Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = spaser

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2053 KB  
Article
Near-Field Enhancement in SPASER Nanostructures for High-Efficiency Energy Conversion
by Amine Jaouadi, Ahmed Mahjoub and Montacer Dridi
Photonics 2025, 12(2), 123; https://doi.org/10.3390/photonics12020123 - 29 Jan 2025
Cited by 1 | Viewed by 948
Abstract
We present in this study a theoretical investigation of the near-field enhancement phenomenon within nanostructures, which have garnered recent attention due to their potential applications in sensing, imaging, and energy harvesting. The analysis reveals a significant intensification of electromagnetic fields proximal to periodically [...] Read more.
We present in this study a theoretical investigation of the near-field enhancement phenomenon within nanostructures, which have garnered recent attention due to their potential applications in sensing, imaging, and energy harvesting. The analysis reveals a significant intensification of electromagnetic fields proximal to periodically arranged arrays of gold nanoparticles sustaining a highly lossy mode. In addition to the existence of a localized surface plasmon (LSP) mode exhibiting suboptimal quality, our investigation unveils intricate aspects of near-field enhancement closely correlated to the dynamics of lasing mechanisms. Notably, our investigation is focused on elucidating the augmentation’s behavior across varying pumping energies. The achieved enhancement surpasses two orders of magnitude compared to the passive counterparts. We introduce a description of the energy conversion rate specific to the SPASER configuration. The conceptualized SPASER reveals a significant promise. It showcases energy conversion efficiency up to 80%, emphasizing the SPASER’s potential as a highly effective nano-scale energy source. Full article
(This article belongs to the Special Issue Optical Fiber Lasers and Laser Technology)
Show Figures

Figure 1

18 pages, 2505 KB  
Article
Active Individual Nanoresonators Optimized for Lasing and Spasing Operation
by András Szenes, Dávid Vass, Balázs Bánhelyi and Mária Csete
Nanomaterials 2021, 11(5), 1322; https://doi.org/10.3390/nano11051322 - 17 May 2021
Cited by 10 | Viewed by 2456
Abstract
Plasmonic nanoresonators consisting of a gold nanorod and a spherical silica core and gold shell, both coated with a gain layer, were optimized to maximize the stimulated emission in the near-field (NF-c-type) and the outcoupling into the far-field (FF-c-type) and to enter into [...] Read more.
Plasmonic nanoresonators consisting of a gold nanorod and a spherical silica core and gold shell, both coated with a gain layer, were optimized to maximize the stimulated emission in the near-field (NF-c-type) and the outcoupling into the far-field (FF-c-type) and to enter into the spasing operation region (NF-c*-type). It was shown that in the case of a moderate dye concentration, the nanorod has more advantages: smaller lasing threshold and larger slope efficiency and larger achieved intensities in the near-field in addition to FF-c-type systems’ smaller gain and outflow threshold, earlier dip-to-peak switching in the spectrum and slightly larger far-field outcoupling efficiency. However, the near-field (far-field) bandwidth is smaller for NF-c-type (FF-c-type) core–shell nanoresonators. In the case of a larger dye concentration (NF-c*-type), although the slope efficiency and near-field intensity remain larger for the nanorod, the core–shell nanoresonator is more advantageous, considering the smaller lasing, outflow, absorption and extinction cross-section thresholds and near-field bandwidth as well as the significantly larger internal and external quantum efficiencies. It was also shown that the strong-coupling of time-competing plasmonic modes accompanies the transition from lasing to spasing occurring, when the extinction cross-section crosses zero. As a result of the most efficient enhancement in the forward direction, the most uniform far-field distribution was achieved. Full article
(This article belongs to the Special Issue Plasmonic Nanoresonators)
Show Figures

Graphical abstract

16 pages, 669 KB  
Article
A Novel Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid-System-Based Spaser
by Mariam M. Tohari, Andreas Lyras and Mohamad S. AlSalhi
Nanomaterials 2020, 10(3), 416; https://doi.org/10.3390/nano10030416 - 27 Feb 2020
Cited by 6 | Viewed by 2649
Abstract
Active nanoplasmonics have recently led to the emergence of many promising applications. One of them is the spaser (surface plasmons amplification by stimulated emission of radiation) that has been shown to generate coherent and intense fields of selected surface plasmon modes that are [...] Read more.
Active nanoplasmonics have recently led to the emergence of many promising applications. One of them is the spaser (surface plasmons amplification by stimulated emission of radiation) that has been shown to generate coherent and intense fields of selected surface plasmon modes that are strongly localized in the nanoscale. We propose a novel nanospaser composed of a metal nanoparticles-graphene nanodisks hybrid plasmonic system as its resonator and a quantum dots cascade stack as its gain medium. We derive the plasmonic fields induced by pulsed excitation through the use of the effective medium theory. Based on the density matrix approach and by solving the Lindblad quantum master equation, we analyze the ultrafast dynamics of the spaser associated with coherent amplified plasmonic fields. The intensity of the plasmonic field is significantly affected by the width of the metallic contact and the time duration of the laser pulse used to launch the surface plasmons. The proposed nanospaser shows an extremely low spasing threshold and operates in the mid-infrared region that has received much attention due to its wide biomedical, chemical and telecommunication applications. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Radiation Applications)
Show Figures

Figure 1

7 pages, 1422 KB  
Article
Facile Design of a Plasmonic Nanolaser
by Hans-Peter Solowan and Carola Kryschi
Condens. Matter 2017, 2(1), 8; https://doi.org/10.3390/condmat2010008 - 4 Feb 2017
Cited by 14 | Viewed by 4749
Abstract
A spaser consists of a plasmonic noble-metal nanostructure that acts as nanocavity, when incorporated or surface-coupled two-level emitters constitute the nanoscale gain medium. Suited two-level emitters are, for instance, laser dyes. Optical pumping may provide efficient excitation energy transfer between the two-level emitters [...] Read more.
A spaser consists of a plasmonic noble-metal nanostructure that acts as nanocavity, when incorporated or surface-coupled two-level emitters constitute the nanoscale gain medium. Suited two-level emitters are, for instance, laser dyes. Optical pumping may provide efficient excitation energy transfer between the two-level emitters in the gain medium and the surface plasmons sustained in the nanocavity. Strong resonant coupling of the surface plasmon modes to the gain medium may establish an inherent feedback amplification mechanism which finally drives the spaser action. In this contribution, we demonstrate that spaser emission can be generated by amplifying longitudinal surface plasmon modes in gold nanorods by optically pumping surface-attached resonantly-coupled laser dyes. Therefore, we synthesized gold nanorods whose longitudinal surface plasmon resonance peak was adjusted between 680 and 700 nm. The gain medium was realized by electrostatically attaching the laser dye phthalocyanine tetrasulfonate via the positively-charged CTAB (cetyltrimethylammonium bromide) bilayer to the gold-nanorod surface. Phthalocyanine tetrasulfonate exhibits fluorescence at 700 nm. Fluorescence quenching experiments unambiguously gave indication of resonant excitation energy transfer. The fluorescence intensity ratio I F 0 / I F follows the Stern–Volmer relationship, and the Stern–Volmer coefficient was determined as KSV = 1.22 × 106 M−1. The spaser emission was observed in fs transient absorption spectra as an ultrafast decaying narrow emission peak around 716 nm. Full article
Show Figures

Figure 1

Back to TopTop