogen utilization efficiencies. We used the Jijing 88 (low-N tolerant) and Xinong 999 (low-N sensitive) as test materials. During the seedling, tillering, and booting stages, the 1/2N and 1/4N treatments were restored to the 1N treatment level. Nine treatments were used in this experiment: CK (1N), A1 (1/2N), A2 (1/2N restored to 1N during the seedling stage), A3 (1/2N restored to 1N during the tillering stage), A4 (1/2N restored to 1N during the booting stage), B1 (1/4N), B2 (1/4N restored to 1N during the seedling stage), B3 (1/4N restored to 1N during the tillering stage), and B4 (1/4N restored to 1N during the booting stage). Key physiological responses, nitrogen compounds, enzymes activities, and chlorophyll a fluorescence kinetics were analyzed. Under low nitrogen conditions, the growth and nitrogen assimilation of rice were inhibited. Compared to XN 999, JJ 88 maintains higher levels of dry matter, nitrate reductase activity (NR), glutamine synthetase activity (GS), glutamate oxaloacetate transaminase activity (GOT), glutamate pyruvate transaminase activity (GPT), as well as nitrate (NO3) and ammonium (NH4+) nitrogen contents. After N supplementation during the early growth stage, both JJ 88 and XN 999 exhibit recovery capabilities. However, in the late growth stage, JJ 88 demonstrates superior recovery capabilities. In addition to enhancing nitrogen metabolism levels, there is also an increase in the content of osmotic regulation substances such as soluble sugars, free amino acids, and proline, along with responses in chlorophyll fluorescence kinetic parameters. This was primarily manifested in the enhancement of performance index (PIABS, PItotal), and quantum yield (φEO, φRO, ψEO), which maintain photosynthetic performance and electron transport efficiency. The research findings indicated that reducing N supply during the early growth stage and restoring N levels in the later stage are beneficial for the recovery of low-nitrogen-tolerant rice varieties. Therefore, in the context of sustainable agricultural production, the breeding of low-nitrogen-tolerant rice varieties and the optimization of N fertilizer management are crucial. Full article
(This article belongs to the Special Issue Advances in Nitrogen Nutrition in Plants)
Show Figures

Figure 1

21 pages, 6405 KB  
Article
Methyl Jasmonate Orchestrates Multi-Pathway Antioxidant Defense to Enhance Salt Stress Tolerance in Walnut (Juglans regia L.)
by Ruining Nie, Chengxu Wu, Xinying Ji, Ao Li, Xu Zheng, Jiajia Tang, Leyuan Sun, Yi Su and Junpei Zhang
Antioxidants 2025, 14(8), 974; https://doi.org/10.3390/antiox14080974 - 8 Aug 2025
Viewed by 387
Abstract
Walnut (Juglans regia L.), an ecologically and economically important species, requires the elucidation of its salt stress response mechanisms for improved salt tolerance breeding. This study elucidates the physiological and molecular mechanisms through which exogenous methyl jasmonate (MeJA) mitigates salt stress in [...] Read more.
Walnut (Juglans regia L.), an ecologically and economically important species, requires the elucidation of its salt stress response mechanisms for improved salt tolerance breeding. This study elucidates the physiological and molecular mechanisms through which exogenous methyl jasmonate (MeJA) mitigates salt stress in walnut, providing novel strategies for salt-tolerant cultivar development. This integrated study combined physiological, biochemical, and multi-omics analyses to decipher how exogenous MeJA enhances ROS scavenging through the synergistic activation of phenylalanine (Phe), tryptophan (Trp), and α-linolenic acid pathways, establishing a multilevel antioxidant defense network. MeJA treatment effectively mitigated salt stress-induced oxidative damage, as demonstrated by a significant 16.83% reduction in malondialdehyde (MDA) content, concurrent 11.60%, 10.73% and 22.25% increases in superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, respectively, the elevation of osmoregulatory soluble sugars (SS), and 1.2- to 2.0-fold upregulation of key antioxidant enzyme genes (SOD, POD, APX, GPX, DHAR) and elevated osmoregulatory substances (soluble sugars, SS). Improved photosynthetic parameters (Pn, Gs) and chlorophyll fluorescence efficiency (Fv/Fm) collectively indicated reduced oxidative stress (improved by 7.97–23.71%). Joint metabolomic-transcriptomic analyses revealed MeJA-enhanced ROS scavenging via the coordinated regulation of Phe, Trp, and α-linolenic acid pathways. In summary, MeJA significantly enhanced reactive oxygen species (ROS) scavenging efficiency and comprehensive antioxidant capacity in walnut seedlings through the synergistic regulation of key metabolic pathways, effectively mitigating salt stress. These findings establish a crucial mechanistic foundation for understanding plant salt stress responses and advance the utilization of MeJA-mediated strategies for the genetic improvement of salinity tolerance in walnut. Future research should prioritize optimizing MeJA application protocols and functionally validating key regulatory genes for breeding applications. Full article
(This article belongs to the Special Issue Oxidative Stress in Plant Stress and Plant Physiology)
Show Figures

Graphical abstract

Back to TopTop