Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = space berthing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2425 KB  
Article
Simulation Study on P-Shaped Process Layout for Automated Container Terminals
by Yan Liang, Jianming Jin, Zhaohua Guo, Yang Chen and Jinsong Bao
Electronics 2025, 14(17), 3356; https://doi.org/10.3390/electronics14173356 - 23 Aug 2025
Viewed by 441
Abstract
Automated container terminals can achieve precise matching of equipment and space, thus forming the foundation for the terminals’ efficient operation. However, the increase in container volume requires the construction of more ACTs. Existing studies lack dynamic assessment of the deep coupling between the [...] Read more.
Automated container terminals can achieve precise matching of equipment and space, thus forming the foundation for the terminals’ efficient operation. However, the increase in container volume requires the construction of more ACTs. Existing studies lack dynamic assessment of the deep coupling between the P-shaped layout and the terminal’s system performance verification under peak operating conditions. To solve these problems, this paper aims to evaluate the system performance of the process layout in the application of ACTs through simulation methods. We have identified the differences in indicators among various schemes, thereby providing decision support for the construction of the port. In this paper, a simulation method for the configuration based on a P-shaped process layout is proposed at ACTs. The port system is constructed as a discrete event simulation model consisting of five core modules. Then two P-shaped process layout schemes and one mixed process layout scheme are proposed and the terminal models are established, respectively. Finally, by conducting numerous simulation experiments under different layout schemes, the influence of traffic organization on the efficiency of the terminal system was analyzed. The results demonstrate that on the premise of the maturity of the mixed-traffic technology at the terminal, when the proportion of cross-berth operations is low, the system efficiency of the mixed layout scheme is the highest. This article takes a new type of P-shaped process layout as the research object, reveals the correlation between its traffic organization characteristics and system performance through a customized simulation method. It provides a new theoretical perspective and quantitative tool for the optimization of automated terminal layouts. Full article
Show Figures

Figure 1

40 pages, 7578 KB  
Article
Guidance and Control Architecture for Rendezvous and Approach to a Non-Cooperative Tumbling Target
by Agostino Madonna, Giuseppe Napolano, Alessia Nocerino, Roberto Opromolla, Giancarmine Fasano and Michele Grassi
Aerospace 2025, 12(8), 708; https://doi.org/10.3390/aerospace12080708 - 10 Aug 2025
Viewed by 584
Abstract
This paper proposes a novel Guidance and Control architecture for close-range rendezvous and final approach of a chaser spacecraft towards a non-cooperative and tumbling space target. In both phases, reference trajectory generation relies on a Sequential Convex Programming algorithm which iteratively solves a [...] Read more.
This paper proposes a novel Guidance and Control architecture for close-range rendezvous and final approach of a chaser spacecraft towards a non-cooperative and tumbling space target. In both phases, reference trajectory generation relies on a Sequential Convex Programming algorithm which iteratively solves a non-linear optimization problem accounting for propellant consumption, relative dynamics, collision avoidance and navigation sensor pointing constraints. At close range, trajectory tracking is entrusted to a translational H-infinity controller, coupled with a quaternion-feed-back regulator for target pointing. In the final approach phase, an attitude-pointing strategy is adopted, requiring a six degree-of-freedom H-infinity controller to follow a reference roto-translational trajectory generated to ensure target-chaser motion synchronization. Performance is evaluated in a high-fidelity simulation environment that includes environmental perturbations, navigation errors, and actuator (i.e., cold gas thrusters and reaction wheels) modelling. In particular, the latter aspects are also addressed by integrating the proposed solution within a complete Guidance, Navigation and Control pipeline including a state-of-the-art LIDAR-based relative navigation filter and a dispatching function for the distribution of commanded control actions to the actuation system. A statistical analysis on 1000 simulations shows the robustness of the proposed approach, achieving centimeter-level position accuracy and sub-degree attitude accuracy near the docking/berthing point. Full article
Show Figures

Figure 1

29 pages, 1474 KB  
Review
Berth Allocation and Quay Crane Scheduling in Port Operations: A Systematic Review
by Ndifelani Makhado, Thulane Paepae, Matthews Sejeso and Charis Harley
J. Mar. Sci. Eng. 2025, 13(7), 1339; https://doi.org/10.3390/jmse13071339 - 13 Jul 2025
Viewed by 1239
Abstract
Container terminals are facing significant challenges in meeting the increasing demands for volume and throughput, with limited space often presenting as a critical constraint. Key areas of concern at the quayside include the berth allocation problem, the quay crane assignment, and the scheduling [...] Read more.
Container terminals are facing significant challenges in meeting the increasing demands for volume and throughput, with limited space often presenting as a critical constraint. Key areas of concern at the quayside include the berth allocation problem, the quay crane assignment, and the scheduling problem. Effectively managing these issues is essential for optimizing port operations; failure to do so can lead to substantial operational and economic ramifications, ultimately affecting competitiveness within the global shipping industry. Optimization models, encompassing both mathematical frameworks and metaheuristic approaches, offer promising solutions. Additionally, the application of machine learning and reinforcement learning enables real-time solutions, while robust optimization and stochastic models present effective strategies, particularly in scenarios involving uncertainties. This study expands upon earlier foundational analyses of berth allocation, quay crane assignment, and scheduling issues, which have laid the groundwork for port optimization. Recent developments in uncertainty management, automation, real-time decision-making approaches, and environmentally sustainable objectives have prompted this review of the literature from 2015 to 2024, exploring emerging challenges and opportunities in container terminal operations. Recent research has increasingly shifted toward integrated approaches and the utilization of continuous berthing for better wharf utilization. Additionally, emerging trends, such as sustainability and green infrastructure in port operations, and policy trade-offs are gaining traction. In this review, we critically analyze and discuss various aspects, including spatial and temporal attributes, crane handling, sustainability, model formulation, policy trade-offs, solution approaches, and model performance evaluation, drawing on a review of 94 papers published between 2015 and 2024. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 12260 KB  
Article
Improved Directional Mutation Moth–Flame Optimization Algorithm via Gene Modification for Automatic Reverse Parking Trajectory Optimization
by Yan Chen, Yi Chen, Yang Guo, Longda Wang and Gang Liu
Algorithms 2025, 18(6), 299; https://doi.org/10.3390/a18060299 - 22 May 2025
Viewed by 408
Abstract
Automatic reverse parking (ARP) faces challenges in finding ideal reference trajectories that avoid collisions, maintain smoothness, and minimize path length. To address this, we propose an improved directional mutation moth–flame optimization algorithm with gene modification (IDMMFO-GM). We develop a practical reference trajectory optimization [...] Read more.
Automatic reverse parking (ARP) faces challenges in finding ideal reference trajectories that avoid collisions, maintain smoothness, and minimize path length. To address this, we propose an improved directional mutation moth–flame optimization algorithm with gene modification (IDMMFO-GM). We develop a practical reference trajectory optimization model by combining cubic spline interpolation with a standardized parking plane coordinate system. To effectively address the infeasible solutions encountered when parking in a garage, we apply gene modification for collision avoidance and berthing tilt generated from the reference trajectory optimization to enhance the preservation of optimization information. Furthermore, we introduce a non-linear decreasing weight coefficient and a directional mutation strategy into the moth–flame optimization algorithm to significantly improve its overall optimization performance. Taking the automatic parking garage space No. 155 in Dalian Shell Museum as the actual vehicle test object, which is situated within Dalian Xinghai Square, test results demonstrate that the proposed algorithm achieves an accelerated optimization speed, enhanced precision in trajectory optimization, and superior tracking control performance. Full article
Show Figures

Graphical abstract

21 pages, 3222 KB  
Article
Ship Mooring Methodology Designed for Ship Berthing in Extremely Limited Conditions
by Vytautas Paulauskas and Donatas Paulauskas
J. Mar. Sci. Eng. 2025, 13(3), 575; https://doi.org/10.3390/jmse13030575 - 15 Mar 2025
Viewed by 836
Abstract
In some ports, there are separate very narrow places between the quays and other navigational obstacles, where the distance between the quays or between the quays and navigational obstacles is very small. Narrow gaps or channels in the water area, where quays are [...] Read more.
In some ports, there are separate very narrow places between the quays and other navigational obstacles, where the distance between the quays or between the quays and navigational obstacles is very small. Narrow gaps or channels in the water area, where quays are built and ships are berthing, make it difficult for ships to berth at such quays. Accurate knowledge of a ship’s manoeuvrability characteristics, combined with the application of these characteristics in berthing operations and the optimal use of tugboat capabilities, allows for better utilization of restricted port spaces. The article presents a developed ship berthing methodology designed for ship berthing in extremely limited conditions, utilizing the ship’s manoeuvrability capabilities and maximizing the capabilities of tugboats when mooring ships in extremely limited conditions. The developed methodology was tested with real ships and tugboats in specific port conditions and using calibrated simulators, and the results of the experimental research and theoretical calculations are presented in the article as a case study. The research results (methodology) obtained and presented in the article can be applied to any ships and ports, precisely adapting them to specific port situations. The article studies ship manoeuvrability and tugboat capabilities under various hydrometeorological and hydrological conditions, assesses the impact of shallow depths (shallowness), and determines the boundary conditions for ship berthing. Full article
(This article belongs to the Special Issue Advances in Navigability and Mooring (2nd Edition))
Show Figures

Figure 1

25 pages, 14201 KB  
Article
A Dynamic Trajectory Temporal Density Model for Analyzing Maritime Traffic Patterns
by Dapeng Jiang, Guoyou Shi, Lin Ma, Weifeng Li, Xinjian Wang and Guibing Zhu
J. Mar. Sci. Eng. 2025, 13(2), 381; https://doi.org/10.3390/jmse13020381 - 19 Feb 2025
Viewed by 813
Abstract
This study investigates the spatiotemporal density aggregation and pattern distribution of vessel traffic amidst bustling maritime logistics scenarios. Firstly, a relatively new spatiotemporal segmentation and reconstruction method is proposed for ship AIS trajectories to address trajectory disruptions caused by berthing, anchorage, and other [...] Read more.
This study investigates the spatiotemporal density aggregation and pattern distribution of vessel traffic amidst bustling maritime logistics scenarios. Firstly, a relatively new spatiotemporal segmentation and reconstruction method is proposed for ship AIS trajectories to address trajectory disruptions caused by berthing, anchorage, and other factors. Subsequently, a trajectory filtering algorithm utilizing time window panning is introduced to mitigate position jumps and deviation errors in trajectory points, ensuring that the dynamic trajectory adheres to the spatiotemporal correlations of ship motion. Secondly, to establish a geographical spatial mapping of dynamic trajectories, spatial gridding is applied to maritime traffic areas. By associating the geographical space of traffic activities with the temporal attributes of dynamic trajectories, a dynamic trajectory temporal density model is constructed. Finally, a case study is conducted to evaluate the effectiveness and applicability of the proposed method in identifying spatiotemporal patterns of maritime traffic and spatiotemporal density aggregation states. The results show that the proposed method can identify dynamic trajectory traffic patterns after the application of compression algorithms, providing a novel approach to studying the spatiotemporal aggregation of maritime traffic in the era of big data. Full article
(This article belongs to the Special Issue Advancements in Maritime Safety and Risk Assessment)
Show Figures

Figure 1

17 pages, 2128 KB  
Article
Discrete Dynamic Berth Allocation Optimization in Container Terminal Based on Deep Q-Network
by Peng Wang, Jie Li and Xiaohua Cao
Mathematics 2024, 12(23), 3742; https://doi.org/10.3390/math12233742 - 28 Nov 2024
Cited by 4 | Viewed by 2290
Abstract
Effective berth allocation in container terminals is crucial for optimizing port operations, given the limited space and the increasing volume of container traffic. This study addresses the discrete dynamic berth allocation problem (DDBAP) under uncertain ship arrival times and varying load capacities. A [...] Read more.
Effective berth allocation in container terminals is crucial for optimizing port operations, given the limited space and the increasing volume of container traffic. This study addresses the discrete dynamic berth allocation problem (DDBAP) under uncertain ship arrival times and varying load capacities. A novel deep Q-network (DQN)-based model is proposed, leveraging a custom state space, rule-based actions, and an optimized reward function to dynamically allocate berths and schedule vessel arrivals. Comparative experiments were conducted with traditional algorithms, including ant colony optimization (ACO), parallel ant colony optimization (PACO), and ant colony optimization combined with genetic algorithm (ACOGA). The results show that DQN outperforms these methods significantly, achieving superior efficiency and effectiveness, particularly under high variability in ship arrivals and load conditions. Specifically, the DQN model reduced the total waiting time of vessels by 58.3% compared to ACO (262.85 h), by 57.9% compared to PACO (259.5 h), and by 57.4% compared to ACOGA (257.4 h), with a total waiting time of 109.45 h. Despite its impressive performance, DQN requires substantial computational power during the training phase and is sensitive to data quality. These findings underscore the potential of reinforcement learning to optimize berth allocation under dynamic conditions. Future work will explore multi-agent reinforcement learning (MARL) and real-time adaptive mechanisms to further enhance the robustness and scalability of the model. Full article
Show Figures

Figure 1

34 pages, 19538 KB  
Article
Coupled Motion Response Analysis for Dynamic Target Salvage under Wave Action
by Gang Sun, Shengtao Chen, Hongkun Zhou and Fei Wan
J. Mar. Sci. Eng. 2024, 12(9), 1688; https://doi.org/10.3390/jmse12091688 - 23 Sep 2024
Viewed by 1128
Abstract
The strategic recovery of buoys is a critical task in executing deep-sea research missions, as nations extend their exploration of marine territories. This study primarily investigates the dynamics of remotely operated vehicle (ROV)-assisted salvage operations for floating bodies during the recovery of dynamic [...] Read more.
The strategic recovery of buoys is a critical task in executing deep-sea research missions, as nations extend their exploration of marine territories. This study primarily investigates the dynamics of remotely operated vehicle (ROV)-assisted salvage operations for floating bodies during the recovery of dynamic maritime targets. It focuses on the hydrodynamic coefficients of dual floating bodies in this salvage process. The interaction dynamics of the twin floats are examined using parameters such as the kinematic response amplitude operator (RAO), added mass, damping coefficient, and mean drift force. During the “berthing stage”, when the double floats are at Fr = 0.15–0.18, their roll and yaw Response Amplitude Operators are diminished, resulting in smoother motion. Thus, the optimal berthing speed range for this stage is Fr = 0.15–0.18. During the “side-by-side phase”, the spacing between the ROV and FLOAT under wave action should be approximately 0.4 L to 0.5 L. The coupled motion of twin floating bodies under the influence of following waves can further enhance their stability. The ideal towing speed during the “towing phase” is Fr = 0.2. This research aims to analyze the mutual influence between two floating bodies under wave action. By simulating the coupled motion of dual dynamic targets, we more precisely assess the risks and challenges inherent in salvage operations, thus providing a scientific basis for the design and optimization of salvage strategies. Full article
(This article belongs to the Special Issue Advances in Marine Engineering Hydrodynamics)
Show Figures

Figure 1

30 pages, 1934 KB  
Article
Techno-Feasibility Assessment of a Floating Breakwater Concept for Supporting Marine Renewables in Deep Waters
by Andrew Borg, Charise Cutajar, Tonio Sant, Robert N. Farrugia and Daniel Buhagiar
Energies 2024, 17(11), 2574; https://doi.org/10.3390/en17112574 - 26 May 2024
Viewed by 1917
Abstract
The previous research has proven that one of the fundamental requirements for ensuring increased profitability and economic competitiveness in offshore-based projects is co-locating different technologies within the same marine space. This paper presents a number of techno-feasibility analyses for floating offshore technologies for [...] Read more.
The previous research has proven that one of the fundamental requirements for ensuring increased profitability and economic competitiveness in offshore-based projects is co-locating different technologies within the same marine space. This paper presents a number of techno-feasibility analyses for floating offshore technologies for the Maltese Islands, located in the central Mediterranean Sea. The first part compares the feasibility between offshore floating solar photovoltaics with onshore-based systems, taking into consideration Malta’s average land rental price per square metre. The second part considers the use of a novel floating breakwater design that integrates energy storage and creates a sheltered water area for a multi-use marine park, thus introducing different revenue streams. The latter includes renting the sheltered marine space out to operators of floating solar farms, aquaculture cages and vessel berthing facilities, as well as the provision of energy storage services. It is found that the combined income from the multiple revenue streams from the multi-use marine park is still insufficient to justify the investment and that financial support from governments is essential to render the floating breakwaters viable. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

17 pages, 3584 KB  
Article
Variable Neighborhood Search for Multi-Port Berth Allocation with Vessel Speed Optimization
by Yalong Song, Bin Ji and Samson S. Yu
J. Mar. Sci. Eng. 2024, 12(4), 688; https://doi.org/10.3390/jmse12040688 - 22 Apr 2024
Cited by 4 | Viewed by 1699
Abstract
This paper delves into the multi-port berth allocation problem (MBAP), enriching the traditional berth allocation problem (BAP) with vessel speed optimization (VSO). In the MBAP, it is assumed that there is cooperation between the port and the shipping companies, and the operation of [...] Read more.
This paper delves into the multi-port berth allocation problem (MBAP), enriching the traditional berth allocation problem (BAP) with vessel speed optimization (VSO). In the MBAP, it is assumed that there is cooperation between the port and the shipping companies, and the operation of the vessels and the ports is planned to maximize the overall benefits. Exploring this potential collaboration between ports and shipping entities has the potential to mitigate, or even resolve, the challenges plaguing maritime transportation, e.g., port congestion and suboptimal vessel schedules, to ultimately enhance the efficiency of maritime trade. In this paper, a new mixed-integer linear programming (MILP) model for the MBAP is formulated, which attempts to minimize the total cost incurred during operations, with various constraints such as vessel sailing, the vessel space–time relationship in ports, and the planning period. Meanwhile, an innovative variable neighborhood search (VNS) algorithm is presented, in which the initial solution generation method and neighborhood structures are proposed according to the MBAP characteristics. Furthermore, two sets of MBAP instances are generated to test the proposed MILP and VNS, of which the first set is based on real-world port data and the second on existing studies. The numerical experiments verify that the VNS can efficiently and reliably solve instances of all scales, with each neighborhood structure contributing uniquely to the iterative process. In addition, by analyzing the impact of varying oil prices on the MBAP, the study offers valuable management insights. Finally, a case study based on real data from a port group in the Yangtze River Basin is presented to further demonstrate the necessity of considering vessel service time window and planning period in the MBAP as well as the important role of the VSO in scheduling. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 4026 KB  
Article
Enhanced Ant Colony Algorithm for Discrete Dynamic Berth Allocation in a Case Container Terminal
by Meng Yu, Yaqiong Lv, Yuhang Wang and Xiaojing Ji
J. Mar. Sci. Eng. 2023, 11(10), 1931; https://doi.org/10.3390/jmse11101931 - 7 Oct 2023
Cited by 7 | Viewed by 2190
Abstract
Berth allocation is a critical concern in container terminal port logistics, involving the precise determination of where and when arriving vessels should dock along a quay. With berth space limitations and a continuous surge in container handling demands, ensuring an effective berth allocation [...] Read more.
Berth allocation is a critical concern in container terminal port logistics, involving the precise determination of where and when arriving vessels should dock along a quay. With berth space limitations and a continuous surge in container handling demands, ensuring an effective berth allocation is paramount for the smooth and efficient operation of container ports. However, due to the randomness of vessel arrival times and uncertainties surrounding container ship loading capacities, berth allocation problems (BAP) often present discrete and dynamic challenges. This paper addresses these challenges by considering real-world terminal operational factors, formulating relevant assumptions, and establishing a model for dynamic berth allocation and efficient ship berthing scheduling. The primary motivation stems from the parallels observed between the BAP problem and ant foraging path selection, leading to the proposal of a novel Parallel Search Structure Enhanced Ant Colony Algorithm (PACO). A proper set of parameters of the algorithm are selected based upon sensitivity analyses on the convergence and parallelism efficiency of the algorithm. To validate our method, a real-world case-container terminal operation in Shanghai Port was studied. The experimental comparison results show that the PACO algorithm outperforms other commonly used algorithms, making it more effective and efficient for the Discrete Dynamic Berth Allocation Problem (DDBAP). Full article
(This article belongs to the Special Issue Recent Scientific Developments in Port Logistics)
Show Figures

Figure 1

17 pages, 3386 KB  
Article
A Tangent Release Manipulation Controlled by a Dual-Arm Space Robot
by Xiaoyi Wang and Jayantha Katupitiya
Actuators 2023, 12(8), 325; https://doi.org/10.3390/act12080325 - 14 Aug 2023
Cited by 4 | Viewed by 2339
Abstract
As people further develop space with advanced technology, space robots have played a significant role in on-orbit servicing missions. Space robots can carry out more risky and complicated missions with less cost than astronauts. Dual-arm space robots can perform complex on-orbit space missions [...] Read more.
As people further develop space with advanced technology, space robots have played a significant role in on-orbit servicing missions. Space robots can carry out more risky and complicated missions with less cost than astronauts. Dual-arm space robots can perform complex on-orbit space missions more effectively than single-arm space robots. Since the coupled dynamics between the free-floating base and the arms exist in space robots, accurate coordinate control of the base and the arms is essential. Spacecraft release missions have been proposed to berth/deberth a spacecraft to a space station. Based on the existing release missions, a tangent release strategy is introduced in this paper, which can release a space object in the tangent direction of the final link of a space manipulator. This strategy can control a dual-arm space robot to deploy cargo/spacecraft in variable directions in 3D space without thrusters and the associated fuel consumption. For instance, this tangent release operation can transport cargo or modules of large-scale spacecraft needing on-orbit assembly. Considering model uncertainties, robust controllers again model uncertainties that are used to control the dual-arm space robot with high accuracy. Hence, a robust sliding mode controller (SMC) is utilized to accurately control the space robot to carry out the proposed tangent release strategy. For comparison, we select a conventional computed torque control (CTC) implemented by a PD-type controller. In the simulations, the SMC performs better in tracking accuracy and robustness against the model uncertainties than the PD controller. Numerical simulations indicate the feasibility and effectiveness of the tangent release manipulation of a space object by a dual-arm space robot. Full article
(This article belongs to the Special Issue Advanced Spacecraft Structural Dynamics and Actuation Control)
Show Figures

Figure 1

15 pages, 8178 KB  
Article
Design and Operation of a Gripper for a Berthing Task
by Alexander Titov, Matteo Russo and Marco Ceccarelli
Inventions 2023, 8(4), 82; https://doi.org/10.3390/inventions8040082 - 28 Jun 2023
Viewed by 1592
Abstract
The idea of an extension of life for CubeSats is proposed to reduce space debris in a low-earth orbit. In this work, a gripper is designed for geometry-based grasping in berthing tasks. The grasping operation is outlined for square- and rectangle-shaped CubeSats. Equilibrium [...] Read more.
The idea of an extension of life for CubeSats is proposed to reduce space debris in a low-earth orbit. In this work, a gripper is designed for geometry-based grasping in berthing tasks. The grasping operation is outlined for square- and rectangle-shaped CubeSats. Equilibrium conditions are formulated to design the fingertips’ shape and parameters for grasping CubeSat bodies. A design scheme is proposed to provide the required accuracy. A design concept is developed into a lab prototype by using low-cost 3D printing manufacturing, and a mock-up grasping task that is representative of the berthing operation is evaluated with the lab prototype. Center-mass hanging setup for the prototype and grasped body is used to evaluate the impact of grasping, partially replicating the conditions in space by reducing the effect of gravity on the system. Full article
(This article belongs to the Collection Feature Innovation Papers)
Show Figures

Figure 1

18 pages, 6758 KB  
Article
Design and Testing of Torveastro: An Outer Space Service Robot
by Daniele Cafolla, Jorge E. Araque-Isidro and Marco Ceccarelli
Appl. Sci. 2023, 13(2), 1187; https://doi.org/10.3390/app13021187 - 16 Jan 2023
Cited by 6 | Viewed by 2901
Abstract
Space robots are one of the most promising solutions for on-orbit servicing (OOS) duties like docking, berthing, refueling, re-pairing, upgrading, transporting, rescuing, and orbital trash disposal. Numerous enabling techniques and technological demonstration missions have been developed and completed over the past two decades. [...] Read more.
Space robots are one of the most promising solutions for on-orbit servicing (OOS) duties like docking, berthing, refueling, re-pairing, upgrading, transporting, rescuing, and orbital trash disposal. Numerous enabling techniques and technological demonstration missions have been developed and completed over the past two decades. There have been several successful manned on-orbit service missions, but unmanned service missions have not yet been conducted. Robotic maintenance continues to be an important area of investigation with numerous technical challenges. This report outlines the design and initial testing of Torveastro, an astronaut service robot. The specifications are provided concurrently with the design and simulation. In comparison with the simulation results, preliminary tests demonstrated promising behavior for future development. Full article
Show Figures

Figure 1

15 pages, 5411 KB  
Article
The Large-Scale Physical Model Tests of the Passing Ship Effect on a Ship Moored at the Solid-Type Berth
by Teresa Abramowicz-Gerigk, Zbigniew Burciu, Tomasz Jaworski and Jacek Nowicki
Sensors 2022, 22(3), 868; https://doi.org/10.3390/s22030868 - 24 Jan 2022
Cited by 8 | Viewed by 3086
Abstract
The paper presents experimental research on hydrodynamic forces generated on a ship moored at a long quay wall, modeling the solid-type berth, by a passing ship. The proper prediction of interactions between the moored and passing ships is important for design and operational [...] Read more.
The paper presents experimental research on hydrodynamic forces generated on a ship moored at a long quay wall, modeling the solid-type berth, by a passing ship. The proper prediction of interactions between the moored and passing ships is important for design and operational purposes. The results of the presented parametric study are presented as a space-time series of the forces as the functions of passing ship velocity and transverse separation distance between the ships. The experimental test setup constructed on the lake and the large scale of the manned physical ship models enabled a simulation of the real maneuvering situation. The force measurements were taken on the moored ship model fixed to the pantographs rigidly attached to the wall. The twin pantographs were attached to force sensors on the deck of the model by a system of movable joints, enabling the measurement of surge and sway forces. The presented method was verified based on available experimental and numerical data, showing a good agreement with the results. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop