Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (436)

Search Parameters:
Keywords = spark-ignited

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2097 KB  
Article
Comprehensive Efficiency Analysis of Ethanol–Gasoline Blends in Spark Ignition Engines
by Ádám István Szabó, Zaid Tharwat Mursi, Anna Wégerer and Gábor Nagy
Eng 2025, 6(10), 256; https://doi.org/10.3390/eng6100256 - 2 Oct 2025
Abstract
This paper investigates the effects of using 10% v/v (E10) and 30% v/v (E30) ethanol–gasoline blends on spark ignition (SI) engine fuel consumption, brake-specific fuel consumption, brake thermal efficiency, combustion parameters and exhaust gas temperature. The 30% v/ [...] Read more.
This paper investigates the effects of using 10% v/v (E10) and 30% v/v (E30) ethanol–gasoline blends on spark ignition (SI) engine fuel consumption, brake-specific fuel consumption, brake thermal efficiency, combustion parameters and exhaust gas temperature. The 30% v/v ethanol–gasoline blend was designed not to exceed the octane number (RON and MON) of the regular commercially available reference fuel (E10); therefore, the knock resistance of the reference and research fuel does not differ significantly. The tests were conducted on an AVL internal combustion engine test cell using a four-stroke, four-cylinder, turbocharged SI engine with direct injection and a compression ratio of 12.2:1. The engine was manufactured in 2022, and it is the latest commercially available version currently in production. Engine tests were conducted under stoichiometric conditions (when possible) at loads ranging from 2–20 bar brake mean effective pressure and engine speeds ranging from 1000–6000 rpm, and the fuel consumption, brake-specific fuel consumption, combustion parameters, exhaust gas temperature and brake thermal efficiency were measured using the two different ethanol–gasoline blends. Test results showed that the higher concentration ethanol–gasoline blend—due to its lower density, lower heating value and higher latent heat of vaporization—had increased fuel consumption, brake-specific fuel consumption and decreased brake thermal efficiency, while exhaust gas temperature also decreased (at 2500 rpm 12 bar BMEP, the differences were 11%, 6.6%, −0.78% and −3.7%, respectively). Peak combustion pressures were identical under the same operating conditions, but the peak combustion temperature of E30 was on average 3% lower. Full article
Show Figures

Figure 1

33 pages, 7822 KB  
Article
High-Performance Two-Stroke Opposed-Piston Hydrogen Engine: Numerical Study on Injection Strategies, Spark Positioning and Water Injection to Mitigate Pre-Ignition
by Alessandro Marini, Sebastiano Breda, Roberto Tonelli, Michele Di Sacco and Alessandro d’Adamo
Energies 2025, 18(19), 5181; https://doi.org/10.3390/en18195181 - 29 Sep 2025
Abstract
In the pursuit of zero-emission mobility, hydrogen represents a promising fuel for internal combustion engines. However, its low volumetric energy density poses challenges, especially for high-performance applications where compactness and lightweight design are crucial. This study investigates the feasibility of an innovative hydrogen-fueled [...] Read more.
In the pursuit of zero-emission mobility, hydrogen represents a promising fuel for internal combustion engines. However, its low volumetric energy density poses challenges, especially for high-performance applications where compactness and lightweight design are crucial. This study investigates the feasibility of an innovative hydrogen-fueled two-stroke opposed-piston (2S-OP) engine, targeting a specific power of 130 kW/L and an indicated thermal efficiency above 40%. A detailed 3D-CFD analysis is conducted to evaluate mixture formation, combustion behavior, abnormal combustion and water injection as a mitigation strategy. Innovative ring-shaped multi-point injection systems with several designs are tested, demonstrating the impact of injector channels’ orientation on the final mixture distribution. The combustion analysis shows that a dual-spark configuration ensures faster combustion compared to a single-spark system, with a 27.5% reduction in 10% to 90% combustion duration. Pre-ignition is identified as the main limiting factor, strongly linked to mixture stratification and high temperatures. To suppress it, water injection is proposed. A 55% evaporation efficiency of the water mass injected lowers the in-cylinder temperature and delays pre-ignition onset. Overall, the study provides key design guidelines for future high-performance hydrogen-fueled 2S-OP engines. Full article
(This article belongs to the Special Issue Internal Combustion Engines: Research and Applications—3rd Edition)
Show Figures

Figure 1

23 pages, 4865 KB  
Article
Impact of Detergent Type, Detergent Concentration, and Friction Modifiers on PM-PN Emissions in an SI Engine Using EEPS
by Siddharth Gopujkar, Nicolas Tuma, Rick Davis, Jeffrey Naber, Elana Chapman, Veronica Reilly, Joseph Ciaravino and Philipp Seyfried
Energies 2025, 18(19), 5145; https://doi.org/10.3390/en18195145 - 27 Sep 2025
Abstract
Three TOP TIERTM gasoline deposit control additives (DCAs) of differing chemistries were tested for their impact on particulate matter emissions in terms of particulate mass (PM) and particle number (PN) at operating conditions representative of road load, cold start, and high load [...] Read more.
Three TOP TIERTM gasoline deposit control additives (DCAs) of differing chemistries were tested for their impact on particulate matter emissions in terms of particulate mass (PM) and particle number (PN) at operating conditions representative of road load, cold start, and high load on a 2.0 L, 4-cylinder, gasoline direct injection (GDI) spark ignition (SI) engine. The PM-PN emissions were measured using an Exhaust Emissions Particle Sizer (EEPS). Deposit control additives or detergents are gasoline additives used to prevent and clean combustion chamber and injector deposits in gasoline spark ignition (SI) engines. All three gasoline additives were tested at each operating condition at three different treatment rates. In addition, one of the additives was tested with a fuel-based friction modifier (FM). The results showed that of the treatment rates tested, the lowest allowable concentration (LAC) for all additives requires the least time for the emissions to settle. However, the impact of the gasoline additives on PM-PN emissions is not linear and changes with additive concentration depending on the additive chemistry and operating conditions. The additive with the friction modifier resulted in an increase of over 19% particle number and over 30% particulate mass at the road load operating condition, while the increase at high load was over 27% for particle number and 11% for particle mass. Full article
Show Figures

Figure 1

22 pages, 1203 KB  
Review
Modelling Syngas Combustion from Biomass Gasification and Engine Applications: A Comprehensive Review
by José Ramón Copa Rey, Andrei Longo, Bruna Rijo, Cecilia Mateos-Pedrero, Paulo Brito and Catarina Nobre
Energies 2025, 18(19), 5112; https://doi.org/10.3390/en18195112 - 25 Sep 2025
Abstract
Syngas, a renewable fuel primarily composed of hydrogen and carbon monoxide, is emerging as a viable alternative to conventional fossil fuels in internal combustion engines (ICEs). Obtained mainly through the gasification of biomass and organic waste, syngas offers significant environmental benefits but also [...] Read more.
Syngas, a renewable fuel primarily composed of hydrogen and carbon monoxide, is emerging as a viable alternative to conventional fossil fuels in internal combustion engines (ICEs). Obtained mainly through the gasification of biomass and organic waste, syngas offers significant environmental benefits but also presents challenges due to its lower heating value and variable composition. This review establishes recent advances in understanding syngas combustion, chemical kinetics, and practical applications in spark-ignition (SI) and compression-ignition (CI) engines. Variability in syngas composition, dependent on feedstock and gasification conditions, strongly influences ignition behavior, flame stability, and emissions, demanding detailed kinetic models and adaptive engine control strategies. In SI engines, syngas can replace up to 100% of conventional fuel, typically at 20–30% reduced power output. CI engines generally require a pilot fuel representing 10–20% of total energy to start combustion, favoring dual-fuel (DF) operation for efficiency and emissions control. This work underlines the need to integrate advanced modelling approaches with experimental insights to optimize performance and meet emission targets. By addressing challenges of fuel variability and engine adaptation, syngas reveals promising potential as a clean fuel for future sustainable power generation and transport applications. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

14 pages, 632 KB  
Article
Development of a Spark-Ignited Combustion Strategy for 100% Ammonia (NH3) Operation in Internal Combustion Engines
by Annalena Braun, Moritz Grüninger, Daniel Bäck, Tomas Carlsson, Jakob Ängeby, Olaf Toedter and Thomas Koch
Energies 2025, 18(19), 5051; https://doi.org/10.3390/en18195051 - 23 Sep 2025
Viewed by 168
Abstract
Ammonia (NH3) is a promising carbon-free fuel for internal combustion engines, but its low reactivity and poor ignition properties present significant challenges for stable operation. This study presents the development and experimental validation of a spark-ignited combustion process that enables stable [...] Read more.
Ammonia (NH3) is a promising carbon-free fuel for internal combustion engines, but its low reactivity and poor ignition properties present significant challenges for stable operation. This study presents the development and experimental validation of a spark-ignited combustion process that enables stable engine operation using 100% liquid NH3 as a single fuel. A modified single cylinder research engine, equipped with NH3 port fuel injection and a high-energy capacitive ignition system was used to investigate combustion behavior under various load conditions. The results show that stable, knock-free combustion with pure NH3 is feasible at every operating point without any ignition aids like diesel fuel or hydrogen (H2). The full load conditions of a diesel engine can be represented with an indicated efficiency of 50% using this combustion process. The emission measurements show nitrogen oxides (NOx) and NH3 emissions in a 1:1 ratio, which is advantageous for a passive SCR system. Increased nitrous oxides (N2O) formation occurs at low loads and cold combustion chamber temperatures. This work demonstrates the technical viability of carbon-free NH3 combustion in spark-ignited (SI) engines and represents a promising step towards net-zero combustion. Full article
(This article belongs to the Topic Clean and Low Carbon Energy, 2nd Edition)
Show Figures

Figure 1

16 pages, 4698 KB  
Article
Emissions and Particulate Characteristics of Spark-Ignition Engines Fueled with Bioethanol–Gasoline Blends
by Szymon Wyrąbkiewicz, Jerzy Kaszkowiak, Marcin Zastempowski and Maciej Gajewski
Energies 2025, 18(17), 4606; https://doi.org/10.3390/en18174606 - 30 Aug 2025
Viewed by 452
Abstract
This article presents the results of research on the effects of various bioethanol concentrations in gasoline blends (E0, E10, E30, E50, E100) and increased fuel dosage (+10% and +20%) on spark-ignition engine performance and exhaust emissions. Experiments were conducted on a chassis dynamometer [...] Read more.
This article presents the results of research on the effects of various bioethanol concentrations in gasoline blends (E0, E10, E30, E50, E100) and increased fuel dosage (+10% and +20%) on spark-ignition engine performance and exhaust emissions. Experiments were conducted on a chassis dynamometer under strictly controlled laboratory conditions using a MAHA MGT-5 exhaust gas analyzer and a MAHA MPM-4 particulate matter analyzer. Power, torque, carbon monoxide (CO), carbon dioxide (CO2), hydrocarbons (HC), oxygen (O2), and particulate matter emissions were analyzed. It was found that up to a 50% bioethanol content, power and torque remained stable, while with E100, a significant decrease in these parameters was observed, partially offset by the increased fuel dosage. CO emissions systematically decreased with increasing bioethanol content, reaching minimum values at E100, while HC emissions generally decreased. CO2 content did not show clear trends, while O2 levels in the exhaust gas increased with higher ethanol concentrations. Particulate matter emissions were irregular, with the lowest values at E30 for the nominal dose and at E10 for the increased dose. The studies revealed significant nonlinearities in the effect of ethanol concentration on emissions, challenging the common assumption of monotonic changes. The results have practical implications for optimizing the calibration of engine control systems, meeting emission standards, and assessing the potential of bioethanol as a road transport fuel. Full article
Show Figures

Figure 1

20 pages, 3475 KB  
Article
Numerical Simulation of Gliding Arc Plasma-Assisted Ignition and Combustion in Afterburner Combustor
by Zecheng Li, Yong Liang, Xing Zheng, Zhibo Zhang and Yun Wu
Aerospace 2025, 12(8), 735; https://doi.org/10.3390/aerospace12080735 - 19 Aug 2025
Viewed by 602
Abstract
The ignition and combustion characteristics of the afterburner directly affect the engine performance. In this study, a numerical simulation model was created for both the novel gliding arc assisted combustion system and the conventional spark plug system. The ignition and combustion characteristics of [...] Read more.
The ignition and combustion characteristics of the afterburner directly affect the engine performance. In this study, a numerical simulation model was created for both the novel gliding arc assisted combustion system and the conventional spark plug system. The ignition and combustion characteristics of the afterburner were then numerically investigated. Results indicate that gliding arc can enhance ignition and combustion compared to traditional spark plug. In terms of ignition characteristics, gliding arc extends the lean ignition limit by 50% and reduces ignition delay time by up to 33.8%. Regarding combustion performance, gliding arc improves combustion efficiency by up to 7.6% and increases combustor outlet temperature by up to 7%. However, due to more intense combustion dynamics within the chamber, gliding arc reduces the total pressure recovery coefficient by approximately 8% compared to baseline. Full article
Show Figures

Figure 1

25 pages, 16500 KB  
Article
Advanced Modeling of Fuel Efficiency in Light-Duty Vehicles Using Gamma Regression with Log-Link Under Real Driving Conditions at High Altitude: Quito, Ecuador Case Study
by Paúl Andrés Molina-Campoverde, Juan José Molina-Campoverde and Johan Tipanluisa-Portilla
Energies 2025, 18(16), 4399; https://doi.org/10.3390/en18164399 - 18 Aug 2025
Viewed by 760
Abstract
Fuel efficiency (FE) modeling under real-world conditions remains limited in Andean cities, where topographical and traffic conditions affect vehicle performance. Vehicles powered by spark-ignition engines are the most popular in Latin America, but few studies integrate dynamic conditions with geographic features. This study [...] Read more.
Fuel efficiency (FE) modeling under real-world conditions remains limited in Andean cities, where topographical and traffic conditions affect vehicle performance. Vehicles powered by spark-ignition engines are the most popular in Latin America, but few studies integrate dynamic conditions with geographic features. This study addresses this gap by developing an explanatory model to predict FE for light-duty vehicles (LDVs) in the Metropolitan District of Quito (DMQ), which is one of the most congested cities in Latin America. Data were collected from eight vehicles circulating under real conditions across 35 zones in the DMQ. Predictors such as vehicle speed (VSS), acceleration (A), speed per acceleration in its 95th percentile (VA[95]), road slope, and Vehicle-Specific Power (VSP) were included in the analysis. As a first attempt, linear models were tested, but the assumptions were not satisfied. Therefore, a Gamma regression model with a logarithmic link was selected. The final model achieved a Root Mean Square Error (RMSE) of 0.939, a Relative RMSE (RRMSE) of 0.155, a Mean Absolute Error (MAE) of 0.754, and an approximate coefficient of determination (R2) of 0.956. This methodology combines continuous and categorical variables and offers a replicable framework for FE estimation in other urban contexts. Full article
(This article belongs to the Special Issue Forecasting and Optimization in Transport Energy Management Systems)
Show Figures

Figure 1

15 pages, 1496 KB  
Article
Simultaneous Reductions in NOx Emissions, Combustion Instability, and Efficiency Loss in a Lean-Burn CHP Engine via Hydrogen-Enriched Natural Gas
by Johannes Fichtner, Jan Ninow and Joerg Kapischke
Energies 2025, 18(16), 4339; https://doi.org/10.3390/en18164339 - 14 Aug 2025
Viewed by 603
Abstract
This study demonstrates that hydrogen enrichment in lean-burn spark-ignition engines can simultaneously improve three key performance metrics, thermal efficiency, combustion stability, and nitrogen oxide emissions, without requiring modifications to the engine hardware or ignition timing. This finding offers a novel control approach to [...] Read more.
This study demonstrates that hydrogen enrichment in lean-burn spark-ignition engines can simultaneously improve three key performance metrics, thermal efficiency, combustion stability, and nitrogen oxide emissions, without requiring modifications to the engine hardware or ignition timing. This finding offers a novel control approach to a well-documented trade-off in existing research, where typically only two of these factors are improved at the expense of the third. Unlike previous studies, the present work achieves simultaneous improvement of all three metrics without hardware modification or ignition timing adjustment, relying solely on the optimization of the air–fuel equivalence ratio λ. Experiments were conducted on a six-cylinder engine for combined heat and power application, fueled with hydrogen–natural gas blends containing up to 30% hydrogen by volume. By optimizing only the air–fuel equivalence ratio, it was possible to extend the lean-burn limit from λ1.6 to λ>1.9, reduce nitrogen oxide emissions by up to 70%, enhance thermal efficiency by up to 2.2 percentage points, and significantly improve combustion stability, reducing cycle-by-cycle variationsfrom 2.1% to 0.7%. A defined λ window was identified in which all three key performance indicators simultaneously meet or exceed the natural gas baseline. Within this window, balanced improvements in nitrogen oxide emissions, efficiency, and stability are achievable, although the individual maxima occur at different operating points. Cylinder pressure analysis confirmed that combustion dynamics can be realigned with original equipment manufacturer characteristics via mixture leaning alone, mitigating hydrogen-induced pressure increases to just 11% above the natural gas baseline. These results position hydrogen as a performance booster for natural gas engines in stationary applications, enabling cleaner, more efficient, and smoother operation without added system complexity. The key result is the identification of a λ window that enables simultaneous optimization of nitrogen oxide emissions, efficiency, and combustion stability using only mixture control. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy and Fuel Cell Technologies)
Show Figures

Figure 1

16 pages, 2672 KB  
Article
Development Process of TGDI SI Engine Combustion Simulation Model Using Ethanol–Gasoline Blends as Fuel
by Bence Zsoldos, András L. Nagy and Máté Zöldy
Appl. Sci. 2025, 15(15), 8677; https://doi.org/10.3390/app15158677 - 5 Aug 2025
Viewed by 440
Abstract
The Fit for 55 package introduced by the European Union aims to achieve a 55% reduction in greenhouse gas emissions by 2030. In parallel, increasingly stringent exhaust gas regulations have intensified research into alternative fuels. Ethanol presents a promising option due to its [...] Read more.
The Fit for 55 package introduced by the European Union aims to achieve a 55% reduction in greenhouse gas emissions by 2030. In parallel, increasingly stringent exhaust gas regulations have intensified research into alternative fuels. Ethanol presents a promising option due to its compatibility with gasoline, higher octane rating, and lower exhaust emissions compared to conventional gasoline. Additionally, ethanol can be derived from agricultural waste, further enhancing its sustainability. This study examines the impact of two ethanol–gasoline blends (E10, E20) on emissions and performance in a turbocharged gasoline direct injection (TGDI) spark-ignition (SI) engine. The investigation is conducted using three-dimensional computational fluid dynamics (3D CFD) simulations to minimize development time and costs. This paper details the model development process and presents the initial results. The boundary conditions for the simulations are derived from one-dimensional (1D) simulations, which have been validated against experimental data. Subsequently, the simulated performance and emissions results are compared with experimental measurements. The E10 simulations correlated well with experimental measurements, with the largest deviation in cylinder pressure being an RMSE of 1.42. In terms of emissions, HC was underpredicted, while CO was overpredicted compared to the experimental data. For E20, the IMEP was slightly higher at some operating points; however, the deviations were negligible. Regarding emissions, HC and CO emissions were higher with E20, whereas NOx and CO2 emissions were lower. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

13 pages, 4065 KB  
Article
Using the Spark Plug as a Sensor for Analyzing the State of the Combustion System
by Matej Kučera, Miroslav Gutten, Daniel Korenčiak and Jozef Kúdelčík
Sensors 2025, 25(13), 4198; https://doi.org/10.3390/s25134198 - 5 Jul 2025
Viewed by 555
Abstract
This article presents a method that uses a spark plug as a sensor to monitor an internal combustion engine. In addition, the voltage sensors measured the high voltage at the spark plugs using a non-contact method. Monitoring can now be performed in a [...] Read more.
This article presents a method that uses a spark plug as a sensor to monitor an internal combustion engine. In addition, the voltage sensors measured the high voltage at the spark plugs using a non-contact method. Monitoring can now be performed in a simple way in real time, along with data processing. This method can be effectively used for the monitoring of all cylinders in an internal combustion engine as well as supplementing other measurement methods to optimize engine maintenance and enable correct diagnostic decisions to be made. Experimental analysis focused on the effect of the spark plug gap on the arc duration, flashover voltage, and high-voltage waveforms. It was found that with an increasing gap, the arc duration is shortened, and the breakdown voltage increases linearly, indicating wear of the spark gap. With increasing temperature, the breakdown voltage value decreased. Non-contact measurements at different frequencies showed a relationship between the magnitude of the electric field and the spark plug gap. Full article
Show Figures

Figure 1

16 pages, 2472 KB  
Article
Analysis of Ignition Spark Parameters Generated by Modern Ignition System in SI Engine Fueled by Ammonia
by Mariusz Chwist, Michał Gruca, Michał Pyrc and Borys Borowik
Energies 2025, 18(13), 3521; https://doi.org/10.3390/en18133521 - 3 Jul 2025
Viewed by 654
Abstract
This paper analyzes the influence of the number of ignition coils and spark discharge energy on the Coefficient of Variation of Indicated Mean Effective Pressure (COVIMEP) of an SI internal combustion piston engine. A modern electronically controlled induction ignition system is [...] Read more.
This paper analyzes the influence of the number of ignition coils and spark discharge energy on the Coefficient of Variation of Indicated Mean Effective Pressure (COVIMEP) of an SI internal combustion piston engine. A modern electronically controlled induction ignition system is used during the test. Two fuels are used in the experiment. The reference fuel is gasoline and the tested fuel is ammonia. For the traditional fuel, using an additional ignition coil does not improve COVIMEP. This parameter for gasoline has an almost constant value for different ignition system charging times. The situation is different for ammonia. This fuel requires high ignition energy. The use of one ignition coil demands a long charging time. For short charging times, unrepeatability of the engine cycles is unacceptable. The use of an additional ignition coil allowed to the charging coil timing to be shortened and the unrepeatable engine cycles to be reduced. This paper determined the maximum charging time of the used ignition coil, above which the spark parameters are worse. In addition, the influence of charging time and number of ignition coils on total spark energy, spark discharge duration, maximum spark power, and voltage during spark discharge for ammonia is presented. The data presented in this paper are developed based on measurements of current and voltage in the secondary winding of the ignition coil. A self-developed electronic device enabling the change in spark energy is used to control the ignition system. This paper also presents the construction of modern ignition systems, describes the functions of selected components, and briefly discusses their diagnostics. Full article
Show Figures

Figure 1

18 pages, 1091 KB  
Article
Experimental Validation and Optimization of a Hydrogen–Gasoline Dual-Fuel Combustion Model in a Spark Ignition Engine with a Moderate Hydrogen Ratio
by Attila Kiss, Bálint Szabó, Krisztián Kun, Barna Hanula and Zoltán Weltsch
Energies 2025, 18(13), 3501; https://doi.org/10.3390/en18133501 - 2 Jul 2025
Viewed by 1324
Abstract
Hydrogen–gasoline dual-fuel spark ignition (SI) engines represent a promising transitional solution toward cleaner combustion and reduced carbon emissions. In a previous study, a predictive engine model was developed to simulate the performance and combustion characteristics of such systems; however, its accuracy was constrained [...] Read more.
Hydrogen–gasoline dual-fuel spark ignition (SI) engines represent a promising transitional solution toward cleaner combustion and reduced carbon emissions. In a previous study, a predictive engine model was developed to simulate the performance and combustion characteristics of such systems; however, its accuracy was constrained by the use of estimated combustion parameters. This study presents an experimental validation based on high-resolution in-cylinder pressure measurements performed on a naturally aspirated SI engine operating with a 20% hydrogen energy share. The objectives are twofold: (1) to refine the combustion model using empirically derived combustion metrics, and (2) to evaluate the feasibility of moderate hydrogen enrichment in a stock engine configuration. To facilitate a more accurate understanding of how key combustion parameters evolve under different operating conditions, Vibe function was fitted to the ensemble-averaged heat release rate curves computed from 100 consecutive engine cycles at each static full-load operating point. This approach enabled the extraction of stable and representative metrics, including the mass fraction burned at 50% (MFB50) and combustion duration, which were then used to recalibrate the predictive combustion model. In addition, cycle-to-cycle variation and combustion duration were also investigated in the dual-fuel mode. The combustion duration exhibited a consistent and substantial reduction across all of the examined operating points when compared to pure gasoline operation. Furthermore, the cycle-to-cycle variation difference remained statistically insignificant, indicating that the introduction of 20% hydrogen did not adversely affect combustion stability. In addition to improving model accuracy, this work investigates the occurrence of abnormal combustion phenomena—including backfiring, auto-ignition, and knock—under enriched conditions. The results confirm that 20% hydrogen blends can be safely utilized in standard engine architectures, yielding faster combustion and reduced burn durations. The validated model offers a reliable foundation for further dual-fuel optimization and supports the broader integration of hydrogen into conventional internal combustion platforms. Full article
(This article belongs to the Special Issue Performance and Emissions of Advanced Fuels in Combustion Engines)
Show Figures

Figure 1

20 pages, 2668 KB  
Article
Influence of Annular Flow Area and a 30-Degree Impingement Angle on Methane/Oxygen Diffusion Flame Stability
by Joshua M. Hollingshead, Makayla L. L. Ianuzzi, Alexandra C. Risha, Jeffrey D. Moore and Grant A. Risha
Methane 2025, 4(3), 16; https://doi.org/10.3390/methane4030016 - 2 Jul 2025
Viewed by 384
Abstract
This work examined the effects of secondary annular flow area on flame stability in an experimental diffusion flame burner. The burner was composed of a horizontally mounted, rectangular chamber that utilized a retractable spark plug for ignition and an inverse coaxial injector. The [...] Read more.
This work examined the effects of secondary annular flow area on flame stability in an experimental diffusion flame burner. The burner was composed of a horizontally mounted, rectangular chamber that utilized a retractable spark plug for ignition and an inverse coaxial injector. The primary and secondary gaseous reactants were oxygen and methane, respectively. Three injectors were assessed to have a fixed primary flow area and secondary flow impingement angle of 30 degrees with the primary flow and distinct secondary annular flow areas. Resultant flames and flame standoff distances were recorded via optical windows aligned parallel to the burner axis. Flame stability regime maps were generated based on the reactant equivalence ratio, the methane Reynolds number, and the injector secondary annular flow area. Results showed that among the injectors, the greater the secondary annular flow area with an impingement angle, the better the likelihood of generating a stable, anchored, fuel-rich diffusion flame for hydrogen production over the largest range of Reynolds numbers. As the secondary flow area decreased, stable diffusion flames transitioned from existing at highly turbulent flows to experiencing near-blowoff or no ignition under the same conditions. Secondary annular flow area significantly influences the location and range of stable, anchored methane/oxygen diffusion flames. Full article
Show Figures

Figure 1

14 pages, 1851 KB  
Article
Effects of Ethanol–Gasoline Blends on the Performance and Emissions of a Vehicle Spark-Ignition Engine
by Maciej Gajewski, Szymon Wyrąbkiewicz and Jerzy Kaszkowiak
Energies 2025, 18(13), 3466; https://doi.org/10.3390/en18133466 - 1 Jul 2025
Cited by 1 | Viewed by 1647
Abstract
This article presents experimental results related to the influence of bioethanol content in fuel blends on the performance and emissions of a spark-ignition engine. Tests were conducted for six ethanol–gasoline mixtures (ranging from 0% to 100% ethanol) under three engine control strategies: factory [...] Read more.
This article presents experimental results related to the influence of bioethanol content in fuel blends on the performance and emissions of a spark-ignition engine. Tests were conducted for six ethanol–gasoline mixtures (ranging from 0% to 100% ethanol) under three engine control strategies: factory settings, a fuel dose increased by 10%, and a fuel dose increased by 20%—both with an ignition timing adjustment of +3°. Measurements included engine power and torque, as well as emissions of CO, CO2, HC, O2, and particulate matter, all performed under a full engine load. The results revealed the strong dependence of engine behavior on ethanol content. Increasing the ethanol concentration significantly reduced CO and HC emissions, as well as markedly lowering particulate emissions—particularly at 30% ethanol. Conversely, pure ethanol led to substantial reductions in power (up to 28%) and torque (up to 32%) compared to conventional gasoline. Adjustments to the fuel dose and ignition timing partially mitigated these losses. Emissions of CO2 and oxygen content in exhaust gases varied depending on the blend, highlighting the complex nature of the combustion process. The findings contribute to the understanding of renewable fuel behavior in SI engines and underscore the influence of both fuel composition and control strategies on performance and emission characteristics. Full article
(This article belongs to the Topic Advanced Engines Technologies)
Show Figures

Figure 1

Back to TopTop