Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = spatiotemporal evolution law

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11598 KB  
Article
Characteristics of Load-Bearing Rupture of Rock–Coal Assemblages with Different Height Ratios and Multivariate Energy Spatiotemporal Evolution Laws
by Bo Wang, Guilin Wu, Guorui Feng, Zhuocheng Yu and Yingshi Gu
Processes 2025, 13(8), 2588; https://doi.org/10.3390/pr13082588 - 15 Aug 2025
Viewed by 532
Abstract
The destabilizing damage of rock structures in coal beds engineering is greatly influenced by the bearing rupture features and energy evolution laws of rock–coal assemblages with varying height ratios. In this study, we used PFC3D to create rock–coal assemblages with rock–coal height ratios [...] Read more.
The destabilizing damage of rock structures in coal beds engineering is greatly influenced by the bearing rupture features and energy evolution laws of rock–coal assemblages with varying height ratios. In this study, we used PFC3D to create rock–coal assemblages with rock–coal height ratios of 2:8, 4:6, 6:4, and 8:2. Uniaxial compression simulation was then performed, revealing the expansion properties and damage crack dispersion pattern at various bearing phases. The dispersion and migration law of cemented strain energy zoning; the size and location of the destructive energy level and its spatiotemporal evolution characteristics; and the impact of height ratio on the load-bearing characteristics, crack extension, and evolution of multiple energies (strain, destructive, and kinetic energies) were all clarified with the aid of a self-developed destructive energy and strain energy capture and tracking Fish program. The findings indicate that the assemblage’s elasticity modulus and compressive strength slightly increase as the height ratio increases, that the assemblage’s cracks begin in the coal body, and that the number of crack bands inside the coal body increases as the height ratio increases. Also, the phenomenon of crack bands penetrating the rock through the interface between the coal and rock becomes increasingly apparent. The total number of cracks, including both tensile and shear cracks, decreases as the height ratio increases. Among these, tensile cracks are consistently more abundant than shear cracks, and the proportion between the two types remains relatively stable regardless of changes in the height ratio. The acoustic emission ringing counts of the assemblage were not synchronized with the development of bearing stress, and the ringing counts started to increase from the yield stage and reached a peak at the damage stage (0.8σc) after the peak of bearing stress. The larger the rock–coal height ratio, the smaller the peak and the earlier the timing of its appearance. The main body of strain energy accumulation was transferred from the coal body to the rock body when the height ratio exceeded 1.5. The peak values of the assemblage’s strain energy, destructive energy, and kinetic energy curves decreased as the height ratio increased, particularly the energy amplitude of the largest destructive energy event. In order to prevent and mitigate engineering disasters during deep mining of coal resources, the research findings could serve as a helpful reference for the destabilizing properties of rock–coal assemblages. Full article
Show Figures

Figure 1

18 pages, 2813 KB  
Article
Spatiotemporal Differentiation and Driving Factors Analysis of the EU Natural Gas Market Based on Geodetector
by Xin Ren, Qishen Chen, Kun Wang, Yanfei Zhang, Guodong Zheng, Chenghong Shang and Dan Song
Sustainability 2025, 17(15), 6742; https://doi.org/10.3390/su17156742 - 24 Jul 2025
Viewed by 551
Abstract
In 2022, the Russia–Ukraine conflict has severely impacted the EU’s energy supply chain, and the EU’s natural gas import pattern has begun to reconstruct, and exploring the spatiotemporal differentiation of EU natural gas trade and its driving factors is the basis for improving [...] Read more.
In 2022, the Russia–Ukraine conflict has severely impacted the EU’s energy supply chain, and the EU’s natural gas import pattern has begun to reconstruct, and exploring the spatiotemporal differentiation of EU natural gas trade and its driving factors is the basis for improving the resilience of its supply chain and ensuring the stable supply of energy resources. This paper summarizes the law of the change of its import volume by using the complex network method, constructs a multi-dimensional index system such as demand, economy, and security, and uses the geographic detector model to mine the driving factors affecting the spatiotemporal evolution of natural gas imports in EU countries and propose different sustainable development paths. The results show that from 2000 to 2023, Europe’s natural gas imports generally show an upward trend, and the import structure has undergone great changes, from pipeline gas dominance to LNG diversification. After the conflict between Russia and Ukraine, the number of import source countries has increased, the market network has become looser, France has become the core hub of the EU natural gas market, the importance of Russia has declined rapidly, and the status of countries in the United States, North Africa, and the Middle East has increased rapidly; natural gas consumption is the leading factor in the spatiotemporal differentiation of EU natural gas imports, and the influence of import distance and geopolitical risk is gradually expanding, and the proportion of energy consumption is significantly higher than that of other factors in the interaction with other factors. Combined with the driving factors, three different evolutionary directions of natural gas imports in EU countries are identified, and energy security paths such as improving supply chain control capabilities, ensuring export stability, and using location advantages to become hub nodes are proposed for different development trends. Full article
(This article belongs to the Topic Energy Economics and Sustainable Development)
Show Figures

Figure 1

21 pages, 10296 KB  
Article
Spatiotemporal Mechanical Effects of Framework–Slope Systems Under Frost Heave Conditions
by Wendong Li, Xiaoqiang Hou, Jixian Ren and Chaoyang Wu
Appl. Sci. 2025, 15(14), 7877; https://doi.org/10.3390/app15147877 - 15 Jul 2025
Cited by 1 | Viewed by 483
Abstract
To investigate the slope instability caused by differential frost heaving mechanisms from the slope crest to the toe during frost heave processes, this study takes a typical silty clay slope in Xinjiang, China, as the research object. Through indoor triaxial consolidated undrained shear [...] Read more.
To investigate the slope instability caused by differential frost heaving mechanisms from the slope crest to the toe during frost heave processes, this study takes a typical silty clay slope in Xinjiang, China, as the research object. Through indoor triaxial consolidated undrained shear tests, eight sets of natural and frost-heaved specimens were prepared under confining pressure conditions ranging from 100 to 400 kPa. The geotechnical parameters of the soil in both natural and frost-heaved states were obtained, and a spatiotemporal thermo-hydro-mechanical coupled numerical model was established to reveal the dynamic evolution law of anchor rod axial forces and the frost heave response mechanism between the frame and slope soil. The analytical results indicate that (1) the frost heave process is influenced by slope boundaries, resulting in distinct spatial variations in the temperature field response across the slope surface—namely pronounced responses at the crest and toe but a weaker response in the mid-slope. (2) Under the coupled drive of the water potential gradient and gravitational potential gradient, the ice content in the toe area increases significantly, and the horizontal frost heave force exhibits exponential growth, reaching its peak value of 92 kPa at the toe in February. (3) During soil freezing, the reverse stress field generated by soil arching shows consistent temporal variation trends with the temperature field. Along the height of the soil arch, the intensity of the reverse frost heave force field displays a nonlinear distribution characteristic of initial strengthening followed by attenuation. (4) By analyzing the changes in anchor rod axial forces during frost heaving, it was found that axial forces during the frost heave period are approximately 1.3 times those under natural conditions, confirming the frost heave period as the most critical condition for frame anchor design. Furthermore, through comparative analysis with 12 months of on-site anchor rod axial force monitoring data, the reliability and accuracy of the numerical simulation model were validated. These research outcomes provide a theoretical basis for the design of frame anchor support systems in seasonally frozen regions. Full article
Show Figures

Figure 1

17 pages, 5238 KB  
Article
Study on Reinforcement Technology of Shield Tunnel End and Ground Deformation Law in Shallow Buried Silt Stratum
by Jia Zhang and Xiankai Bao
Appl. Sci. 2025, 15(14), 7657; https://doi.org/10.3390/app15147657 - 8 Jul 2025
Viewed by 508
Abstract
With the rapid advancement of urban underground space development, shield tunnel construction has seen a significant increase. However, at the initial launching stage of shield tunnels in shallow-buried weak strata, engineering risks such as face instability and sudden surface settlement frequently occur. At [...] Read more.
With the rapid advancement of urban underground space development, shield tunnel construction has seen a significant increase. However, at the initial launching stage of shield tunnels in shallow-buried weak strata, engineering risks such as face instability and sudden surface settlement frequently occur. At present, there are relatively few studies on the reinforcement technology of the initial section of shield tunnel in shallow soft ground and the evolution law of ground disturbance. This study takes the launching section of the Guanggang New City depot access tunnel on Guangzhou Metro Line 10 as the engineering background. By applying MIDAS/GTS numerical simulation, settlement monitoring, and theoretical analysis, the reinforcement technology at the tunnel face, the spatiotemporal evolution of ground settlement, and the mechanism of soil disturbance transmission during the launching process in muddy soil layer are revealed. The results show that: (1) the reinforcement scheme combining replacement filling, high-pressure jet grouting piles, and soil overburden counterpressure significantly improves surface settlement control. The primary influence zone is concentrated directly above the shield machine and in the forward excavation area. (2) When the shield machine reaches the junction between the reinforced and unreinforced zones, a large settlement area forms, with the maximum ground settlement reaching −26.94 mm. During excavation in the unreinforced zone, ground deformation mainly occurs beneath the rear reinforced section, with subsidence at the crown and uplift at the invert. (3) The transverse settlement trough exhibits a typical Gaussian distribution and the discrepancy between the measured maximum settlement and the numerical and theoretical values is only 3.33% and 1.76%, respectively. (4) The longitudinal settlement follows a trend of initial increase, subsequent decrease, and gradual stabilization, reaching a maximum when the excavation passes directly beneath the monitoring point. The findings can provide theoretical reference and engineering guidance for similar projects. Full article
Show Figures

Figure 1

17 pages, 845 KB  
Article
Prediction of Uncertainty Ramping Demand in New Power Systems Based on a CNN-LSTM Hybrid Neural Network
by Peng Yu, Zhuang Cai, Hao Zhang, Dai Cui, Hang Zhou, Ruijia Yu and Yibo Zhou
Processes 2025, 13(7), 2088; https://doi.org/10.3390/pr13072088 - 1 Jul 2025
Cited by 2 | Viewed by 529
Abstract
Under the background of “dual-carbon”, expanding renewable energy grid integration exacerbates grid net load volatility, and system climbing requirements escalate. In this paper, the problem of uncertain ramping demand prediction caused by net load prediction error in new power systems is investigated. First, [...] Read more.
Under the background of “dual-carbon”, expanding renewable energy grid integration exacerbates grid net load volatility, and system climbing requirements escalate. In this paper, the problem of uncertain ramping demand prediction caused by net load prediction error in new power systems is investigated. First, the total system ramping demand calculation model is constructed, and the effects of deterministic and uncertain ramping demand on the total system ramping demand are analyzed. Secondly, a prediction model based on a CNN-LSTM hybrid neural network is proposed for the uncertain ramp-up demand, which extracts the spatial correlation features of the multi-source influencing factors through the convolutional layer, captures the dynamic evolution law in the time series by using the LSTM layer, and realizes the high-precision point prediction and reliable interval prediction by combining the quantile regression method. Finally, the actual operation data and forecast data of a provincial power grid are used for example verification, and the results show that the proposed model outperformed traditional models (SVM, RF, BPNN) and single deep learning models (CNN, LSTM) in point prediction performance, achieving higher prediction accuracy and validating the effectiveness of the spatio-temporal feature extraction module. In terms of interval prediction quality, compared with the histogram and QRF benchmark models, the proposed model achieves a significant reduction in the average width of the prediction interval, average upward ramp-up demand, and average downward ramp-down demand while maintaining 100% interval coverage. This demand realizes a better balance between prediction economic efficiency and safety, providing more reliable technical support for the precise assessment of uncertain ramp-up demand in new power systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

28 pages, 8465 KB  
Article
Analysis of Precipitation Variation Characteristics in Typical Chinese Regions Within the Indian Ocean and Pacific Monsoon Convergence Zone
by Junjie Wu, Liqun Zhong, Daichun Liu, Xuhua Tan, Hongzhen Pu, Bolin Chen, Chunyong Li and Hongbo Zhang
Water 2025, 17(12), 1812; https://doi.org/10.3390/w17121812 - 17 Jun 2025
Viewed by 564
Abstract
With climate warming, the global precipitation patterns have undergone significant changes, which will profoundly impact flood–drought disaster regimes and socioeconomic development in key regions of human activity worldwide. The convergence zone of the Indian Ocean monsoon and Pacific monsoon in China covers most [...] Read more.
With climate warming, the global precipitation patterns have undergone significant changes, which will profoundly impact flood–drought disaster regimes and socioeconomic development in key regions of human activity worldwide. The convergence zone of the Indian Ocean monsoon and Pacific monsoon in China covers most of the middle and lower reaches of the Yangtze River (MLRYR), which is located in the transitional area of the second and third steps of China’s terrain. Changes in precipitation patterns in this region will significantly impact flood and drought control in the MLRYR, as well as the socioeconomic development of the MLRYR Economic Belt. In this study, Huaihua area in China was selected as the study area to study the characteristics of regional precipitation change, and to analyze the evolution in the trends in annual precipitation, extreme precipitation events, and their spatiotemporal distribution, so as to provide a reference for the study of precipitation change patterns in the intersection zone. This study utilizes precipitation data from meteorological stations and the China Meteorological Forcing Dataset (CMFD) reanalysis data for the period 1979–2023 in Huaihua region. The spatiotemporal variation in precipitation in the study area was analyzed by using linear regression, the Mann–Kendall trend test, the moving average method, the Mann–Kendall–Sneyers test, wavelet analysis, and R/S analysis. The results demonstrate the following: (1) The annual precipitation in the study area is on the rise as a whole, the climate tendency rate is 9 mm/10 a, and the precipitation fluctuates greatly, showing an alternating change of “dry–wet–dry–wet”. (2) Wavelet analysis reveals that there are 28-year, 9-year, and 4-year main cycles in annual precipitation, and the precipitation patterns at different timescales are different. (3) The results of R/S analysis show that the future precipitation trend will continue to increase, with a strong long-term memory. (4) Extreme precipitation events generally show an upward trend, indicating that their intensity and frequency have increased. (5) Spatial distribution analysis shows that the precipitation in the study area is mainly concentrated in the northeast and south of Jingzhou and Tongdao, and the precipitation level in the west is lower. The comprehensive analysis shows that the annual precipitation in the study area is on the rise and has a certain periodic precipitation law. The spatial distribution is greatly affected by other factors and the distribution is uneven. Extreme precipitation events show an increasing trend, which may lead to increased flood risk in the region and downstream areas. In the future, it is necessary to strengthen countermeasures to reduce the impact of changes in precipitation patterns on local and downstream economic and social activities. Full article
(This article belongs to the Special Issue Remote Sensing of Spatial-Temporal Variation in Surface Water)
Show Figures

Figure 1

25 pages, 12571 KB  
Article
Spatio-Temporal Distribution Evolution Characteristics and Geographical Influencing Factors of Cultural Heritage Sites in Xinjiang, China
by Rouyu Zhengchen, Jiaming Liu, Jiamin Ren, Shuying Zhang and Bingzhi Liu
Land 2025, 14(5), 974; https://doi.org/10.3390/land14050974 - 30 Apr 2025
Cited by 2 | Viewed by 819
Abstract
Cultural Heritage Sites (CHS) serve as tangible evidence of regional human–environment interactions and spatial representation of historical memory. The research developed a Xinjiang CHS database and integrated geographic information technology and historical geography research methods to examine the spatio-temporal distribution evolution characteristics and [...] Read more.
Cultural Heritage Sites (CHS) serve as tangible evidence of regional human–environment interactions and spatial representation of historical memory. The research developed a Xinjiang CHS database and integrated geographic information technology and historical geography research methods to examine the spatio-temporal distribution evolution characteristics and geographic influencing factors in the arid region. It utilized the nearest neighbor index, kernel density estimation, the center of gravity model, and standard deviation ellipse to explore the spatio-temporal evolution law. Furthermore, it employed spatial overlay and qualitative text to analyze the geographical influence mechanism of the CHS. The results showed the following: (1) The CHS spatial distribution showed a pattern of “multicore agglomeration-linear extension”, concentrated in 13 key cities and four major areas that extended along the Silk Road routes. (2) The CHS diachronic development fluctuated in a pattern of “three peaks and three valleys”. The spatial center of gravity has shifted from southern Xinjiang to northern Xinjiang, manifesting a concentrated-diffused characteristic along the northeast–southwest axis. (3) The spatial selection followed the rules of “preferring lower terrain” and “proximity to water”. The elevation distribution of CHS has shifted from mid-high elevations to low elevations. The proportion of CHS on low-slope terrain increased from 78.6% in the Pre–Qin period to 93.02% in Modern History. 93.02% of CHS in Modern History were distributed within the 10 km buffer zone of rivers. (4) Climate aridity and human activities formed a dynamic influence mechanism; natural factors constructed the base pattern of CHS distribution, and human activities drove the dynamic adjustment. The findings revealed the historical trajectory and driving logic of the evolution of CHS in Xinjiang and provided a scientific basis for cultural heritage protection and ecological governance. This study had limitations in terms of the limited research scope and the lack of comprehensive quantitative analysis of influencing factors. Full article
(This article belongs to the Special Issue Co-Benefits of Heritage Protection and Urban Planning)
Show Figures

Figure 1

17 pages, 2618 KB  
Article
Coordination Analysis and Driving Factors of “Water-Land-Energy-Carbon” Coupling in Nine Provinces of the Yellow River Basin
by Daiwei Zhang, Ming Jing, Buhui Chang, Weiwei Chen, Ziming Li, Shuai Zhang and Ting Li
Water 2025, 17(8), 1138; https://doi.org/10.3390/w17081138 - 10 Apr 2025
Cited by 2 | Viewed by 558
Abstract
As an important ecological barrier and economic belt in China, the sustainable development of the Yellow River Basin (YRB) is of great significance to national ecological security and regional economic balance. Based on the coupled and coordinated development analysis of the water–soil–energy–carbon (W-L-E-C) [...] Read more.
As an important ecological barrier and economic belt in China, the sustainable development of the Yellow River Basin (YRB) is of great significance to national ecological security and regional economic balance. Based on the coupled and coordinated development analysis of the water–soil–energy–carbon (W-L-E-C) system in the provinces of the Yellow River Basin from 2002 to 2022, this study systematically analyzed the interaction relationship among the various factors through WLECNI index assessment, factor identification, and driving factor exploration. Thus, it fully reveals the spatiotemporal evolution law of regional coordinated development and its internal driving mechanism. It is found that the coordinated development of the W-L-E-C system in different provinces of the Yellow River Basin presents significant spatiotemporal differentiation, and its evolution process is influenced by multiple factors. It is found that the coordination of the YRB presents a significant spatial difference, and Inner Mongolia and Shaanxi, as high coordination areas, have achieved significant improvement in coordination, through ecological restoration and clean energy replacement, arable land intensification, and industrial water-saving technology, respectively. Shandong, Henan, and Shanxi in the middle coordination zone have made some achievements in industrial greening and water-saving technology promotion, but they are still restricted by industrial carbon emissions and land resource pressure. The Ningxia and Gansu regions with low coordination are slow to improve their coordination due to water resource overload and inefficient energy utilization. Barrier factor analysis shows that the water resources utilization rate (W4), impervious area (L4), energy consumption per unit GDP (E1), and carbon emissions from energy consumption (C3) are the core factors restricting coordination. Among them, the water quality compliance rate (W5) of Shanxi and Henan is very low, and the impervious area (L4) of Shandong is a prominent problem. The interaction analysis of the driving factors showed that there were significant interactions between water resource use and ecological protection (W-E), land resource and energy use (L-E), and carbon emissions and ecosystem (C-E). Inner Mongolia, Shaanxi, and Shandong achieved coordinated improvement through “scenic energy + ecological restoration”, cultivated land protection, and industrial greening. Shanxi, Henan, and Ningxia are constrained by the “W-L-E-C” complex obstacles. In the future, the Yellow River Basin should implement the following zoning control strategy: for the areas with high coordination, it should focus on consolidating the synergistic advantages of ecological protection and energy development; water-saving technology and energy consumption reduction measures should be promoted in the middle coordination area. In the low coordination area, efforts should be made to solve the problem of resource overload, and the current situation of low resource utilization efficiency should be improved by improving the utilization rate of recycled water and applying photovoltaic sand control technology. This differentiated governance plan will effectively enhance the level of coordinated development across the basin. The research results provide a decision-making framework of “zoning regulation, system optimization and dynamic monitoring” for the sustainable development of the YRB, and provide a scientific basis for achieving high-quality development of the basin. Full article
Show Figures

Figure 1

33 pages, 13814 KB  
Article
Spatio-Temporal Influencing Factors of the Coupling Coordination Degree Between China’s New-Type Urbanization and Transportation Carbon Emission Efficiency
by Han Jia, Weidong Li and Runlin Tian
Land 2025, 14(3), 623; https://doi.org/10.3390/land14030623 - 15 Mar 2025
Cited by 4 | Viewed by 802
Abstract
This study focuses on the coupling and coordination between China’s new-type urbanization (NU) and transportation carbon emission efficiency (CET), revealing its spatial and temporal evolution patterns and driving factors. In recent years, the rapid rise of the digital economy has profoundly reshaped traditional [...] Read more.
This study focuses on the coupling and coordination between China’s new-type urbanization (NU) and transportation carbon emission efficiency (CET), revealing its spatial and temporal evolution patterns and driving factors. In recent years, the rapid rise of the digital economy has profoundly reshaped traditional industrial structures. It has catalyzed new forms of production and consumption and opened up new pathways for carbon reduction. This makes synergies between NU and CET increasingly important for realizing a low-carbon transition. In addition, digital infrastructures such as 5G networks and big data platforms promote energy efficiency and facilitate industrial upgrading. It also promotes the integration of low-carbon goals into urban governance, thus strengthening the linkages between NU and CET. The study aims to provide a scientific basis for regional synergistic development and green transformation for the goal of “dual carbon”. Based on the panel data of 30 provinces in China from 2004 to 2021, the study adopts the entropy weight method and the super-efficiency SBM model to quantify NU and CET, and then analyzes their spatial and temporal interactions and spatial spillovers by combining the coupled coordination degree model and the spatial Durbin model. The following is found: (1) NU and CET show a spatial pattern of “leading in the east and lagging in the west”, and are optimized over time, but with significant regional differences; (2) the degree of coupling coordination jumps from “basic disorder” to “basic coordination”, but has not yet reached the level of advanced coordination, with significant spatial clustering characteristics (Moran’s I index between 0.244 and 0.461); (3) labor force structure, transportation and energy intensity, industrial structure and scientific and technological innovation are the core factors driving the coupled coordination, and have significant spatial spillover effects, while government intervention and per capita income have limited roles. This paper innovatively reveals the two-way synergistic mechanism of NU and CET, breaks through the traditional unidirectional research framework, and systematically analyzes the two-way feedback effect of the two. A multidimensional NU evaluation system is constructed to overcome the limitations of the previous single economic or demographic dimension, and comprehensively portray the comprehensive effect of new urbanization. A multi-dimensional coupled coordination measurement framework is proposed to quantify the synergistic evolution law of NU and CET from the perspective of spatio-temporal dynamics and spatial correlation. The spatial spillover paths of key factors are finally quantified. The findings provide decision-making references for optimizing low-carbon policies, promoting green transformation of transportation, and taking advantage of the digital economy. Full article
Show Figures

Figure 1

25 pages, 9566 KB  
Article
Scaling Law Analysis and Aftershock Spatiotemporal Evolution of the Three Strongest Earthquakes in the Ionian Sea During the Period 2014–2019
by Kyriaki Pavlou, Georgios Michas and Filippos Vallianatos
Geosciences 2025, 15(3), 84; https://doi.org/10.3390/geosciences15030084 - 1 Mar 2025
Viewed by 973
Abstract
The observed scaling properties in the three aftershock sequences of the recent strong earthquakes of magnitudes Mw 6.1, Mw 6.4 and Mw 6.7, which occurred in the Ionian island region on the 26 January 2014 (onshore Cephalonia Island), 17 November [...] Read more.
The observed scaling properties in the three aftershock sequences of the recent strong earthquakes of magnitudes Mw 6.1, Mw 6.4 and Mw 6.7, which occurred in the Ionian island region on the 26 January 2014 (onshore Cephalonia Island), 17 November 2015 (Lefkada Island) and 25 October 2018 (offshore Zakynthos Island), respectively, are presented. In the analysis, the frequency–magnitude distributions in terms of the Gutenberg–Richter scaling relationship are studied, along with the temporal evolution of the aftershock sequences, as described by the Omori–Utsu formula. The processing of interevent times distribution, based on non-extensive statistical physics, indicates a system in an anomalous equilibrium with long-range interactions and a cross over behavior from anomalous to normal statistical mechanics for greater interevent times. A discussion of this cross over behavior is given for all aftershock sequences in terms of superstatistics. Moreover, the common value of the Tsallis entropic parameter that was obtained suggests that aftershock sequences are systems with very low degrees of freedom. Finally, a scaling of the migration of the aftershock zones as a function of the logarithm of time is discussed regarding the rate strengthening rheology that governs the evolution of the afterslip process. Our results contribute to the understanding of the spatiotemporal evolution of aftershocks using a first principles approach based on non extensive statistical physics suggesting that this view could describe the process within a universal view. Full article
(This article belongs to the Special Issue Seismic and Aseismic Deformation in the Brittle Crust)
Show Figures

Figure 1

20 pages, 24598 KB  
Article
Analysis of the Spatio-Temporal Evolution Characteristics and Influencing Factors of Habitat Quality in Hubei Province over the Past Three Decades
by Jie Miao, Huiqiong Xia, Fu Li and Jialin Yang
ISPRS Int. J. Geo-Inf. 2025, 14(3), 98; https://doi.org/10.3390/ijgi14030098 - 22 Feb 2025
Cited by 2 | Viewed by 848
Abstract
A region’s ability to maintain biodiversity and the health of its ecosystems depends heavily on the quality of its habitat. The Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model was utilized in this investigation, in conjunction with the Geographic Detector (Geodetector) model [...] Read more.
A region’s ability to maintain biodiversity and the health of its ecosystems depends heavily on the quality of its habitat. The Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model was utilized in this investigation, in conjunction with the Geographic Detector (Geodetector) model and Geographic Information System (GIS) spatial analysis techniques, to systematically analyze the spatio-temporal evolution characteristics and underlying driving mechanisms of habitat quality in Hubei Province from 1990 to 2020. The findings indicate that over the period of thirty years, there has been a significant decline in the habitat quality index in the eastern part of Hubei Province, while the western region has maintained a relatively high level. Additionally, habitat quality in several areas declined continuously over the 30-year period. The results of spatial autocorrelation showed that the habitat quality in the western part of Hubei Province from 1990 to 2020 was mainly characterized by High-High Clusters, while the eastern parts of the province mostly showed Low-Low Clusters. According to the findings of the Geographic Detector research, the degree of influence of each driver on habitat quality varies significantly over time, with the Construction Land Index being the main factor influencing habitat quality in Hubei Province. Moreover, the interaction between factors exerted a stronger influence on habitat quality compared to individual factors. This research result has deepened the understanding of the changing law of habitat quality in Hubei Province and has laid a solid foundation for scientists to develop targeted ecological protection strategies in the future. The results of the study have provided a reference for habitat quality assessment in other regions, especially in the process of analyzing the spatial and temporal evolution patterns of habitat quality in different regions and under different ecosystem types, which has provided more reference for ecological protection. Full article
Show Figures

Figure 1

23 pages, 7106 KB  
Article
Spatiotemporal Variations and Influencing Factors of Arid Inland Runoff in the Shule River Basin, Northwest China
by Wenrui Zhang, Dongyuan Sun, Zuirong Niu, Yike Wang, Heping Shu, Xingfan Wang and Yanqiang Cui
Water 2025, 17(3), 457; https://doi.org/10.3390/w17030457 - 6 Feb 2025
Cited by 1 | Viewed by 1080
Abstract
Considering the possibility of increasing water supply in China in the short term and the long-term threat posed by shrinking glaciers, this paper studied the spatiotemporal evolution of runoff in typical arid areas and the influence of hydrometeorological elements on runoff, aiming to [...] Read more.
Considering the possibility of increasing water supply in China in the short term and the long-term threat posed by shrinking glaciers, this paper studied the spatiotemporal evolution of runoff in typical arid areas and the influence of hydrometeorological elements on runoff, aiming to clarify the hydrological cycle law and provide a basis for adjusting water resource management strategies to cope with future uncertain changes. Based on hydrological data from 1956 to 2020, the spatial and temporal variation in runoff were discussed by means of wavelet analysis, MK test, RS analysis, and spatial interpolation. The influencing factors of runoff evolution in the Shule River Basin were determined. The results showed that the runoff in the Shule River Basin showed an increasing trend in the past 60 years. Five hydrological stations (Changmabao Station, Panjiazhuang Station, Shuangtabao Reservoir, Dangchengwan Reservoir, and Danghe Reservoir) were selected as the research objects. Among them, the runoff of Changmabao Station increased the most, which was 1.202 × 108 m3/10 a. Future projections suggest a continued rise in runoff, particularly at Shuangtabao Reservoir. The runoff exhibited positive persistence and varying degrees of mutation, with most mutations occurring in the early 21st century. The runoff in the basin has a periodicity of multiple time scales (there are 2–3 main cycles), and the main cycle of annual runoff is concentrated in 58 years. This comprehensive analysis provides valuable insights for the sustainable management of water resources in inland river basins amidst changing environmental conditions. The spatial variation in runoff in summer and autumn and the whole year showed a significant southeast to northwest decreasing pattern. During the study period, accelerated glacier melting caused by rising temperatures had the most significant impact on runoff change (p < 0.01), and the upstream of the study area also complied with this rule (temperature contribution rate [25.96%] > precipitation contribution rate [23.91%]). The contribution of temperature and precipitation changes caused by human activities in the middle stream to runoff was relatively large, which showed that the contribution rate of temperature in Guazhou Station to runoff was 34.23% and the contribution rate of precipitation in Dangchengwan to runoff was 60.27%. The research results provide a scientific basis for the rational and efficient utilization of water resources in the arid area of Northwest China. Full article
Show Figures

Figure 1

22 pages, 10059 KB  
Article
Predicting the Spatiotemporal Evolution Characteristics of Future Agricultural Water Demand in the Yellow River Basin Under Climate-Change Conditions
by Jianguo Xin, Yue Xin, Huiming Wu and Shuai Zhou
Water 2025, 17(1), 31; https://doi.org/10.3390/w17010031 - 26 Dec 2024
Viewed by 922
Abstract
The Yellow River Basin is an important grain-production base in China, playing a crucial role in the country’s agricultural production and overall national economy and social development. However, due to the impact of climate change, China’s food security is facing challenges. Therefore, this [...] Read more.
The Yellow River Basin is an important grain-production base in China, playing a crucial role in the country’s agricultural production and overall national economy and social development. However, due to the impact of climate change, China’s food security is facing challenges. Therefore, this article takes the Yellow River Basin as an example to reveal the temporal and spatial evolution patterns of the main crop yields in the basin. Based on a coupled statistical downscaling model (SDSM) and ten General Circulation Models (GCMs) from CMIP5, it estimates the future temporal and spatial evolution characteristics of rainfall and evaporation in the basin. Furthermore, a distributed crop-growth model (AquaCrop) is constructed to reveal the temporal and spatial evolution patterns of agricultural irrigation water requirements from a future perspective, clarifying the impact of multi-source uncertainty on the prediction uncertainty of agricultural irrigation water needs. The results indicate that the ten climate models constructed in this study can be effectively applied to the Yellow River Basin, and their ability to capture light-rain events is superior to that of moderate- and heavy-rain events. The simulation accuracy of the AquaCrop model significantly improves with an increase in precipitation frequency. The agricultural irrigation water demand in the middle and upper reaches of the basin is greater than that in the lower reaches, and the uncertainties from GCMs and RCPs have a significant impact on the uncertainty of agricultural irrigation water demand. The research results provide important references for formulating agricultural development plans for irrigation areas under climate-change conditions and for developing response measures for irrigation areas to cope with climate change. Full article
Show Figures

Figure 1

18 pages, 20080 KB  
Article
Driving Factors for Vegetation NDVI Changes in a Cold Temperate Zone: Climate, Topography, and Land Use
by Dandan Zhao, Weijia Hu, Jianmiao Wang and Jiping Liu
Forests 2024, 15(12), 2098; https://doi.org/10.3390/f15122098 - 27 Nov 2024
Cited by 2 | Viewed by 1922
Abstract
Exploring the spatio-temporal evolution and driving mechanism of the NDVI (Normalized Difference Vegetation Index) is important in order to understand the operating forces of the ecosystem and the response process of environmental change. We analyzed spatio-temporal vegetation changes by using the trend analysis [...] Read more.
Exploring the spatio-temporal evolution and driving mechanism of the NDVI (Normalized Difference Vegetation Index) is important in order to understand the operating forces of the ecosystem and the response process of environmental change. We analyzed spatio-temporal vegetation changes by using the trend analysis method during 2001–2020 based on the MODIS NDVI, the meteorological data, the DEM (Digital Elevation Model) and land use types data. We quantitatively revealed the influence degree and mechanism of each detection factor and their interaction on the spatial differentiation of vegetation by using the geographical detector model. Results showed that the vegetation NDVI showed an increasing trend with an increasing rate of 0.021/10 a during 2001–2020 and mainly distributed in the northwest and southwest of the Greater Khingan Mountains. The explanatory power values of each driving factor are as follows: land use (0.384) > elevation (0.193) > slope (0.159) > annual precipitation (0.104) > aspect (0.069) > average annual temperature (0.056). The explanatory power of interaction between driving factors were relatively high, as follows: Land use ∩ Aspect (0.490) > Land use ∩ Slope (0.471) > Land use ∩ Annual precipitation (0.460) > Land use ∩ elevation (0.443) > Land use ∩ Annual temperature (0.421) > Aspect ∩ elevation (0.408). Our research was of great significance for understanding the growth law of vegetation, protecting the ecological environment, and sustainable development in cold temperate zones. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

14 pages, 11233 KB  
Article
The Re-Crushing Spatiotemporal Evolution Law of Broken Coal in the Goaf for Sustainable Utilization of Abandoned Mines
by Yanhong Chen, Cun Zhang, Juhao Cheng and Xiangyu Zhao
Sustainability 2024, 16(21), 9344; https://doi.org/10.3390/su16219344 - 28 Oct 2024
Viewed by 1224
Abstract
The broken coal samples’ (BCS) re-crushing characteristics in the goaf during roof compaction directly affect the mechanics and seepage characteristics of the caving zone. This will further affect the safety of coal mining and the sustainable utilization of abandoned mines. Thus, the experiment [...] Read more.
The broken coal samples’ (BCS) re-crushing characteristics in the goaf during roof compaction directly affect the mechanics and seepage characteristics of the caving zone. This will further affect the safety of coal mining and the sustainable utilization of abandoned mines. Thus, the experiment of BCS compaction is carried out with the help of an acoustic emission (AE) monitoring system. The Hurst exponent changes of the AE counts at different stages were obtained using the R/S analysis method. The results indicate that the compaction and re-crushing of the BCS at the laboratory scale have long-term memory. When providing sufficient stress, the AE activity of BCS will continue to develop according to the current trend. Based on the AE breakage location technology, the spatial distribution re-crushing characteristics of the BCS are obtained. Re-crushing of the BCS demonstrates uniform breakage in the horizontal direction and layered breakage in the vertical direction. In the horizontal direction, the boundary area first began to break, and the damage gradually spread evenly to the central area. In the vertical direction, the upper layer was the first to be broken, and then the damage began to shift to the middle and lower layers. Full article
Show Figures

Figure 1

Back to TopTop