Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = soybean straw

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2564 KB  
Article
Optimizing Pleurotus ostreatus Mushroom Cultivation on Various Agro-Industrial By-Products—Development of a Process Analytical Technology Tool for Predicting Biological Efficiency
by Georgios Bekiaris, Christos S. Pappas, Athanasios Mastrogiannis, Lefteris Lachouvaris, Petros A. Tarantilis and Georgios I. Zervakis
Fermentation 2025, 11(10), 555; https://doi.org/10.3390/fermentation11100555 - 27 Sep 2025
Abstract
Pleurotus ostreatus is among the most widely cultivated mushroom species on a global scale, valued for its relative ease of cultivation, excellent organoleptic qualities, and notable nutraceutical properties. P. ostreatus could use a wide range of by-products as growth substrates by excreting a [...] Read more.
Pleurotus ostreatus is among the most widely cultivated mushroom species on a global scale, valued for its relative ease of cultivation, excellent organoleptic qualities, and notable nutraceutical properties. P. ostreatus could use a wide range of by-products as growth substrates by excreting a potent array of hydrolytic and oxidative enzymes. In this study, a diverse range of agricultural residues and agro-industrial by-products, enriched (or not) with various supplements, was evaluated for the cultivation of five commercial P. ostreatus strains. Key cultivation parameters were assessed, including biological efficiency and productivity. A process analytical technology (PAT) approach, utilizing FTIR spectroscopy in combination with multivariate analysis, was employed to develop a predictive model for biological efficiency based solely on substrate’s spectral profile. Substrates based on wheat and barley straw supplemented with soybean demonstrated superior performance across most strains. The biological efficiency value reached 185% in some cases for a total cultivation period of only 35 days. The resulting model exhibited excellent predictive capability, with a coefficient of determination (R2) of 0.90 and low relative prediction error of just 6%. The developed innovative PAT tool will be beneficial for mushroom growers since it allows the fast and costless evaluation of agro-industrial by-products in respect to their potential exploitation as mushroom substrates. Full article
(This article belongs to the Special Issue Application of Fungi in Bioconversions and Mycoremediation)
Show Figures

Figure 1

25 pages, 1522 KB  
Article
State-Level Inventories and Life Cycle GHG Emissions of Corn, Soybean, and Sugarcane Produced in Brazil
by Lucas G. Pereira, Nilza Patrícia Ramos, Anna Leticia M. T. Pighinelli, Renan M. L. Novaes, Joaquim E. A. Seabra, Henrique Debiasi, Marcelo H. Hirakuri and Marília I. S. Folegatti
Sustainability 2025, 17(18), 8482; https://doi.org/10.3390/su17188482 - 22 Sep 2025
Viewed by 259
Abstract
Brazil is a leading producer of multi-purpose crops—such as corn, soybean, and sugarcane—used for human consumption, animal feed, and biofuel production. This study generated agricultural inventories for these three crops based on state-level information. For sugarcane, we used primary data submitted by ethanol [...] Read more.
Brazil is a leading producer of multi-purpose crops—such as corn, soybean, and sugarcane—used for human consumption, animal feed, and biofuel production. This study generated agricultural inventories for these three crops based on state-level information. For sugarcane, we used primary data submitted by ethanol producers to RenovaBio. For soybean and corn, we retrieved and updated data from a previous study, which gathered information through panel consultations with farmers and sector experts. We also calculated the greenhouse gas (GHG) emissions associated with the crops using the Life Cycle Assessment (LCA) method. Our analysis revealed significant variability in emissions across states, especially for corn and sugarcane. Without considering direct land use change (dLUC), the states with the highest and lowest emissions for each crop were as follows: (i) sugarcane: Paraíba at 54 and Goiás at 37, with a national average of 42 kg CO2e/t cane; (ii) soybean: Maranhão at 344 and Minas Gerais at 300, average of 323 kg CO2e/t soy; (iii) first-crop corn: Maranhão at 416 and Mato Grosso at 264, average of 300 kg CO2e/t corn; (iv) second-crop corn: Paraná at 306 and Minas Gerais at 153, average of 255 kg CO2e/t corn. Emissions were inversely related to crop yields, with the exception of second-crop corn. In general, lower yields were observed in states of the Northeast region (e.g., Maranhão and Paraíba), which face challenges due to irregular climate patterns and water deficits. For sugarcane cultivated in the same region, emissions from straw burning had a significant impact, with the practice being applied to more than 60% of the crop area. If dLUC emissions were included, variability would increase dramatically—particularly for corn and soybean in some states—due to patterns of cropland expansion into native vegetation areas over the 2000–2019 period. In particular, total soybean emissions would range from 471 in Paraná to 2173 in Maranhão, with a national average of 1022 kg CO2e/t soy. These findings can be valuable as references for life cycle databases, for the development of state-specific emission factors for biofuels produced from the investigated crops, and as supporting information for decarbonization programs. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

20 pages, 2194 KB  
Article
Straw Deep Burial and Returning to Farmland: Mechanistic Study on Enhancing Albic Soil Fertility
by Qiuju Wang, Yuxin Liu, Yuping Liu, Baoguang Wu, Qingying Meng, Jingyang Li, Jiahe Zou and Xin Liu
Agronomy 2025, 15(9), 2210; https://doi.org/10.3390/agronomy15092210 - 18 Sep 2025
Viewed by 272
Abstract
This study developed an innovative model integrating straw subsoil deep burial (SD) and mixing plow to mitigate albic soil’s physical and chemical constraints and enhance crop yield. A field experiment with four treatments, including conventional tillage (CT), straw mulching (SM), straw subsoil deep [...] Read more.
This study developed an innovative model integrating straw subsoil deep burial (SD) and mixing plow to mitigate albic soil’s physical and chemical constraints and enhance crop yield. A field experiment with four treatments, including conventional tillage (CT), straw mulching (SM), straw subsoil deep burial (SD), and straw burning (SR), was conducted to assess impacts on soil enzyme activity, nutrient dynamics, crop yield, and soil physical properties. Results showed that SD treatment significantly improved albic soil properties compared to conventional tillage: catalase activity in the albic horizon decreased by 13.51%, reducing peroxide toxicity. In the albic horizon, alkaline hydrolysis nitrogen, total nitrogen, available phosphorus, total phosphorus, available potassium, total potassium, and organic matter increased by 29.98%, 58.70%, 36.86%, 20.46%, 5.00%, 21.70%, and 40.46%, respectively. Correspondingly, maize and soybean yield under SD reached 8686.6 kg/ha and 2245.3 kg/ha, increasing by 15.39% and 19.94% compared to CT, respectively. Additionally, SD treatment improved physical properties of the albic horizon: soil hardness reduced by 43.56%, with enhanced water-holding capacity, permeability coefficient, porosity, and hydraulic conductivity. Its findings not only boost agronomic productivity by improving crop yields but also support environmental sustainability by enhancing soil fertility, which is of great significance for ensuring food security. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

18 pages, 2297 KB  
Article
Effects of Wet Soybean Dregs on Forming Relaxation Ratio, Maximum Compressive Force and Specific Energy Consumption of Corn Stover Pellets
by Tianyou Chen, Wenyu Zhang, Yuqiu Song and Yanlin Wang
Agriculture 2025, 15(16), 1727; https://doi.org/10.3390/agriculture15161727 - 11 Aug 2025
Viewed by 438
Abstract
This study aims to explore the influence mechanism of wet fermented soybean dregs on corn stover formation, improve the forming quality of straws and reduce the power demand and specific energy consumption of forming equipment. This study takes 2 mm and 4 mm [...] Read more.
This study aims to explore the influence mechanism of wet fermented soybean dregs on corn stover formation, improve the forming quality of straws and reduce the power demand and specific energy consumption of forming equipment. This study takes 2 mm and 4 mm corn stover sizes as the objects and explores the influence of different amounts of fermented soybean dregs on the volume relaxation ratio, maximum compressive force and specific energy consumption of straw forming pellets under compression displacements of 90 mm and 92 mm. Different amounts of water are selected according to the total moisture content of the mixed feed, and the effects of adding water and fermented wet soybean dregs on feed forming are compared and studied. The results indicate that, under certain conditions, adding water or wet fermented soybean dregs to straw is beneficial for shaping. Adding wet fermented soybean dregs to straw can improve the nutritional value of feed and promote the utilization of agricultural waste. Therefore, adding wet fermented soybean dregs is an effective method for processing high-quality feed pellets. Taking into account the quality and specific energy consumption of mixed feed processing, the optimal pelleting process for corn stover and wet fermented soybean dregs in a mixed feed is as follows: straw particle size of 4 mm, added mass ratio of wet fermented soybean dregs of 5% and compression displacement of 92 mm. These results support the research and development of technology and devices for high-quality and low-energy mixed formation using fermented soybean dregs and straw, and they offer a new route for the utilization of other high-moisture feeds. Full article
Show Figures

Figure 1

17 pages, 2507 KB  
Article
Formula Screening and Optimization of Physical and Chemical Properties for Cultivating Flammulina filiformis Using Soybean Straw as Substrate
by Ruixiang Sun, Jiandong Han, Peng Yang, Shude Yang, Hongyan Xie, Jin Li, Chunyan Huang, Qiang Yao, Qinghua Wang, He Li, Xuerong Han and Zhiyuan Gong
Horticulturae 2025, 11(8), 947; https://doi.org/10.3390/horticulturae11080947 - 11 Aug 2025
Viewed by 456
Abstract
Recently, there has been a growing interest in using agricultural and forestry residues to cultivate Flammulina filiformis. However, there is limited research on cultivating F. filiformis with soybean straw as a substrate. This study systematically optimized the cultivation formula for F. filiformis [...] Read more.
Recently, there has been a growing interest in using agricultural and forestry residues to cultivate Flammulina filiformis. However, there is limited research on cultivating F. filiformis with soybean straw as a substrate. This study systematically optimized the cultivation formula for F. filiformis using soybean straw as the raw substrate and explored the effects of the water content, carbon-to-nitrogen ratio (C/N ratio), substrate particle size, and substrate loading on its growth and development. By replacing corncob, wheat bran, and soybean hulls with soybean straw and increasing the proportion of rice bran, the cultivation formula for growing F. filiformis was optimized. We found that the maximum fruiting body yield of 405 g (330 g dry substrate per bottle) and a biological efficiency of 122.73% were achieved using a substrate mixture of 25% soybean straw, 20% corncob, 20% cottonseed hull, 25% rice bran, 8% wheat bran, 1% CaCO3, and 1% shellfish powder. The yield and biological efficiency of fruiting bodies cultivated on the substrate containing 25% soybean straw did not show significant differences compared to the control group. However, the cultivation formula containing 25% soybean straw yielded F. filiformis with significantly higher levels of amino acids, essential amino acids, and fat. These findings suggest that the 25% soybean straw substrate formulation can serve as a viable alternative to the control formulation for the cultivation of F. filiformis, although variations in the nutritional composition exist. Based on this optimized formula, an optimal biological efficiency can be achieved with a substrate-to-water ratio of 1:1.7, a wet substrate loading amount of 940 g (in a 1250 mL cultivation bottle), and a soybean straw particle size range of 6–8 mm. The optimal C/N ratio for cultivating F. filiformis using soybean straw ranges from 27:1 to 32:1. Additionally, orthogonal experiments revealed that the nitrogen content significantly affected the fruiting body yield, stipe length, and stipe diameter, while the water content mainly affected the pileus diameter, pileus thickness, and number of fruit bodies. Under defined conditions (dry substrate loading volume of 337 g (in a 1250 mL cultivation bottle), a substrate-to-water ratio of 1:1.6, and a C/N ratio of 26:1), the maximum yield and biological efficiency per bottle reached 395 g and 117.21%, respectively. Our findings indicate that the F. filiformis cultivation using soybean straw as the raw substrate exhibits a promising performance and extensive application potential. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

22 pages, 2187 KB  
Article
Long-Term Rotary Tillage and Straw Mulching Enhance Dry Matter Production, Yield, and Water Use Efficiency of Wheat in a Rain-Fed Wheat-Soybean Double Cropping System
by Shiyan Dong, Ming Huang, Junhao Zhang, Qihui Zhou, Chuan Hu, Aohan Liu, Hezheng Wang, Guozhan Fu, Jinzhi Wu and Youjun Li
Plants 2025, 14(15), 2438; https://doi.org/10.3390/plants14152438 - 6 Aug 2025
Viewed by 550
Abstract
Water deficiency and low water use efficiency severely constrain wheat yield in dryland regions. This study aimed to identify suitable tillage methods and straw management to improve dry matter production, grain yield, and water use efficiency of wheat in the dryland winter wheat–summer [...] Read more.
Water deficiency and low water use efficiency severely constrain wheat yield in dryland regions. This study aimed to identify suitable tillage methods and straw management to improve dry matter production, grain yield, and water use efficiency of wheat in the dryland winter wheat–summer bean (hereafter referred to as wheat-soybean) double-cropping system. A long-term located field experiment (onset in October 2009) with two tillage methods—plowing (PT) and rotary tillage (RT)—and two straw management—no straw mulching (NS) and straw mulching (SM)—was conducted at a typical dryland in China. The wheat yield and yield component, dry matter accumulation and translocation characteristics, and water use efficiency were investigated from 2014 to 2018. Straw management significantly affected wheat yield and yield components, while tillage methods had no significant effect. Furthermore, the interaction of tillage methods and straw management significantly affected yield and yield components except for the spike number. RTSM significantly increased the spike number, grains per spike, 1000-grain weight, harvest index, and grain yield by 12.5%, 8.4%, 6.0%, 3.4%, and 13.4%, respectively, compared to PTNS. Likewise, RTSM significantly increased the aforementioned indicators by 14.8%, 10.1%, 7.5%, 3.6%, and 20.5%, compared to RTNS. Mechanistic analysis revealed that, compared to NS, SM not only significantly enhanced pre-anthesis and post-anthesis dry matter accumulation, and pre-anthesis dry matter tanslocation to grain, but also significantly improved pre-sowing water storage, water consumption during wheat growth, water use efficiency, and water-saving for produced per kg grain yield, with the greatest improvements obtained under RT than PT. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) analysis confirmed RTSM’s yield superiority was mainly ascribed to straw-induced improvements in dry matter and water productivity. In a word, rotary tillage with straw mulching could be recommended as a suitable practice for high-yield wheat production in a dryland wheat-soybean double-cropping system. Full article
(This article belongs to the Special Issue Emerging Trends in Alternative and Sustainable Crop Production)
Show Figures

Figure 1

18 pages, 4915 KB  
Article
The Quality of Seedbed and Seeding Under Four Tillage Modes
by Lijun Wang, Yunpeng Gao, Zhao Ma and Bo Wang
Agriculture 2025, 15(15), 1626; https://doi.org/10.3390/agriculture15151626 - 26 Jul 2025
Viewed by 463
Abstract
Crop residue management and soil tillage (CRM and ST) are key steps in agricultural production. The effects of different CRM and ST modes on the quality of seedbed, seeding, and harvest yield are not well determined. In this study, the system of maize [...] Read more.
Crop residue management and soil tillage (CRM and ST) are key steps in agricultural production. The effects of different CRM and ST modes on the quality of seedbed, seeding, and harvest yield are not well determined. In this study, the system of maize (Zea mays L.)–soybean (Glycine max (L.) Merr) rotation under ridge-tillage in the semi-arid regions of Northeast China was chosen as the study conditions. Four modes were investigated: deep tillage and seeding (DT and S), stubble field and no-tillage seeding (SF and NTS), three-axis rotary tillage and seeding (TART and S), and shallow rotary tillage and seeding (SRT and S). Results show that the DT and S mode produced the best quality of seedbed and seeding. Among the conservation tillage modes, the SRT and S mode produced the shortest average length of roots and straw, the best uniformity of their distribution in the seedbed, and the highest soybean yield. Both the SRT and S and SF and NTS modes yielded a higher net profit as their cost-effectiveness. When considering only the quality of seedbed and seeding under conservation tillage as a prerequisite, it can be concluded that the SRT and S mode is both advantageous and sustainable. Full article
(This article belongs to the Special Issue Effects of Crop Management on Yields)
Show Figures

Graphical abstract

17 pages, 4950 KB  
Article
Optimization of Biochar Pellet Production from Corn Straw Char and Waste Soybean Powder Using Ultrasonic Vibration-Assisted Pelleting
by Wentao Li, Shengxu Yin, Jianning Sui and Lina Luo
Processes 2025, 13(8), 2376; https://doi.org/10.3390/pr13082376 - 26 Jul 2025
Viewed by 457
Abstract
To address the challenges of low density, loose structure, high utilization costs, and inadequate molding effects of corn straw char under ambient temperature and pressure conditions, this study investigated the utilization of waste soybean powder (WSP) as a binder to produce biochar pellets [...] Read more.
To address the challenges of low density, loose structure, high utilization costs, and inadequate molding effects of corn straw char under ambient temperature and pressure conditions, this study investigated the utilization of waste soybean powder (WSP) as a binder to produce biochar pellets via ultrasonic-assisted processing. A single-factor experiment was initially conducted to assess the effects of key variables. Subsequently, a Central Composite Rotatable Design (CCRD) was employed to evaluate the individual and interactive effects of these variables, in which pellet density and durability served as response indicators. Regression models for both responses were developed and validated using analysis of variance (ANOVA). The results indicated that, at a 0.05 significance level, the mixing ratio of corn straw char to WSP and molding pressure had highly significant effects on pellet density, while pelleting time had a significant effect and ultrasonic power had no significant influence. All four factors significantly affected pellet durability, and their interactions were further analyzed. The optimal conditions were a mixing ratio of 45%, pelleting time of 33 s, an ultrasonic power of 150 W, and a molding pressure of 5 MPa, yielding pellets with a density of 1140.41 kg/m3 and a durability of 98.54%. These results demonstrate that WSP is an effective binder for the ultrasonic-assisted fabrication of biochar pellets. Full article
(This article belongs to the Section Sustainable Processes)
Show Figures

Figure 1

26 pages, 3919 KB  
Article
Impacts of Various Straw Mulching Strategies on Soil Water, Nutrients, Thermal Regimes, and Yield in Wheat–Soybean Rotation Systems
by Chaoyu Liao, Min Tang, Chao Zhang, Meihua Deng, Yan Li and Shaoyuan Feng
Plants 2025, 14(14), 2233; https://doi.org/10.3390/plants14142233 - 19 Jul 2025
Cited by 1 | Viewed by 620
Abstract
Straw mulching is an important strategy for regulating soil moisture, nutrient availability, and thermal conditions in agricultural systems. However, the mechanisms by which the mulching period, thickness, and planting density interact to influence yield formation in wheat–soybean rotation systems remain insufficiently understood. In [...] Read more.
Straw mulching is an important strategy for regulating soil moisture, nutrient availability, and thermal conditions in agricultural systems. However, the mechanisms by which the mulching period, thickness, and planting density interact to influence yield formation in wheat–soybean rotation systems remain insufficiently understood. In this study, we systematically examined the combined effects of straw mulching at the seedling and jointing stages of winter wheat, as well as varying mulching thicknesses and soybean planting densities, on soil properties and crop yields through field experiments. The experimental design included straw mulching treatments during the seedling stage (T1) and the jointing stage (T2) of winter wheat, with soybean planting densities classified as low (D1, 1.8 × 105 plants·ha−1) and high (D2, 3.6 × 105 plants·ha−1). Mulching thicknesses were set at low (S1, 2830.19 kg·ha−1), medium (S2, 8490.57 kg·ha−1), and high (S3, 14,150.95 kg·ha−1), in addition to a no-mulch control (CK) for each treatment. The results demonstrated that (1) straw mulching significantly increased soil water content in the order S3 > S2 > S1 > CK and exerted a temperature-buffering effect. This resulted in increases in soil organic carbon, available phosphorus, and available potassium by 1.88−71.95%, 1.36−165.8%, and 1.92−36.34%, respectively, while decreasing available nitrogen content by 1.42−17.98%. (2) The T1 treatments increased wheat yields by 1.22% compared to the control, while the T2 treatments resulted in a 23.83% yield increase. Soybean yields increased by 23.99% under D1 and by 36.22% under D2 treatments. (3) Structural equation modeling indicated that straw mulching influenced yields by modifying interactions among soil organic carbon, available nitrogen, available phosphorus, available potassium, bulk density, soil temperature, and soil water content. Wheat yields were primarily regulated by the synergistic effects of soil temperature, water content, and available potassium, whereas soybean yields were determined by the dynamic balance between organic carbon and available potassium. This study provides empirical evidence to inform the optimization of straw return practices in wheat–soybean rotation systems. Full article
Show Figures

Figure 1

21 pages, 3238 KB  
Article
Fingerprinting Agro-Industrial Waste: Using Polysaccharides from Cell Walls to Biomaterials
by Débora Pagliuso, Adriana Grandis, Amanda de Castro Juraski, Adriano Rodrigues Azzoni, Maria de Lourdes Teixeira de Morais Polizeli, Helio Henrique Villanueva, Guenther Carlos Krieger Filho and Marcos Silveira Buckeridge
Sustainability 2025, 17(14), 6362; https://doi.org/10.3390/su17146362 - 11 Jul 2025
Viewed by 540
Abstract
Climate change resulting from human development necessitates increased land use, food, and energy consumption, underscoring the need for sustainable development. Incorporating various feedstocks into value-added liquid fuels and bioproducts is essential for achieving sustainability. Most biomass consists of cell walls, which serve as [...] Read more.
Climate change resulting from human development necessitates increased land use, food, and energy consumption, underscoring the need for sustainable development. Incorporating various feedstocks into value-added liquid fuels and bioproducts is essential for achieving sustainability. Most biomass consists of cell walls, which serve as a primary carbon source for bioenergy and biorefinery processes. This structure contains a cellulose core, where lignin and hemicelluloses are crosslinked and embedded in a pectin matrix, forming diverse polysaccharide architectures across different species and tissues. Nineteen agro-industrial waste products were analyzed for their potential use in a circular economy. The analysis included cell wall composition, saccharification, and calorific potential. Thermal capacity and degradation were similar among the evaluated wastes. The feedstocks of corn cob, corn straw, soybean husk, and industry paper residue exhibited a higher saccharification capacity despite having lower lignin and uronic acid contents, with cell walls comprising 30% glucose and 60% xylose. Therefore, corn, soybeans, industrial paper residue, and sugarcane are more promising for bioethanol production. Additionally, duckweed, barley, sorghum, wheat, rice, bean, and coffee residues could serve as feedstocks for other by-products in green chemistry, generating valuable products. Our findings show that agro-industrial residues display a variety of polymers that are functional for various applications in different industry sectors. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

25 pages, 8910 KB  
Article
Physical Properties of Gelatin-Based Hydrogels Incorporated with Soybean Straw Nanocellulose Obtained by Enzymatic Hydrolysis
by Lía Ethel Velásquez-Castillo, Gisele Imoto de Freitas, Izabel Cristina Freitas Moraes, Milena Martelli Tosi, Daniel Enrique López Angulo and Paulo José do Amaral Sobral
Foods 2025, 14(13), 2269; https://doi.org/10.3390/foods14132269 - 26 Jun 2025
Viewed by 614
Abstract
Gelatin hydrogels for food packaging applications have aroused interest in recent years. However, these hydrogels exhibit several limitations, such as poor mechanical strength and low swelling and water uptake. To overcome these challenges, nanocellulose can be used as a nanofiller. Thus, cellulose nanofibrils [...] Read more.
Gelatin hydrogels for food packaging applications have aroused interest in recent years. However, these hydrogels exhibit several limitations, such as poor mechanical strength and low swelling and water uptake. To overcome these challenges, nanocellulose can be used as a nanofiller. Thus, cellulose nanofibrils (CNFs) were obtained from soybean straw and used as a nanofiller for hydrogels produced with type A and B gelatin. The effects of the biopolymer type and the influence of CNF concentrations (0–3.0%, w/w) on the properties of hydrogels were studied. The CNFs exhibited a fiber morphology with micrometer length and nanometer diameter (16.8 ± 1.2 nm). The addition of CNFs (0–3%, w/w) caused a decrease in the stress (~50%) and elongation (~14%) at the fracture of the hydrogels for both type of gelatin. However, the elastic modulus increased (~20%). The addition of CNFs increased the hardness of the hydrogels up to 25%. The swelling capacity decreased by ~30% when the CNF concentration increased from 0 to 3%, while the thermal properties and chemical structure were not altered. These findings provide valuable insights for ongoing research into the incorporation of nanocellulose in biopolymer-based hydrogels produced by physical and sustainable methods for food packaging applications. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

15 pages, 2577 KB  
Article
Adaptive Laboratory Evolution of a Microbial Consortium Enhancing Non-Protein Nitrogen Assimilation for Feed Protein Production
by Yi He, Shilei Wang, Yifan Mi, Mengyu Liu, Huimin Ren, Zhengxiang Guo, Zhen Chen, Yafan Cai, Jingliang Xu, Dong Liu, Chenjie Zhu, Zhi Wang and Hanjie Ying
Microorganisms 2025, 13(6), 1416; https://doi.org/10.3390/microorganisms13061416 - 18 Jun 2025
Viewed by 934
Abstract
The increasing global demand for protein underscores the necessity for sustainable alternatives to soybean-based animal feed, which poses a challenge to human food security. Thus, the search for sustainable, alternative protein sources is transforming the feed industry in its effort to sustainable operations. [...] Read more.
The increasing global demand for protein underscores the necessity for sustainable alternatives to soybean-based animal feed, which poses a challenge to human food security. Thus, the search for sustainable, alternative protein sources is transforming the feed industry in its effort to sustainable operations. In this study, a microbial consortium was subjected to adaptive laboratory evolution using non-protein nitrogen (NPN) and wheat straw as the sole carbon source. The evolved microbial consortium was subsequently utilized to perform solid-state fermentation on wheat straw and NPN to produce feed protein. After 20 generations, the microbial consortium demonstrated tolerance to 5 g/L NPN, including ammonium sulfate, ammonium chloride, and urea, which represents a fivefold increase compared to the original microbial consortium. Among the three NPNs tested, the evolved microbial consortium exhibited optimal growth performance with ammonium sulfate. Subsequently, the evolved microbial consortium was employed for the solid-state fermentation (SSF) of wheat straw, and the fermentation conditions were optimized. It was found that the true protein content of wheat straw could be increased from 2.74% to 10.42% under specific conditions: ammoniated wheat straw (15% w/w), non-sterilization of the substrate, an inoculation amount of 15% (v/w), nitrogen addition amount of 0.5% (w/w), an initial moisture content of 70%, a fermentation temperature of 30 °C, and a fermentation duration of 10 days. Finally, the SSF process for wheat straw was successfully scaled up from 0.04 to 2.5 kg, resulting in an increased true protein content of 9.84%. This study provides a promising approach for the production of feed protein from straw and NPN through microbial fermentation, addressing protein resource shortages in animal feed and improving the value of waste straw. Full article
(This article belongs to the Special Issue Microbial-Sourced Nutritional Supplements for Human and Animal)
Show Figures

Graphical abstract

19 pages, 12601 KB  
Article
The Impacts of Farming Activities on the Coevolutionary Structure of Plant Rhizosphere Soil Microbial Communities
by Qiuju Wang, Yu Jiang, Gang Mi, Xin Liu, Jiahe Zou, Jingyang Li and Zhenhua Guo
Microorganisms 2025, 13(6), 1216; https://doi.org/10.3390/microorganisms13061216 - 26 May 2025
Viewed by 588
Abstract
Human agricultural activities can impact the soil microbial ecosystem, but the future implications of such changes remain largely unknown. This study aimed to explore how soil microbes survive and reproduce under the pressure of human agricultural cultivation and whether they resist or adapt. [...] Read more.
Human agricultural activities can impact the soil microbial ecosystem, but the future implications of such changes remain largely unknown. This study aimed to explore how soil microbes survive and reproduce under the pressure of human agricultural cultivation and whether they resist or adapt. A 10-year continuous experiment was conducted, planting a maize and soybean rotation (control group), alfalfa (legume), and wheat (poaceae) to study the impact of different crop planting on soil microbial communities. During the experiment, the physical and chemical properties of the soil samples were measured, and the rhizosphere microbial communities were analyzed. Different crop plantings had varying effects on soil microbial species diversity, but these differences were relatively limited. The relative abundance of Cyanobacteriales (order) was higher in wheat than in alfalfa. Moreover, Cyanobacteriales were positively correlated with soil peroxidase, thereby promoting wheat growth. In addition, nutrition for fungi is mainly derived from decaying straw and plant roots. This study divided soil microbes under agricultural cultivation conditions into three categories: adaptive microbes, neutral microbes, and resistant microbes. At the ecological level of plant rhizosphere microbes, the plant rhizosphere soil microbial community showed a coevolutionary relationship with human cultivation activities. Future research needs to pay more attention to the adaptability of soil microbial communities to agricultural cultivation and the potential impact of this adaptability on the global ecosystem. Full article
Show Figures

Graphical abstract

20 pages, 8074 KB  
Article
Effects of Short-Term Straw Return and Manure Fertilization on Soil Microorganisms and Soybean Yield in Parent Material of Degraded Black Soil in Northeast China
by Jiahua Ding, Zhao Li, Jiali Wu, Dalong Ma, Qiang Chen and Jianye Li
Microorganisms 2025, 13(5), 1137; https://doi.org/10.3390/microorganisms13051137 - 15 May 2025
Viewed by 826
Abstract
Soil erosion has caused the loss of black soil and exposed the soil parent material in the cultivated layer of sloping farmland in Northeast China. Straw return (STR) and manure fertilization (MF) are critical measures to improve soil quality and crop yield. However, [...] Read more.
Soil erosion has caused the loss of black soil and exposed the soil parent material in the cultivated layer of sloping farmland in Northeast China. Straw return (STR) and manure fertilization (MF) are critical measures to improve soil quality and crop yield. However, the effect of STR and MF on the soil properties of the parent material remains unclear. We conducted a 1-year pot experiment in the field using the soil parent material of degraded black soil to evaluate the effects of STR and MF on soil nutrients, microbial community, and soybean yield. We analyzed these effects using two treatments (STR and MF) in three soybean growth stages (seedling, flowering, and maturity) and a control group (CK). The MF treatment had higher α and β diversity of soil microbial than the CK during all soybean growth stages. Similarly, STR had higher soil microbial α diversity at the maturity stage and lower diversity at the seedling stage. Co-occurrence network analysis suggested that STR and MF increased the proportion of positively correlated edges in soil bacterial and fungal networks compared to the CK. Notably, the treatments enriched beneficial taxa, such as Schizothecium (fungi) and Massilia (bacteria), which are associated with organic matter decomposition and nitrogen cycling. STR and MF significantly improved soil organic matter, total nitrogen, and carbon-nitrogen ratio (p < 0.05). Structural equation modeling (SEM) revealed that STR and MF directly increased soybean yield. This effect was primarily mediated by the significantly higher soil organic matter, total carbon, total nitrogen, and carbon-to-nitrogen ratio in the treatments than in the CK (p < 0.05). In summary, STR and MF improved soil fertility and soil microbial community diversity of degraded black soil. This study provides scientific methods to improve the fertility of degraded black soil and increase soybean production in the short term. Full article
(This article belongs to the Special Issue Microorganisms: Climate Change and Terrestrial Ecosystems)
Show Figures

Figure 1

19 pages, 3204 KB  
Article
Metagenomics Reveals the Effects of Organic Material Co-Application on Phosphorus Cycling Functional Genes and Bioavailable Phosphorus
by Wei Wang, Yue Jiang, Shanshan Cai, Yumei Li, Lei Sun and Juanjuan Qu
Agronomy 2025, 15(5), 1187; https://doi.org/10.3390/agronomy15051187 - 14 May 2025
Viewed by 1054
Abstract
Phosphorus is essential for crop growth, but excessive use of chemical fertilizers can lead to environmental issues. The incorporation of organic materials has the potential to enhance phosphorus availability and promote soil phosphorus cycling. This study investigated the effects of chemical fertilizer co-application [...] Read more.
Phosphorus is essential for crop growth, but excessive use of chemical fertilizers can lead to environmental issues. The incorporation of organic materials has the potential to enhance phosphorus availability and promote soil phosphorus cycling. This study investigated the effects of chemical fertilizer co-application with two organic materials on soil properties and functions. Four treatments were established: (1) chemical fertilizer alone (SC, consisting of urea, ammonium phosphate, and potassium sulfate), (2) chemical fertilizer with corn-straw-derived biochar (SCB), (3) chemical fertilizer with composted manure-based organic fertilizer (SCF), and (4) chemical fertilizer with both biochar and organic fertilizer (SCBF). This study focused on changes in soil properties, bioavailable phosphorus, phosphorus cycling functional genes, and related microbial communities. Compared to SC, the combined application of organic materials significantly increased available phosphorus (AP), alkaline hydrolysis nitrogen (AN), and available potassium (AK), with the SCBF exhibiting the highest increases of 78.76%, 47.47%, and 336.61%, respectively. However, applying organic materials reduced alkaline phosphatase (ALP) and acid phosphatase (ACP) activities, except for the increase in ACP in SCBF. Additionally, bioavailable phosphorus increased by up to 157.00% in SCBF. Adding organic materials significantly decreased organic phosphorus mineralization genes (phoA, phoD, phnP) and phosphate degradation genes (ppk2), while increasing inorganic phosphorus solubilization genes (pqqC, gcd), which subsequently increased CaCl2-P and Citrate-P contents in SCB and in SCBF. In summary, organic material application significantly enhances phosphorus bioavailability by improving soil physicochemical properties and phosphorus-related gene abundance. These findings provide new insights into sustainable soil fertility management and highlight the potential of integrating organic materials with chemical fertilizers to improve soil nutrient availability, thereby contributing to increased soybean yield. Moreover, this study advances our understanding of the underlying mechanisms driving phosphorus cycling under combined fertilization strategies, offering a scientific basis for optimizing fertilization practices in agroecosystems. Full article
(This article belongs to the Special Issue Effects of Arable Farming Measures on Soil Quality—2nd Edition)
Show Figures

Figure 1

Back to TopTop