Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (716)

Search Parameters:
Keywords = spatiotemporal expression

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1539 KB  
Review
Transcriptional Condensates: Epigenetic Reprogramming and Therapeutic Targets in Hematologic Malignancies
by Kevin Qiu, Qing Yin, Chongzhi Zang and Jianguo Tao
Cancers 2025, 17(19), 3148; https://doi.org/10.3390/cancers17193148 - 27 Sep 2025
Abstract
Transcription is a core hallmark of cancer, wherein many different proteins assemble at specific sites in the nucleus and act in concert to transcribe functionally relevant genes. Central to this process are transcription factors that bind to their cognate DNA motifs on enhancers [...] Read more.
Transcription is a core hallmark of cancer, wherein many different proteins assemble at specific sites in the nucleus and act in concert to transcribe functionally relevant genes. Central to this process are transcription factors that bind to their cognate DNA motifs on enhancers and super-enhancers to recruit cofactors, coactivators, and epigenetic modifiers, thereby inducing or repressing gene expression. Super-enhancers drive oncogenic transcription, to which cancer cells become highly addicted and confer tumor dependencies on super-enhancer-driven transcription machinery. Transcriptional condensates (TCs) are nuclear membrane-less assemblies of DNA-binding transcription factors, transcription co-activators, and the transcriptional machinery (such as RNA polymerases, non-coding RNAs) formed through liquid–liquid phase separation (LLPS). The function of transcriptionally active oncogenic proteins and their interplay with nucleic acids are carried out within these biomolecular condensates, allowing them to spatiotemporally regulate oncogene expression and lead to the induction and maintenance of cancer. With this growing understanding, specific inhibitors and strategies targeting TC assembly and activation should be considered promising therapeutic opportunities for treating various tumors, including hematological malignancies. Full article
Show Figures

Figure 1

27 pages, 5663 KB  
Article
Spatiotemporal Transcriptome Profiling Reveals Nutrient Transport Dynamics in Rice Nodes and Roots During Reproductive Development
by Wan-Chun Lu, Xiu-Lan Zheng, Yue-Tong Xiao, Zhan-Fei Sun, Zhong Tang, Fang-Jie Zhao and Xin-Yuan Huang
Int. J. Mol. Sci. 2025, 26(19), 9357; https://doi.org/10.3390/ijms26199357 - 25 Sep 2025
Abstract
Efficient allocation of mineral nutrients and photoassimilates is essential for grain development in rice. However, the transcriptional programs governing nutrient transport at key reproductive stages remain largely unresolved. Here, we performed a comprehensive transcriptome analysis of rice (Oryza sativa L.) across spatial [...] Read more.
Efficient allocation of mineral nutrients and photoassimilates is essential for grain development in rice. However, the transcriptional programs governing nutrient transport at key reproductive stages remain largely unresolved. Here, we performed a comprehensive transcriptome analysis of rice (Oryza sativa L.) across spatial (nodes, roots, and five other tissues) and temporal (seven reproductive stages) dimensions to elucidate the molecular basis of nutrient transport and allocation. RNA-seq profiling of node I identified stage-specific gene expression patterns, with the grain filling stage marked by strong induction of transporters involved in mineral allocation (e.g., OsYSL2, OsZIP3, OsSULTR3;3, SPDT) and carbohydrate distribution (e.g., OsSWEET13, OsSWEET14, OsMST6). Comparative analysis with the neck-panicle node (NPN) and root revealed tissue-specific regulatory networks, including nitrate (OsNRT1.1A, OsNRT2.3) and phosphate (OsPHT1;4, OsPHO1;3) transporters enriched at the grain filling stage. Root expression of Cd/As-related transporters (OsNRAMP5, OsCd1, OsLsi1, OsLsi2, OsLsi3) during grain filling highlights the contribution of belowground uptake to grain metal accumulation. Together, our study establishes a spatiotemporal atlas of nutrient transporter gene activity during rice reproductive development and identifies candidate genes regulating upward and lateral nutrient allocation. These findings provide insights into improving nutrient use efficiency and reducing toxic metal accumulation in rice grains through targeted manipulation of nodal and root transport systems. Full article
(This article belongs to the Special Issue Plant Physiology and Molecular Nutrition: 2nd Edition)
Show Figures

Figure 1

28 pages, 842 KB  
Review
Wool: From Properties and Structure to Genetic Insights and Sheep Improvement Strategies
by Huitong Zhou, Lingrong Bai, Shaobin Li, Jiqing Wang and Jon G. H. Hickford
Animals 2025, 15(19), 2790; https://doi.org/10.3390/ani15192790 - 25 Sep 2025
Abstract
The wool of sheep consists of structurally intricate natural fibres that can be processed and manufactured into a range of products. It is prized for its insulation, moisture-buffering capability, flame resistance, and biodegradability. These features arise from its unique fibre architecture and specialised [...] Read more.
The wool of sheep consists of structurally intricate natural fibres that can be processed and manufactured into a range of products. It is prized for its insulation, moisture-buffering capability, flame resistance, and biodegradability. These features arise from its unique fibre architecture and specialised protein composition, which set it apart from most other natural and synthetic fibres. However, despite these novel characteristics, wool fibre variation hampers its uses and reduces its ability to compete with other fibres. This review summarises our current knowledge of wool fibre biology. It begins with a description of wool’s functional properties and performance attributes, then explores the structural foundations of these properties, the molecular basis of fibre trait variation, and prospects for improving fibre quality using genetic approaches. Particular attention is given to the wool keratin and keratin-associated protein genes, their spatiotemporal expression patterns, and genetic polymorphism that may influence fibre characteristics. Opportunities for the genetic improvement of sheep are discussed, including the use of genetic modification and marker-assisted selection. Challenges in interpreting gene–trait associations, particularly from high-throughput omics studies, are highlighted, along with the need for functionally validated genetic markers. Potential trade-offs between wool characteristics and other production and reproductive traits are considered, emphasising the need for balanced breeding approaches. By integrating insights from structural biology, molecular genetics, and breeding strategies, this review provides a foundation for wool fibre improvement. Full article
Show Figures

Figure 1

15 pages, 3427 KB  
Article
Genome-Wide Characterization of the Von Willebrand Factor a Gene Family in Wheat: Highlights Their Functional Roles in Growth and Biotic Stress Response
by Luna Tao, Zheng Yang, Kai Han, Chao Ma, Yueming Ren, Ranran Jia, Huanhuan Li, Qianwen Liu, Yue Zhao and Wenxuan Liu
Plants 2025, 14(19), 2965; https://doi.org/10.3390/plants14192965 - 24 Sep 2025
Viewed by 58
Abstract
Von Willebrand factor A (vWA) genes play important roles in regulating plant growth and development, as well as biotic stresses. However, limited data are available on the contributions of vWA genes to wheat (Triticum aestivum L.). In this study, 114 TavWA genes [...] Read more.
Von Willebrand factor A (vWA) genes play important roles in regulating plant growth and development, as well as biotic stresses. However, limited data are available on the contributions of vWA genes to wheat (Triticum aestivum L.). In this study, 114 TavWA genes were identified in the wheat genome, which were unevenly distributed on 21 chromosomes. According to the phylogenetic analysis, the 114 TavWAs were classified into six groups, two of which (G3 and G6) were unique to wheat. Fifty-five homoeologous gene sets among A, B, and D sub-genomes were detected, which play a crucial role in the expansion of the wheat vWA gene family. Analysis of specific spatiotemporal expression patterns showed that more than 50% of TavWAs (61 out of 114) exhibited tissue-specific expression. These included 71 TavWAs that responded to one or more of the four biotic stress treatments (flg22, chitin, powdery mildew, and stripe rust). Notably, these included TavWA1-7D, a recently reported key growth regulator in wheat, suggesting its additional role in biotic stress responses. RT-qPCR analysis indicated that eight genes (TavWA1-7D, TavWA24-2B, TavWA36-1D, TavWA37-7D, TavWA40, TavWA47, TavWA51, and TavWA53) may play important roles in wheat’s powdery mildew resistance. Collectively, the results of this study provide significant insights for future research on the involvement of vWA genes in the development and stress responses of wheat. Full article
(This article belongs to the Special Issue Wheat Breeding for Disease Resistance)
Show Figures

Figure 1

18 pages, 10778 KB  
Article
Investigating the Development of Colorectal Cancer Based on Spatial Transcriptomics
by Zhaoyao Qi, Guoqing Gu, Huanwei Huang, Beile Lyu, Yibo Liu, Wei Wang, Xu Zha and Xicheng Liu
Int. J. Mol. Sci. 2025, 26(18), 9256; https://doi.org/10.3390/ijms26189256 - 22 Sep 2025
Viewed by 215
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality worldwide. However, the spatial and temporal dynamics underlying its development remain poorly characterized. This study employs spatial transcriptomics (ST) to investigate the progression of intestinal tumors in APC Min/+ mice across multiple time [...] Read more.
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality worldwide. However, the spatial and temporal dynamics underlying its development remain poorly characterized. This study employs spatial transcriptomics (ST) to investigate the progression of intestinal tumors in APC Min/+ mice across multiple time points. We identified distinct transcriptional profiles between tumor and normal tissues, resolving six major cell types through integrated dimensionality reduction and pathological annotation. Pseudo-time trajectory analysis revealed increased expression of MMP11 and MYL9 in later stages of tumor progression. Analysis of human CRC cohorts from the TCGA database further confirmed that high expression of these genes is associated with advanced clinical stages and promotes tumor proliferation and invasion. Temporal gene expression dynamics indicated enrichment of cancer-related pathways concurrent with suppression of lipid and amino acid metabolism. Notably, genes in the DEFA family were significantly upregulated in normal tissues compared to tumor tissues. Functional validation showed that DEFA3 inhibits colon cancer cell migration and proliferation in vitro. These demonstrate the value of ST in resolving spatiotemporal heterogeneity in CRC and identify both MMP11/MYL9 and DEFA3 as potential biomarkers and therapeutic targets. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

22 pages, 4886 KB  
Article
Regional Expression of Dystrophin Gene Transcripts and Proteins in the Mouse Brain
by Konstantina Tetorou, Artadokht Aghaeipour, Shunyi Ma, Talia Gileadi, Amel Saoudi, Pablo Perdomo Quinteiro, Jorge Aragón, Maaike van Putten, Pietro Spitali, Cecilia Montanez, Cyrille Vaillend, Jennifer E. Morgan, Federica Montanaro and Francesco Muntoni
Cells 2025, 14(18), 1441; https://doi.org/10.3390/cells14181441 - 15 Sep 2025
Viewed by 383
Abstract
Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease caused by mutations in the DMD gene, leading to muscle degeneration and shortened life expectancy. Beyond motor symptoms, DMD patients frequently exhibit brain co-morbidities, linked to loss of brain-expressed dystrophin isoforms: most frequently Dp427 [...] Read more.
Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease caused by mutations in the DMD gene, leading to muscle degeneration and shortened life expectancy. Beyond motor symptoms, DMD patients frequently exhibit brain co-morbidities, linked to loss of brain-expressed dystrophin isoforms: most frequently Dp427 and Dp140, and occasionally Dp71 and Dp40. DMD mouse models, including mdx5cv and mdx52, replicate key aspects of the human cognitive phenotype and recapitulate the main genotypic categories of brain phenotype. However, the spatio-temporal expression of brain dystrophin in mice remains poorly defined, limiting insights into how its deficiency disrupts brain development and function. We systematically mapped RNA and protein expression of brain dystrophin isoforms (Dp427 variants, Dp140, Dp71, and Dp40) across brain regions and developmental stages in wild-type mice. Dp427 isoforms were differentially expressed in the adult brain, with Dp427c enriched in the cortex, Dp427p1/p2 in the cerebellum, and Dp427m was also detected across specific brain regions. Dp140 was expressed at lower levels than Dp427; Dp71 was the most abundant isoform in adulthood. Dp140 and Dp71 displayed dynamic developmental changes, from E15 to P60, suggesting stage-specific roles. We also analysed mdx5cv mice lacking Dp427 and mdx52 mice lacking both Dp427 and Dp140. Both models had minimal Dp427 transcript levels, likely due to the nonsense-mediated decay, and neither expressed Dp427 protein. As expected, mdx52 mice lacked Dp140, confirming their genotypic relevance to human DMD. Our study provides the first atlas of dystrophin expression in the wild-type mouse brain, aiding understanding of the anatomical basis of behavioural and cognitive comorbidities in DMD. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Graphical abstract

20 pages, 21922 KB  
Article
SnRK-PP2C-PYL Gene Families in Citrus sinensis: Genomic Characterization and Regulatory Roles in Carotenoid Metabolism
by Pengjun Lu, Zhenting Shi, Tao Liu, Jianqiu Ji, Jing Li, Wentao Li and Chongbo Sun
Metabolites 2025, 15(9), 610; https://doi.org/10.3390/metabo15090610 - 12 Sep 2025
Viewed by 304
Abstract
Background/Objectives: Carotenoids in citrus are vital nutritional compounds and precursors of the stress hormone abscisic acid (ABA). SNF1-related kinases (SnRKs)—key regulators of plant stress signaling that phosphorylate is targeting proteins for post-transcriptional regulation—mediate ABA signaling through its subfamily SnRK2-phosphatase type-2C (PP2C)-PYR1-LIKE (PYL) [...] Read more.
Background/Objectives: Carotenoids in citrus are vital nutritional compounds and precursors of the stress hormone abscisic acid (ABA). SNF1-related kinases (SnRKs)—key regulators of plant stress signaling that phosphorylate is targeting proteins for post-transcriptional regulation—mediate ABA signaling through its subfamily SnRK2-phosphatase type-2C (PP2C)-PYR1-LIKE (PYL) cascades. This study aims to identify the SnRK-PP2C-PYL family members and decipher their underlying post-transcriptional regulatory mechanisms which control carotenoid metabolism in Citrus sinensis for improved nutrition and stress resilience. Methods: SnRK, PP2C, and PYL were identified by integrated HMMER-blastp-CDD pipeline in the Citrus genome. Using two carotenoid-divergent cultivars, ‘Newhall’ (yellow) and ‘Cara Cara’ (red, hyperaccumulating linear carotenoids), we conducted spatiotemporal expression profiling and integrated transcriptomic and metabolomic data via Weighted Gene Co-expression Network Analysis (WGCNA) to identify modules correlated with accumulation. Results: We identified 26 CsSnRKs (1 SnRK1, 7 SnRK2, 18 SnRK3), 57 CsPP2Cs, and 7 CsPYLs in Citrus sinensis. Despite a >26-fold difference in linear carotenoids, structural gene expression was similar among cultivars, strongly implicating post-transcriptional control. WGCNA identified a key turquoise module highly correlated with linear carotenoid content. This module contained phosphorylation-related genes (CsSnRK1/3.5/3.6/3.16, CsPP2C14/15/33/35/38/40/43/56, and CsPYL6), biosynthetic genes (CsPSY1, CsZISO, and CsZDS), and candidate transcription factors. Network analysis predicted that CsSnRKs, CsPP2Cs, and CsPYLs regulate phytoene-derived carotenoid biosynthesis. Conclusions: We propose a novel phosphorylation-mediated post-transcriptional regulatory network in carotenoid accumulation. This mechanism bridges ABA signaling and metabolic adaptation, providing crucial molecular targets for engineering nutrient-dense and climate-resilient citrus varieties. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

29 pages, 26904 KB  
Article
Development and Validation of a Centrosome Amplification-Related Prognostic Model in Pancreatic Cancer: Multi-Omics Guided Risk Stratification and Tumor Microenvironment
by Yuan Sun, Tao Hu, Yan Li and Ming Li
Cancers 2025, 17(18), 2983; https://doi.org/10.3390/cancers17182983 - 12 Sep 2025
Viewed by 366
Abstract
Background: Centrosome amplification, a hallmark of cell cycle dysregulation, drives carcinogenesis through aneuploidy induction and invasive phenotype acquisition. In pancreatic adenocarcinoma—a malignancy characterized by profound genomic instability—the molecular circuitry of centrosome amplification remains enigmatic. Critical gaps persist in understanding its spatiotemporal dynamics in [...] Read more.
Background: Centrosome amplification, a hallmark of cell cycle dysregulation, drives carcinogenesis through aneuploidy induction and invasive phenotype acquisition. In pancreatic adenocarcinoma—a malignancy characterized by profound genomic instability—the molecular circuitry of centrosome amplification remains enigmatic. Critical gaps persist in understanding its spatiotemporal dynamics in tumor microenvironment remodeling and therapy resistance. Methods: This study integrated centrosome amplification-related genes from TCGA and Genecards, established a prognostic risk model through univariate Cox regression–LASSO penalized Cox regression–multivariate Cox regression analyses, and validated it using GEO datasets. Single-cell sequencing analyses dissected transcriptional heterogeneity and intercellular communication networks, while spatially resolved transcriptomics unveiled spatiotemporal expression patterns and molecular regulatory mechanisms of core genes. With further experimental validation via PCR analysis of patient-derived tissue samples confirming key gene expression patterns. Results: This study identified 23 centrosome amplification-related prognostic genes in pancreatic adenocarcinoma, establishing IFI27, KIF20A, KLK10, SPINK7, and TOP2A as highly specific diagnostic and prognostic biomarkers. The constructed signature was established as an independent prognostic indicator correlating with aggressive clinicopathological characteristics and chemoresistance. Mechanistically linked to enhanced DNA repair capacity and accelerated cell cycle progression, also synergizes with KRAS mutational profiles. Tumor microenvironment analysis revealed significant associations with immunosuppressive. Single-cell resolution demonstrated cellular specificity of IFI27/KLK10 in ductal epithelial cells and fibroblasts, with intercellular communication networks exhibiting multidimensional regulatory features. Spatially resolved transcriptomics delineated tumor-region-specific expression patterns of core genes. While PCR validation on matched tumor/normal tissues confirmed significant differential expression of IFI27, KIF20A, KLK10, and TOP2A. Conclusions: This study deciphers the multidimensional clinic–molecular network orchestrated by centrosome amplification in PDAC, revealing its dual-pathogenic mechanism in fueling tumor aggressiveness through coordinated induction of genomic instability and immunosuppressive microenvironment reprogramming. These findings establish a translational framework for developing centrosome dynamics-based prognostic stratification and molecularly targeted therapeutic strategies. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

17 pages, 11584 KB  
Article
Molecular and Functional Characterization of Neuropeptide F Receptor in Pomacea canaliculata: Roles in Feeding and Digestion and Communication with the Insulin Pathway
by Haotian Gu, Haiyuan Teng, Tianshu Zhang and Yongda Yuan
Biology 2025, 14(9), 1241; https://doi.org/10.3390/biology14091241 - 10 Sep 2025
Viewed by 373
Abstract
The invertebrate neuropeptide F (NPF) signaling plays versatile roles in diverse biological activities and processes. Still, whether and how it mediates feeding and digestion in Pomacea canaliculate remain gaps in our knowledge. Herein, we first identified and characterized PcNPFR via bioinformatics analysis in [...] Read more.
The invertebrate neuropeptide F (NPF) signaling plays versatile roles in diverse biological activities and processes. Still, whether and how it mediates feeding and digestion in Pomacea canaliculate remain gaps in our knowledge. Herein, we first identified and characterized PcNPFR via bioinformatics analysis in P. canaliculate, which is a polyphagous herbivore with a voracious appetite that causes devastating damages to ecosystem functioning and services in colonized ranges. Double stranded RNA (dsRNA)-based RNA interference (RNAi) and exogenous rescue were utilized to decipher and substantiate underlying mechanisms whereby NPFR executed its modulatory functions. Multiple sequence alignment and phylogeny indicated that PcNPFR harbored typical seven transmembrane domains (7 TMD) and belonged to rhodopsin-like GPCRs, with amino acid sequence sharing 27.61–63.75% homology to orthologues. Spatio-temporal expression profiles revealed the lowest abundance of PcNPFR occurred in pleopod tissues and the egg stage, while it peaked in male snails and testes. Quantitative real-time PCR (qRT-PCR) analysis showed that 4 µg dsNPFR and 10−6 M trNPF (NPFR agonist) were optimal doses to exert silencing and rescue effects, accordingly with sampling time at 3 days post treatments. Moreover, the dsNPFR injection (4 µg) at 1/3/5/7 day/s delivered silencing efficiency of 32.20–74.01%. After 3 days upon dsNPFR knockdown (4 µg), mRNA levels of ILP7/InR/Akt/PI3Kc/PI3KR were significantly downregulated compared to dsGFP controls, except FOXO substantially upregulated at both transcript and translation levels. In addition, the activities of alpha-amylase, protease and lipase were significantly suppressed, accompanied by decreased leaf area consumption, attenuated feeding behavior and diminished feeding rate. Moreover, expression trends were opposite and proxies were partially or fully restored to baseline levels post exogenous compensation of trNPF, suggesting phenotypes specifically attributable to PcNPFR RNAi but not off-target effects. PcNPFR is implicated in both feeding and digestion by modulating the ISP pathway and digestive enzyme activities. It may serve as a promising molecular target for RNAi-based antifeedants to manage P. canaliculate invasion. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

23 pages, 3668 KB  
Article
Graph-Driven Micro-Expression Rendering with Emotionally Diverse Expressions for Lifelike Digital Humans
by Lei Fang, Fan Yang, Yichen Lin, Jing Zhang and Mincheol Whang
Biomimetics 2025, 10(9), 587; https://doi.org/10.3390/biomimetics10090587 - 3 Sep 2025
Viewed by 545
Abstract
Micro-expressions, characterized by brief and subtle facial muscle movements, are essential for conveying nuanced emotions in digital humans, yet existing rendering techniques often produce rigid or emotionally monotonous animations due to the inadequate modeling of temporal dynamics and action unit interdependencies. This paper [...] Read more.
Micro-expressions, characterized by brief and subtle facial muscle movements, are essential for conveying nuanced emotions in digital humans, yet existing rendering techniques often produce rigid or emotionally monotonous animations due to the inadequate modeling of temporal dynamics and action unit interdependencies. This paper proposes a graph-driven framework for micro-expression rendering that generates emotionally diverse and lifelike expressions. We employ a 3D-ResNet-18 backbone network to perform joint spatio-temporal feature extraction from facial video sequences, enhancing sensitivity to transient motion cues. Action units (AUs) are modeled as nodes in a symmetric graph, with edge weights derived from empirical co-occurrence probabilities and processed via a graph convolutional network to capture structural dependencies and symmetric interactions. This symmetry is justified by the inherent bilateral nature of human facial anatomy, where AU relationships are based on co-occurrence and facial anatomy analysis (as per the FACS), which are typically undirected and symmetric. Human faces are symmetric, and such relationships align with the design of classic spectral GCNs for undirected graphs, assuming that adjacency matrices are symmetric to model non-directional co-occurrences effectively. Predicted AU activations and timestamps are interpolated into continuous motion curves using B-spline functions and mapped to skeletal controls within a real-time animation pipeline (Unreal Engine). Experiments on the CASME II dataset demonstrate superior performance, achieving an F1-score of 77.93% and an accuracy of 84.80% (k-fold cross-validation, k = 5), outperforming baselines in temporal segmentation. Subjective evaluations confirm that the rendered digital human exhibits improvements in perceptual clarity, naturalness, and realism. This approach bridges micro-expression recognition and high-fidelity facial animation, enabling more expressive virtual interactions through curve extraction from AU values and timestamps. Full article
(This article belongs to the Section Bioinspired Sensorics, Information Processing and Control)
Show Figures

Figure 1

16 pages, 15843 KB  
Article
Loss of Dab1 Alters Expression Patterns of Endocytic and Signaling Molecules During Embryonic Lung Development in Mice
by Petar Todorović, Mirko Maglica, Nela Kelam, Natalija Filipović, Azer Rizikalo, Ilija Perutina, Josip Mišković, Yu Katsuyama and Katarina Vukojević
Life 2025, 15(9), 1395; https://doi.org/10.3390/life15091395 - 3 Sep 2025
Viewed by 428
Abstract
Lung development is governed by tightly regulated signaling mechanisms, including endocytosis-mediated pathways critical for epithelial–mesenchymal communication and tissue remodeling. This study investigated the effects of Dab1 deficiency on the expression of endocytic and signaling-related proteins, Megalin, Cubilin, Caveolin-1, GIPC1, and Dab2IP, during embryonic [...] Read more.
Lung development is governed by tightly regulated signaling mechanisms, including endocytosis-mediated pathways critical for epithelial–mesenchymal communication and tissue remodeling. This study investigated the effects of Dab1 deficiency on the expression of endocytic and signaling-related proteins, Megalin, Cubilin, Caveolin-1, GIPC1, and Dab2IP, during embryonic lung development in yotari mice. Using immunofluorescence and quantitative image analysis, protein expressions were compared between yotari and wild-type embryos at gestational days E13.5 and E15.5. Results showed significantly reduced expression of Caveolin-1 in the yotari epithelium across both stages, along with diminished mesenchymal levels of Megalin and GIPC1 at E13.5. Cubilin and Dab2IP expression patterns showed no statistically significant differences, although developmental and compartmental shifts were observed. These findings suggest that Dab1 deficiency selectively disrupts endocytic and signaling scaffolds crucial for branching morphogenesis and alveolar maturation. The altered spatiotemporal expression of these proteins underscores the essential role of Dab1 in regulating lung epithelial–mesenchymal dynamics and maintaining developmental homeostasis during critical stages of organogenesis. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

11 pages, 7078 KB  
Article
Proteasome Subunits Regulate Reproduction in Nilaparvata lugens and the Transovarial Transmission of Its Yeast-like Symbionts
by Xin Lv, Jia-Yu Tu, Qian Liu, Zhi-Qiang Wu, Chen Lin, Tao Zhou, Xiao-Ping Yu and Yi-Peng Xu
Insects 2025, 16(9), 895; https://doi.org/10.3390/insects16090895 - 27 Aug 2025
Viewed by 612
Abstract
The brown planthopper, Nilaparvata lugens, a major rice pest, harbors yeast-like symbionts (YLSs) that form mutualistic relationships with the host, significantly influencing its development and reproduction. As proteasome subunits play major roles in the assembly and functional maintenance of the proteasome, but [...] Read more.
The brown planthopper, Nilaparvata lugens, a major rice pest, harbors yeast-like symbionts (YLSs) that form mutualistic relationships with the host, significantly influencing its development and reproduction. As proteasome subunits play major roles in the assembly and functional maintenance of the proteasome, but their regulation on the YLSs in N. lugens are unclear. In this study, we analyzed the spatiotemporal and temporal expression patterns of five N. lugens proteasome subunits (NlPSMA2, NlPSMB5, NlPSMC4, NlPSMD10, NlPSMD13), and further verified their functions on the transovarial transmission of YLSs, in addition to the reproduction of N. lugens, based on RNA interference (RNAi). The results showed that NlPSMA2, NlPSMB5, NlPSMC4, NlPSMD10, and NlPSMD13 were highly expressed in ovarian follicular cells of N. lugens upon sexual maturation. After suppressing the expression of these genes by RNAi, N. lugens exhibited a shortened lifespan, abnormal pear-shaped follicles, and impaired oviposition capacity, but the number of YLSs in the whole body and the oocyte of N. lugens were significantly increased. These results indicate that the proteasome subunits play crucial roles in the reproduction of N. lugens and the transovarial transmission of its YLSs. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

19 pages, 4125 KB  
Article
Genome-Wide Identification of Petunia Hsp20 Gene Family and Functional Characterization of MYC2a-Regulated CIV Subfamily in Pollen Development
by Xuecong Zhou, Bingru Zhang, Yilin Wang, Letian Wang, Jiajun Tang, Bingyan Zhao, Qian Cheng, Juntao Guo, Hang Zhang and Huirong Hu
Agronomy 2025, 15(9), 2048; https://doi.org/10.3390/agronomy15092048 - 26 Aug 2025
Viewed by 461
Abstract
Plant heat shock proteins (Hsps) are from a diverse and ancient protein family, with small Hsps of ~20 kDa molecular weight classified as Hsp20s. As a key transcription factor in the jasmonic acid (JA) pathway, myelocytomatosis protein 2 (MYC2) plays a vital role [...] Read more.
Plant heat shock proteins (Hsps) are from a diverse and ancient protein family, with small Hsps of ~20 kDa molecular weight classified as Hsp20s. As a key transcription factor in the jasmonic acid (JA) pathway, myelocytomatosis protein 2 (MYC2) plays a vital role in stamen development. In this study, we identified six genes with significantly altered expression levels using previous RNA-Seq data from PhMYC2a-overexpressing and methyl jasmonate (MeJA)-treated petunia. Interestingly, five of these are Hsp20 family members (PhHsp16.0A, PhHsp16.1, PhHsp16.8, PhHsp21.9, and PhHsp40.8). Yeast one-hybrid (Y1H) and dual-luciferase assays demonstrated that PhMYC2a directly binds their promoters, indicating a collective effect. Thus, a genome-wide analysis was conducted and a total of 38 genes encoding Hsp20s were identified in the reference genome of Petunia axillaris. Phylogenetic analysis revealed that 38 members of Hsp20s were irregularly distributed on 34 chromosome scaffolds and separated into 13 subfamilies, with only PaHsp16.0A and 16.1, among the five selected Hsp20s, being in the same Cytosol IV (CIV) subfamily. Conserved motif analysis suggested that the PaHsp20 gene family members may have a high degree of conservation. The promoter sequence analysis suggested that the promoter regions of PaHsp20 genes contained multiple light- and hormone-related cis-regulatory elements. Subsequently, spatiotemporal expression patterns, analyzed by qRT-PCR, showed that PhHsp16.0A and PhHsp16.1 had relatively high expression levels in flowers, with similar expression patterns at various stages of flower bud and anther development. Furthermore, virus-induced gene silencing (VIGS) of PhHsp16.0A and PhHsp16.1 resulted in significantly reduced pollen fertility, indicating their regulation in the process of flower development and echoing the role of PhMYC2a. This study highlights the pivotal role of Hsp20s in MYC2a-mediated regulatory mechanisms during petunia pollen development. Full article
Show Figures

Figure 1

25 pages, 5228 KB  
Article
Digital Relations in Z1: Discretized Time and Rasterized Lines
by Matthew P. Dube
ISPRS Int. J. Geo-Inf. 2025, 14(9), 327; https://doi.org/10.3390/ijgi14090327 - 25 Aug 2025
Viewed by 547
Abstract
There is voluminous literature concerning the scope of topological relations that span various embedding spaces from R1 to R2, Z2 , S1 and S2 , and T2. In the case of the *1 spaces, [...] Read more.
There is voluminous literature concerning the scope of topological relations that span various embedding spaces from R1 to R2, Z2 , S1 and S2 , and T2. In the case of the *1 spaces, those relations have been considered as conceptualizations of both spatial relations and temporal relations. Missing from that list are the set of digital relations that exist within Z1 , representing discretized time, discretized ordered line segments, or discretized linear features as embedding spaces. Discretized time plays an essential role in timeseries data, spatio-temporal information systems, and geo-foundation models where time is represented in layers of consecutive spatial rasters and/or spatial vector objects colloquially referred to as space–time cubes or spatio-temporal stacks. This paper explores the digital relations that exist in Z1 interpreted as a regular topological space under the digital Jordan curve model as well as a folded-over temporal interpretation of that space for use in spatio-temporal information systems and geo-foundation models. The digital Jordan curve model represents the maximum expressive power between discretized objects, making it the ideal paradigm for a decision support system model. It identifies 34 9-intersection relations in Z1 , 42 9-intersection + margin relations in Z1 , and 74 temporal relations in Z1 , utilizing the 9+-intersection, the commercial standard for spatial information systems for querying topological relations. This work creates opportunities for better spatio-temporal reasoning capacity within spatio-temporal stacks and a more direct interface with intuitive language concepts, instrumental for effective utilization of spatial tools. Three use cases are demonstrated in the discussion, representing each of the utilities of Z1 within the spatial data science community. Full article
Show Figures

Figure 1

21 pages, 1464 KB  
Review
Advancements on the Mechanism of Soluble Sugar Metabolism in Fruits
by Jiaqi Wu, Liushan Lu, Zixin Meng, Yuming Qin, Limei Guo, Mengyang Ran, Peng Peng, Yingying Tang, Guodi Huang, Weiming Li and Li Li
Horticulturae 2025, 11(9), 1001; https://doi.org/10.3390/horticulturae11091001 - 23 Aug 2025
Viewed by 772
Abstract
Soluble sugars, primarily fructose, glucose, sucrose, and sorbitol, are crucial determinants of fruit flavor and quality. As a core component of biological metabolism, sugar metabolism provides energy and carbon for fruit development, ultimately governing carbohydrate accumulation in mature fruits. This process requires the [...] Read more.
Soluble sugars, primarily fructose, glucose, sucrose, and sorbitol, are crucial determinants of fruit flavor and quality. As a core component of biological metabolism, sugar metabolism provides energy and carbon for fruit development, ultimately governing carbohydrate accumulation in mature fruits. This process requires the coordinated activities of multiple enzymes and transporters, modulated by the spatiotemporal expression patterns of their encoding genes. Therefore, it is essential to elucidate both the activities of these enzymes across different fruits and their underlying gene expression patterns. While significant progress has been made in functional genes involved in soluble sugar metabolism and deciphering their regulatory networks, an overall introduction of this knowledge remains lacking. This review presents an integrative analysis of soluble sugar accumulation during fruit development, encompassing spatiotemporal dynamics of key metabolic enzymes, functional characterization of encoding genes, signaling response mechanisms governing gene regulation, and the overarching genetic network. Full article
Show Figures

Figure 1

Back to TopTop