Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,573)

Search Parameters:
Keywords = spatiotemporal variations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2879 KB  
Article
Skeleton-Based Real-Time Hand Gesture Recognition Using Data Fusion and Ensemble Multi-Stream CNN Architecture
by Maki K. Habib, Oluwaleke Yusuf and Mohamed Moustafa
Technologies 2025, 13(11), 484; https://doi.org/10.3390/technologies13110484 (registering DOI) - 26 Oct 2025
Abstract
Hand Gesture Recognition (HGR) is a vital technology that enables intuitive human–computer interaction in various domains, including augmented reality, smart environments, and assistive systems. Achieving both high accuracy and real-time performance remains challenging due to the complexity of hand dynamics, individual morphological variations, [...] Read more.
Hand Gesture Recognition (HGR) is a vital technology that enables intuitive human–computer interaction in various domains, including augmented reality, smart environments, and assistive systems. Achieving both high accuracy and real-time performance remains challenging due to the complexity of hand dynamics, individual morphological variations, and computational limitations. This paper presents a lightweight and efficient skeleton-based HGR framework that addresses these challenges through an optimized multi-stream Convolutional Neural Network (CNN) architecture and a trainable ensemble tuner. Dynamic 3D gestures are transformed into structured, noise-minimized 2D spatiotemporal representations via enhanced data-level fusion, supporting robust classification across diverse spatial perspectives. The ensemble tuner strengthens semantic relationships between streams and improves recognition accuracy. Unlike existing solutions that rely on high-end hardware, the proposed framework achieves real-time inference on consumer-grade devices without compromising accuracy. Experimental validation across five benchmark datasets (SHREC2017, DHG1428, FPHA, LMDHG, and CNR) confirms consistent or superior performance with reduced computational overhead. Additional validation on the SBU Kinect Interaction Dataset highlights generalization potential for broader Human Action Recognition (HAR) tasks. This advancement bridges the gap between efficiency and accuracy, supporting scalable deployment in AR/VR, mobile computing, interactive gaming, and resource-constrained environments. Full article
Show Figures

Figure 1

26 pages, 7456 KB  
Article
More Accurate and Reliable Phenology Retrieval in Southwest China: Multi-Method Comparison and Uncertainty Analysis
by Feng Tang, Zhongxi Ge and Xufeng Wang
Remote Sens. 2025, 17(21), 3538; https://doi.org/10.3390/rs17213538 (registering DOI) - 26 Oct 2025
Abstract
Accurate phenological information is crucial for evaluating ecosystem dynamics and the carbon budget. As one of China’s largest terrestrial ecosystem carbon pools, Southwest China plays a significant role in achieving the “dual carbon” goals of carbon peaking and carbon neutrality. However, evergreen forests [...] Read more.
Accurate phenological information is crucial for evaluating ecosystem dynamics and the carbon budget. As one of China’s largest terrestrial ecosystem carbon pools, Southwest China plays a significant role in achieving the “dual carbon” goals of carbon peaking and carbon neutrality. However, evergreen forests are widely distributed in this region, and phenology extraction based on vegetation indices has certain limitations, while SIF-based phenology extraction offers a viable alternative. This study first evaluated phenological results derived from three solar-induced chlorophyll fluorescence (SIF) datasets, six curve-fitting methods, and five phenological extraction thresholds at flux sites to determine the optimal threshold and SIF data for phenological indicator extraction. Secondly, uncertainties in phenological indicators obtained from the six fitting methods were quantified at the regional scale. Finally, based on the optimal phenological results, the spatiotemporal variations in phenology in Southwest China were systematically analyzed. Results show: (1) Optimal thresholds are 20% for the start of growing season (SOS) and 30% for the end of growing season (EOS), with GOSIF best for SOS and EOS, and CSIF for the peak of growing season (POS). (2) Cubic Smoothing Spline (CS) has the lowest uncertainty for SOS, while Savitzky–Golay Filter (SG) has the lowest for EOS and POS. (3) Phenology exhibits significant spatial heterogeneity, with SOS and POS generally showing an advancing trend, and EOS and length of growing season (LOS) showing a delaying (extending) trend. This study provides a reference for phenology extraction in regions with frequent cloud cover and widespread evergreen vegetation, supporting effective assessment of regional ecosystem dynamics and carbon balance. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

24 pages, 31410 KB  
Article
Spatiotemporal Evolution and Driving Factors of the Cooling Capacity of Urban Green Spaces in Beijing over the Past Four Decades
by Chao Wang, Chaobin Yang, Huaiqing Wang and Lilong Yang
Sustainability 2025, 17(21), 9500; https://doi.org/10.3390/su17219500 (registering DOI) - 25 Oct 2025
Viewed by 44
Abstract
Urban green spaces (UGS) are crucial for mitigating rising urban land surface temperatures (LST). Rapid urbanization presents unresolved questions regarding (a) seasonal variations in the spatial co-distribution of UGS and LST, (b) the temporal and spatial changes in UGS cooling, and (c) the [...] Read more.
Urban green spaces (UGS) are crucial for mitigating rising urban land surface temperatures (LST). Rapid urbanization presents unresolved questions regarding (a) seasonal variations in the spatial co-distribution of UGS and LST, (b) the temporal and spatial changes in UGS cooling, and (c) the dominant factors driving cooling effects during different periods. This study focuses on Beijing’s Fifth Ring Road area, utilizing nearly 40 years of Landsat remote sensing imagery and land cover data. We propose a novel nine-square grid spatial analysis approach that integrates LST retrieval, profile line analysis, and the XGBoost algorithm to investigate the long-term spatiotemporal evolution of UGS cooling capacity and its driving mechanisms. The results demonstrate three key findings: (1) Strong seasonal divergence in UGS-LST correlation: A significant negative correlation dominates during summer months (June–August), whereas winter (December–February) exhibits marked weakening of this relationship, with localized positive correlations indicating thermal inversion effects. (2) Dynamic evolution of cooling capacity under urbanization: Urban expansion has reconfigured UGS spatial patterns, with a cooling capacity of UGS showing an “enhancement–decline–enhancement” trend over time. Analysis through machine learning on the significance of landscape metrics revealed that scale-related metrics play a dominant role in the early stage of urbanization, while the focus shifts to quality-related metrics in the later phase. (3) Optimal cooling efficiency threshold: Maximum per-unit-area cooling intensity occurs at 10–20% UGS coverage, yielding an average LST reduction of approximately 1 °C relative to non-vegetated surfaces. This study elucidates the spatiotemporal evolution of UGS cooling effects during urbanization, establishing a robust scientific foundation for optimizing green space configuration and enhancing urban climate resilience. Full article
Show Figures

Figure 1

19 pages, 3802 KB  
Article
Comparison of the Applicability of Mainstream Objective Circulation Type Classification Methods in China
by Minjin Ma, Ran Chen and Xingyu Zhang
Atmosphere 2025, 16(11), 1231; https://doi.org/10.3390/atmos16111231 (registering DOI) - 24 Oct 2025
Viewed by 64
Abstract
Circulation type classification (CTC) is an important method in atmospheric sciences, which reveals the relationship between atmospheric circulation and regional weather and climate. Accurate circulation classification helps to improve weather forecasting accuracy and supports climate change research. China has complex topography and significant [...] Read more.
Circulation type classification (CTC) is an important method in atmospheric sciences, which reveals the relationship between atmospheric circulation and regional weather and climate. Accurate circulation classification helps to improve weather forecasting accuracy and supports climate change research. China has complex topography and significant spatiotemporal variability in its circulation patterns, making the study of circulation type classification in this region highly significant. This study aims to evaluate the applicability of several mainstream objective CTC methods in the China region. We applied methods including T-mode principal component analysis (PCT), Ward linkage, K-means, and Self-Organizing Maps (SOM) to classify the sea-level pressure daily mean fields from 1993 to 2023 in the study area, and compared the classification results in terms of internal metrics, continuity, seasonal variation, separability of related meteorological variables (e.g., temperature, precipitation), and stability to spatiotemporal resolution. The results show that each method has its advantages in different contexts, with the K-means method showing the best overall performance. Additionally, an optimized approach combining PCT and K-means is proposed. Full article
(This article belongs to the Section Meteorology)
Show Figures

Graphical abstract

24 pages, 7378 KB  
Article
Comparing Multiple Machine Learning Models to Investigate Thermal Drivers in an Arid-Oasis Urban Park and Its Surroundings Using Mobile Monitoring
by Yunyao Feng, Xuegang Chen and Siqi Xie
Appl. Sci. 2025, 15(21), 11417; https://doi.org/10.3390/app152111417 (registering DOI) - 24 Oct 2025
Viewed by 88
Abstract
At present, the research on the microclimate of urban parks mainly focuses on the univariate or multivariate research contents of park design elements, and there are few analyses that can combine the park with the surrounding regional environment to jointly explore the cooling [...] Read more.
At present, the research on the microclimate of urban parks mainly focuses on the univariate or multivariate research contents of park design elements, and there are few analyses that can combine the park with the surrounding regional environment to jointly explore the cooling mechanism of park design elements. This study takes the People’s Park in Urumqi, a typical oasis city in an arid area, as the research object. Combined with different land use natures (park area/residential area), it analyzes the spatiotemporal variation law of temperature through mobile meteorological monitoring in different periods of summer and autumn and optimizes the buffer zone to further compare the performance of the multiple linear regression model and three machine learning models. The selection of the optimal model for collaborative analysis and comparison revealed the dominant variables and their threshold effects affecting the temperature of the park area and the residential area. The results show that: (1) In multi-scenario comparisons, a larger buffer has a better fitting effect. (2) The random forest model is the best model for temperature prediction in the study area. (3) The dominant factors of temperature in different seasons show significant differences, and only a few periods have cross-seasonal persistence. In the park area, the green coverage rate and road network density play a leading and influential role, while in the residential area, the influence of water cover ratio is more obvious. Furthermore, the influence direction of residential area indicators on temperature shows opposite trends in the morning and afternoon periods. (4) There are obvious limited-threshold effects on the influence of dominant factors on temperature in different regions. It is suggested that in the urban spatial layout, while considering the differences for different utilization Spaces, collaborative planning should be carried out. These findings offer new insights into temperature drivers and provide practical references for urban planners. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

19 pages, 8637 KB  
Article
The Shrinkage of Lakes on the Semi-Arid Inner Mongolian Plateau Is Still Serious
by Juan Bai, Yue Zhuo, Naichen Xing, Fuping Gan, Yi Guo, Baikun Yan, Yichi Zhang and Ruoyi Li
Water 2025, 17(21), 3056; https://doi.org/10.3390/w17213056 (registering DOI) - 24 Oct 2025
Viewed by 151
Abstract
In the Inner Mongolia Plateau Lake Zone (IMP), situated in China’s semi-arid region, its lake water storage change plays a critical role in wetland ecosystem conservation and regional water security through its lake water storage dynamics. To investigate long-term lake water storage (LWS) [...] Read more.
In the Inner Mongolia Plateau Lake Zone (IMP), situated in China’s semi-arid region, its lake water storage change plays a critical role in wetland ecosystem conservation and regional water security through its lake water storage dynamics. To investigate long-term lake water storage (LWS) changes, this study proposes a novel lake monitoring framework that reconstructs historical lake level time series and estimates water level variations in lakes without altimetry data. Using multi-source satellite data, we quantified LWS variations (2000–2021) across 109 lakes (≥5 km2) on the IMP and examined their spatiotemporal patterns. Our results reveal a net decline of 1.21 Gt in total LWS over the past two decades, averaging 0.06 Gt/yr. A distinct shift occurred around 2012: LWS decreased by 10.82 Gt from 2000 to 2012 but increased by 9.61 Gt from 2013 to 2021. Spatially, significant LWS reductions were concentrated in the central and eastern IMP, resulting from intensive water diversion and groundwater exploitation. In contrast, increases were observed mainly in the western and southern regions, driven by enhanced precipitation and reduced aridity. The findings improve understanding of lake dynamics in semi-arid China over the last two decades and offer technical guidance for sustainable water resource management. Full article
(This article belongs to the Special Issue Remote Sensing of Spatial-Temporal Variation in Surface Water)
Show Figures

Figure 1

16 pages, 3348 KB  
Article
Spatio-Temporal Dynamics of African Swine Fever in Free-Ranging Wild Boar (Sus scrofa): Insights from Six Years of Surveillance and Control in Slovakia
by Peter Smolko, Jozef Bučko, Marek Štefanec, Tibor Lebocký, Martin Chudý, Rudolf Janto, Filip Kubek and Rudolf Kropil
Vet. Sci. 2025, 12(11), 1027; https://doi.org/10.3390/vetsci12111027 - 23 Oct 2025
Viewed by 327
Abstract
African swine fever (ASF) has reshaped wild boar (Sus scrofa) populations and management across Europe since its reintroduction in 2007. ASF reached Slovakia in August 2019, when wild boar population size and harvest were at six-decade maximums. We analyzed data from [...] Read more.
African swine fever (ASF) has reshaped wild boar (Sus scrofa) populations and management across Europe since its reintroduction in 2007. ASF reached Slovakia in August 2019, when wild boar population size and harvest were at six-decade maximums. We analyzed data from six years (2019–2024) of national surveillance and control to quantify spatio-temporal ASF patterns in free-ranging wild boar. Using monthly virological (PCR) and serological (antibody) data from active (hunted) and passive (found dead) surveillance, we (1) estimated temporal variation in the effective reproduction number (Rt); (2) modeled spatio-temporal prevalence in Slovakia and its eastern, central, and western regions; (3) linked these dynamics to management indicators such as wild boar density, harvest, and mortality; and (4) proposed measures to increase surveillance and control effectiveness. Passive surveillance showed greater diagnostic sensitivity than active surveillance for case detection (PCR: 46.5% vs. 0.48%; antibodies: 7.62% vs. 0.75%). Rt peaked at 3.83 in March 2021, then declined but periodically exceeded 1.0 through late 2024. Virological prevalence showed strong late-winter/early-spring seasonality and a persistent east-to-west gradient: peaks occurred first in the east (March 2021, March 2023), with the center surpassing the east in October 2023 and a subsequent rise in the west. Seroprevalence lagged and shifted westward later, peaking in March 2023 and increasing in western Slovakia from mid-2024. Wild boar density decreased by 36.3% from 2019 to 2024 and harvest-based density by 42.8%, returning to post-classical swine fever levels (2009–2013). We recommend prioritizing targeted carcass searches and rapid removal, maintaining low wild boar densities through sustained harvest of adult females, modernizing population monitoring methods, enhancing hunters’ compliance, and strengthening cross-border coordination to improve surveillance and control, thereby slowing ASF spread across Europe. Full article
(This article belongs to the Special Issue Wildlife Health and Disease in Conservation)
Show Figures

Figure 1

21 pages, 669 KB  
Article
An Elevation-Aware Large-Scale Channel Model for UAV Air-to-Ground Links
by Naier Xia, Yang Liu and Yu Yu
Mathematics 2025, 13(21), 3377; https://doi.org/10.3390/math13213377 - 23 Oct 2025
Viewed by 169
Abstract
This paper addresses the issue of existing research that fails adequately capture the spatiotemporal nonstationarity caused by the building of occlusion and flight dynamics in air-to-ground channels from unmanned aerial vehicles (UAVs) in urban scenarios. This study focuses on the angular-altitude correlations of [...] Read more.
This paper addresses the issue of existing research that fails adequately capture the spatiotemporal nonstationarity caused by the building of occlusion and flight dynamics in air-to-ground channels from unmanned aerial vehicles (UAVs) in urban scenarios. This study focuses on the angular-altitude correlations of three key metrics: path loss (PL), shadow fading, and the Ricean K-factor. A dynamic path-loss model incorporating the look-down angle is proposed, an exponential decay model for the shadow-fading standard deviation is constructed, and a model for the angle-dependent variation of the Ricean K-factor is established based on line-of-sight probability. Simulations were conducted in two urban-geometry scenarios using WinProp to evaluate the combined effects of flight altitude and elevation angle. The results indicate that path loss decreases and subsequently stabilizes with increasing elevation angle, the shadow-fading standard deviation decreases significantly, and the Ricean K-factor increases with angle and saturates at high angles, in agreement with theoretical predictions. These models are more adaptable to UAV mobility scenarios than traditional fixed exponential models and provide a useful basis for UAV link planning and system optimization in urban environments. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

19 pages, 6351 KB  
Article
Spatio-Temporal Variations in Soil Organic Carbon Stocks in Different Erosion Zones of Cultivated Land in Northeast China Under Future Climate Change Conditions
by Shuai Wang, Xinyu Zhang, Qianlai Zhuang, Zijiao Yang, Zicheng Wang, Chen Li and Xinxin Jin
Agronomy 2025, 15(11), 2459; https://doi.org/10.3390/agronomy15112459 - 22 Oct 2025
Viewed by 252
Abstract
Soil organic carbon (SOC) plays a critical role in the global carbon cycle and serves as a sensitive indicator of climate change impacts, with its dynamics significantly influencing regional ecological security and sustainable development. This study focuses on the Songnen Plain in Northeast [...] Read more.
Soil organic carbon (SOC) plays a critical role in the global carbon cycle and serves as a sensitive indicator of climate change impacts, with its dynamics significantly influencing regional ecological security and sustainable development. This study focuses on the Songnen Plain in Northeast China—a key black soil agricultural region increasingly affected by water erosion, primarily through surface runoff and rill formation on gently sloping cultivated land. We aim to investigate the spatiotemporal dynamics of SOC stocks across different cultivated land erosion zones under projected future climate change scenarios. To quantify current and future SOC stocks, we applied a boosted regression tree (BRT) model based on 130 topsoil samples (0–30 cm) and eight environmental variables representing topographic and climatic conditions. The model demonstrated strong predictive performance through 10-fold cross-validation, yielding high R2 and Lin’s concordance correlation coefficient (LCCC) values, as well as low mean absolute error (MAE) and root mean square error (RMSE). Key drivers of SOC stock spatial variation were identified as mean annual temperature, elevation, and slope aspect. Using a space-for-time substitution approach, we projected SOC stocks under the SSP245 and SSP585 climate scenarios for the 2050s and 2090s. Results indicate a decline of 177.66 Tg C (SSP245) and 186.44 Tg C (SSP585) by the 2050s relative to 2023 levels. By the 2090s, SOC losses under SSP245 and SSP585 are projected to reach 2.84% and 1.41%, respectively, highlighting divergent carbon dynamics under varying emission pathways. Spatially, SOC stocks were predominantly located in areas of slight (67%) and light (22%) water erosion, underscoring the linkage between erosion intensity and carbon distribution. This study underscores the importance of incorporating both climate and anthropogenic influences in SOC assessments. The resulting high-resolution SOC distribution map provides a scientific basis for targeted ecological restoration, black soil conservation, and sustainable land management in the Songnen Plain, thereby supporting regional climate resilience and China’s “dual carbon” goals. These insights also contribute to global efforts in enhancing soil carbon sequestration and achieving carbon neutrality goals. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

17 pages, 14104 KB  
Article
An Interpretable Machine Learning Approach to Remote Sensing-Based Estimation of Hourly Agricultural Evapotranspiration in Drylands
by Qifeng Zhuang, Weiwei Zhu, Nana Yan, Ghaleb Faour, Mariam Ibrahim and Liang Zhu
Agriculture 2025, 15(21), 2193; https://doi.org/10.3390/agriculture15212193 - 22 Oct 2025
Viewed by 415
Abstract
Obtaining evapotranspiration (ET) estimates at high spatiotemporal resolution is a fundamental prerequisite for clarifying the patterns and controlling factors of agricultural water consumption in drylands. However, most existing ET products are provided at daily or coarser spatial–temporal scales, which limits the ability to [...] Read more.
Obtaining evapotranspiration (ET) estimates at high spatiotemporal resolution is a fundamental prerequisite for clarifying the patterns and controlling factors of agricultural water consumption in drylands. However, most existing ET products are provided at daily or coarser spatial–temporal scales, which limits the ability to capture short-term variations in crop water use. This study developed a novel hourly 10-m ET estimation method that combines remote sensing with machine learning techniques. The approach was evaluated using agricultural sites in two arid regions: the Heihe River Basin in China and the Bekaa Valley in Lebanon. By integrating hourly eddy covariance measurements, Sentinel-2 reflectance data, and ERA5-Land reanalysis meteorological variables, we constructed an XGBoost-based modeling framework for hourly ET estimation, and incorporated the SHapley Additive exPlanations (SHAP) method for model interpretability analysis. Results demonstrated that the model achieved strong performance across all sites (R2 = 0.86–0.91, RMSE = 0.04–0.05 mm·h−1). Additional metrics, including the Nash–Sutcliffe efficiency coefficient (NSE) and percent bias (PBIAS), further confirmed the model’s robustness. Interpreting the model with SHAP highlighted net radiation (Rn), 2-m temperature (t2m), and near-infrared reflectance of vegetation (NIRv) as the dominant factors controlling hourly ET variations. Significant interaction effects, such as Rn × NIRv and Rn × t2m, were also identified, revealing the modulation mechanism of energy, vegetation status and temperature coupling on hourly ET. The study offers a practical workflow and an interpretable framework for generating high-resolution ET maps, thereby supporting regional water accounting and land–atmosphere interaction research. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

18 pages, 7325 KB  
Article
Investigation of the Effects of Climate Change and Human Activities on the Spatio-Temporal Trends of Vegetation in the Source Region of the Yellow River in China
by Wenyan Deng, Xizhi Lv, Yongxin Ni, Li Ma, Qiufen Zhang, Jianwei Wang, Hengshuo Zhang, Xin Wen and Wenjie Cheng
Sustainability 2025, 17(21), 9399; https://doi.org/10.3390/su17219399 - 22 Oct 2025
Viewed by 217
Abstract
The dynamic changes in vegetation significantly impact the sustainability, safety, and stability of ecosystems in the source region of the Yellow River. However, the spatiotemporal patterns and driving factors of these changes remain unclear. The MODIS NDVI dataset (1998–2018), together with climatic records [...] Read more.
The dynamic changes in vegetation significantly impact the sustainability, safety, and stability of ecosystems in the source region of the Yellow River. However, the spatiotemporal patterns and driving factors of these changes remain unclear. The MODIS NDVI dataset (1998–2018), together with climatic records from meteorological stations and socio-economic statistics, was collected to investigate the spatiotemporal characteristics of vegetation coverage in the study area. For the analysis, we employed linear trend analysis to assess long-term changes, Pearson correlation analysis to examine the relationships between vegetation dynamics and climatic as well as anthropogenic factors, and t-tests to evaluate the statistical significance of the results. The results indicated the following: (1) From 1998 to 2018, vegetation in the source region of the Yellow River generally exhibited an increasing trend, with 92.7% of the area showed improvement, while only 7.3% experienced degradation. The greatest vegetation increase occurred in areas with elevations of 3250–3750 m, whereas vegetation decline was mainly concentrated in regions with elevations of 5250–6250 m. (2) Seasonal differences in vegetation trends were observed, with significant increases in spring, summer, and winter, and a non-significant decrease in autumn. Vegetation degradation in summer and autumn remains a concern, primarily in southeastern and lower-elevation areas, affecting 25% and 27% of the total area, respectively. The maximum annual average NDVI was 0.70, occurring in 2018, while the minimum value was 0.59, observed in 2003. (3) Strong correlations were observed between vegetation dynamics and climatic variables, with temperature and precipitation showing significant positive correlations with vegetation (r = 0.66 and 0.60, respectively; p < 0.01, t-test), suggesting that increases in temperature and precipitation serve as primary drivers for vegetation improvement. (4) Anthropogenic factors, particularly overgrazing and rapid population growth (both human and livestock), were identified as major contributors to the degradation of low-altitude alpine grasslands during summer and autumn periods, with notable impacts observed in counties with higher livestock density and population growth, indicating that for each unit increase in population trend, the NDVI trend decreases by an average of 0.0001. The findings of this research are expected to inform the design and implementation of targeted ecological conservation and restoration strategies in the source region of the Yellow River, such as optimizing land-use planning, guiding reforestation and grassland management efforts, and establishing region-specific policies to mitigate the impacts of climate change and human activities on vegetation ecosystems. Full article
(This article belongs to the Special Issue Advances in Management of Hydrology, Water Resources and Ecosystem)
Show Figures

Figure 1

27 pages, 16565 KB  
Article
Multi-Scale Spatiotemporal Dynamics of Ecosystem Services and Detection of Their Driving Mechanisms in Southeast Coastal China
by Haoran Zhang, Xin Fu, Jin Huang, Zhenghe Xu and Yu Wu
Land 2025, 14(11), 2101; https://doi.org/10.3390/land14112101 - 22 Oct 2025
Viewed by 156
Abstract
Intensive human interference has severely disrupted the natural and ecological environments of coastal areas, threatening ecosystem services (ESs). Meanwhile, the relationships between ESs exhibit certain variations across different spatial scales. Therefore, identifying the scale effects of interrelationships among ESs and their underlying driving [...] Read more.
Intensive human interference has severely disrupted the natural and ecological environments of coastal areas, threatening ecosystem services (ESs). Meanwhile, the relationships between ESs exhibit certain variations across different spatial scales. Therefore, identifying the scale effects of interrelationships among ESs and their underlying driving mechanisms will better support scientific decision-making for the hierarchical and sustainable management of coastal ecosystems. Therefore, employing the Integrated Valuation of ESs and Tradeoffs (InVEST) model combined with GIS spatial visualization techniques, this investigation systematically examined the spatiotemporal distribution of four ESs across three scales (grid, county, and city) during 2000–2020. Complementary statistical approaches (Spearman’s correlation analysis and bivariate Moran’s I) were integrated to systematically quantify evolving ES trade-off/synergy patterns and reveal their spatial self-correlation characteristics. The geographical detector model (GeoDetector) was used to identify the main driving factors affecting ESs at different scales, and combined with bivariate Moran’s I to further visualize the spatial differentiation patterns of these key drivers. The results indicated that: (1) ESs (except for Water yield) generally increased from coastal regions to inland areas, and their spatial distribution tended to become more clustered as the scale increased. (2) Relationships between ESs became stronger at larger scales across all three study levels. These ESs connections showed stronger links at the middle scale (county). (3) Natural factors had the greatest impact on ESs than anthropogenic factors, with both demonstrating increased explanatory power as the scale enlarges. The interactions between factors of the same type generally yield stronger explanatory power than any single factor alone. (4) The spatial aggregation patterns of ESs with different driving factors varied significantly, while the spatial aggregation patterns of ESs with the same driving factor were highly similar across different spatial scales. These findings confirm that natural and social factors exhibit scale dependency and spatial heterogeneity, emphasizing the need for policies to be tailored to specific scales and adapted to local conditions. It provides a basis for future research on multi-scale and region-specific precision regulation of ecosystems. Full article
Show Figures

Figure 1

28 pages, 1880 KB  
Article
Hierarchical Line Loss Allocation Methods for Low-Voltage Distribution Networks with Distributed Photovoltaics
by Qingjiong Peng, Haobo Zhang, Haotian Cai, Hongwe Li, Xiaolong Wang, Xiangang Peng and Zhuoli Zhao
Mathematics 2025, 13(21), 3366; https://doi.org/10.3390/math13213366 - 22 Oct 2025
Viewed by 105
Abstract
The bidirectional power flows and time-varying characteristics generated by distributed photovoltaic integration into low-voltage distribution networks pose accuracy and fairness challenges to traditional line loss allocation methods. Existing methods, based on unidirectional power flow assumptions, are unable to quantify the true contributions of [...] Read more.
The bidirectional power flows and time-varying characteristics generated by distributed photovoltaic integration into low-voltage distribution networks pose accuracy and fairness challenges to traditional line loss allocation methods. Existing methods, based on unidirectional power flow assumptions, are unable to quantify the true contributions of PV nodes and ignore the multi-dimensional value attributes of photovoltaics. Against this background, following the principle of “who caused the incremental part of loss, who is responsible for it“, this paper proposes a hierarchical line loss allocation model for low-voltage distribution networks with distributed photovoltaics. The first layer employs an enhanced marginal loss coefficient method to allocate the baseline line losses without PV integration to original distribution network users. The second layer utilizes spatiotemporal weighted Shapley values to quantify the marginal contributions of PV nodes to line loss variations, while establishing a multi-dimensional PV value correction system based on local consumption rate, spatiotemporal matching degree, and voltage support capability, and transforms the multi-dimensional PV values into economic incentive signals through an adaptive Softmax weighting algorithm. Finally, simulation analysis validates the effectiveness of the proposed line loss allocation method. Full article
(This article belongs to the Special Issue Artificial Intelligence and Game Theory)
Show Figures

Figure 1

24 pages, 11432 KB  
Article
MRDAM: Satellite Cloud Image Super-Resolution via Multi-Scale Residual Deformable Attention Mechanism
by Liling Zhao, Zichen Liao and Quansen Sun
Remote Sens. 2025, 17(21), 3509; https://doi.org/10.3390/rs17213509 - 22 Oct 2025
Viewed by 275
Abstract
High-resolution meteorological satellite cloud imagery plays a crucial role in diagnosing and forecasting severe convective weather phenomena characterized by suddenness and locality, such as tropical cyclones. However, constrained by imaging principles and various internal/external interferences during satellite data acquisition, current satellite imagery often [...] Read more.
High-resolution meteorological satellite cloud imagery plays a crucial role in diagnosing and forecasting severe convective weather phenomena characterized by suddenness and locality, such as tropical cyclones. However, constrained by imaging principles and various internal/external interferences during satellite data acquisition, current satellite imagery often fails to meet the spatiotemporal resolution requirements for fine-scale monitoring of these weather systems. Particularly for real-time tracking of tropical cyclone genesis-evolution dynamics and capturing detailed cloud structure variations within cyclone cores, existing spatial resolutions remain insufficient. Therefore, developing super-resolution techniques for meteorological satellite cloud imagery through software-based approaches holds significant application potential. This paper proposes a Multi-scale Residual Deformable Attention Model (MRDAM) based on Generative Adversarial Networks (GANs), specifically designed for satellite cloud image super-resolution tasks considering their morphological diversity and non-rigid deformation characteristics. The generator architecture incorporates two key components: a Multi-scale Feature Progressive Fusion Module (MFPFM), which enhances texture detail preservation and spectral consistency in reconstructed images, and a Deformable Attention Additive Fusion Module (DAAFM), which captures irregular cloud pattern features through adaptive spatial-attention mechanisms. Comparative experiments against multiple GAN-based super-resolution baselines demonstrate that MRDAM achieves superior performance in both objective evaluation metrics (PSNR/SSIM) and subjective visual quality, proving its superior performance for satellite cloud image super-resolution tasks. Full article
(This article belongs to the Special Issue Neural Networks and Deep Learning for Satellite Image Processing)
Show Figures

Figure 1

19 pages, 3709 KB  
Article
Evaluating the Influence of Aerosol Optical Depth on Satellite-Derived Nighttime Light Radiance in Asian Megacities
by Hyeryeong Park, Jaemin Kim and Yun Gon Lee
Remote Sens. 2025, 17(20), 3492; https://doi.org/10.3390/rs17203492 - 21 Oct 2025
Viewed by 182
Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) provides invaluable nighttime light (NTL) radiance data, widely employed for diverse applications including urban and socioeconomic studies. However, the inherent reliability of NTL data as a proxy for socioeconomic activities is significantly compromised [...] Read more.
The Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) provides invaluable nighttime light (NTL) radiance data, widely employed for diverse applications including urban and socioeconomic studies. However, the inherent reliability of NTL data as a proxy for socioeconomic activities is significantly compromised by atmospheric conditions, particularly aerosols. This study analyzed the long-term spatiotemporal variations in NTL radiance with respect to atmospheric aerosol optical depth (AOD) in nine major Asian cities from January 2012 to May 2021. Our findings reveal a complex and heterogeneous interplay between NTL radiance and AOD, fundamentally influenced by a region’s unique atmospheric characteristics and developmental stages. While major East Asian cities (e.g., Beijing, Tokyo, Seoul) exhibited a statistically significant inverse correlation, indicating aerosol-induced NTL suppression, other regions showed different patterns. For instance, the rapidly urbanizing city of Dhaka displayed a statistically significant positive correlation, suggesting a concurrent increase in NTL and AOD due to intensified urban activities. This highlights that the NTL-AOD relationship is not solely a physical phenomenon but is also shaped by independent socioeconomic processes. These results underscore the critical importance of comprehensively understanding these regional discrepancies for the reliable interpretation and effective reconstruction of NTL radiance data. By providing nuanced insights into how atmospheric aerosols influence NTL measurements in diverse urban settings, this research aims to enhance the utility and robustness of satellite-derived NTL data for effective socioeconomic analyses. Full article
Show Figures

Figure 1

Back to TopTop