Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,632)

Search Parameters:
Keywords = stand age

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2452 KB  
Article
Research on Forest Carbon Sequestration and Its Economic Valuation: A Case Study of the Zixi Mountain Nature Reserve, Chuxiong Prefecture
by Mengxue Pu, Shaohui Yang, Aimei Chen and Zhihua Deng
Plants 2025, 14(17), 2746; https://doi.org/10.3390/plants14172746 - 2 Sep 2025
Abstract
Improving the precision of forest vegetation carbon stock estimation is essential for scientifically evaluating its economic value and ecological benefits. This study aims to investigate the impact of different estimation methods on carbon stock assessment. Taking the forest vegetation of the Zixi Mountain [...] Read more.
Improving the precision of forest vegetation carbon stock estimation is essential for scientifically evaluating its economic value and ecological benefits. This study aims to investigate the impact of different estimation methods on carbon stock assessment. Taking the forest vegetation of the Zixi Mountain Nature Reserve as the research object, the carbon stock of the arbor layer was estimated using four approaches: the variable biomass expansion factor method, the biomass expansion factor method, the volume conversion method, and the continuous function method of the biomass conversion factor. The carbon stocks of economic forests and shrublands were estimated using the average biomass method. The economic value of forest carbon storage was then evaluated through the market value method and the optimal pricing approach for forest carbon sinks. The results revealed no significant differences among the four estimation methods. The estimated arbor forest carbon stocks were 692,548.39 tC, 672,599.83 tC, 673,161.07 tC, and 400,369.17 tC, respectively, with an overall average of 609,669.62 tC. The biomass expansion factor method and the volume conversion method produce the most consistent results. The corresponding relative errors were 13.59%, 10.32%, 10.41%, and −34.33%, respectively. The continuous function method of the biomass conversion factor exhibited the greatest variability, mainly due to the influence of Pinus yunnanensis parameters. Among all methods, the biomass expansion factor method yielded the smallest relative error, making it the most suitable for estimating arbor carbon stocks in the study area. The total average economic value of forest carbon storage in the region was estimated at CNY 58.09 million. Among all forest types, Pinus yunnanensis contributed the highest carbon value, totaling CNY 50.48 million. In terms of economic value per unit area, Pinus armandii ranked first, with CNY 11,418.92 per hectare. Among different age groups of arbor forests, middle-aged stands had the highest carbon sequestration value, reaching CNY 36.87 million. Across all functional zones, the core zone showed the greatest economic value at CNY 29.34 million. Enhancing forest resource protection to maximize both carbon sink capacity and economic returns, as well as promoting forest carbon trading, can bring additional economic benefits to Southwest China while contributing to the achievement of the national “dual carbon” goals. Full article
Show Figures

Figure 1

14 pages, 1131 KB  
Article
Enzymatic Activity and Organic Acid Profile of Phosphate-Solubilizing Bacterial Inoculants and Their Agronomic Effectiveness in Soybean
by Luana Rainieri Massucato, Mayara Barbosa Silva, Mirela Mosela, Lycio Shinji Watanabe, Leandro Afonso, Antoni Wallace Marcos, Alison Fernando Nogueira, Nicholas Vieira de Sousa, Ricardo Cancio Fendrich, Marcos Ventura Faria and Leandro Simões Azeredo Gonçalves
Microorganisms 2025, 13(9), 2016; https://doi.org/10.3390/microorganisms13092016 - 29 Aug 2025
Viewed by 195
Abstract
Low phosphorus (P) availability in tropical soils is one of the main constraints to agricultural productivity and the sustainability of cropping systems. In this study, we evaluated the functional potential of four bacterial strains, including those present in two commercial inoculants: Nodubiophos (Ag87-CCT [...] Read more.
Low phosphorus (P) availability in tropical soils is one of the main constraints to agricultural productivity and the sustainability of cropping systems. In this study, we evaluated the functional potential of four bacterial strains, including those present in two commercial inoculants: Nodubiophos (Ag87-CCT 8090 and Ag94-CCT 8108), and Biomaphos (B119 and B2084), focusing on their production of phosphatase and phytase enzymes, organic acids, and their agronomic efficacy in soybean cultivation. In vitro assays showed that all strains exhibited phytase and both acid and alkaline phosphatase activities, with B2084 and Ag94 standing out in phytase-mediated mineralization. In contrast, B119 and B2084 showed the highest phosphatase activity. Organic acid production varied among strains and was influenced by the phosphate source, indicating a highly responsive metabolic regulation. Strains Ag87 and Ag94 were particularly effective in producing lactic, malic, and gluconic acids, displaying distinct profiles modulated by the available P source. In field trials, combined inoculation with Ag87 and Ag94 led to increased soybean yield, achieving performance comparable to conventional fertilization at 50% and 100% of the recommended P rate, despite applying only 30% of the total P. The results highlight complementary metabolic strategies among the evaluated strains, with the ability to solubilize and mineralize phosphorus through different mechanisms. They support their potential use as bioinoculants to enhance nutrient use efficiency and reduce fertilizer dependency in soybean cultivation. Full article
(This article belongs to the Special Issue Beneficial Microorganisms for Sustainable Agriculture)
Show Figures

Figure 1

25 pages, 14188 KB  
Article
Assessment of Accuracy in Geometry Reconstruction, CAD Modeling, and MEX Additive Manufacturing for Models Characterized by Axisymmetry and Primitive Geometries
by Paweł Turek, Piotr Bielarski, Alicja Czapla, Hubert Futoma, Tomasz Hajder and Jacek Misiura
Designs 2025, 9(5), 101; https://doi.org/10.3390/designs9050101 - 28 Aug 2025
Viewed by 238
Abstract
Due to the rapid advancements in coordinate measuring systems, data processing software, and additive manufacturing (AM) techniques, it has become possible to create copies of existing models through the reverse engineering (RE) process. However, the lack of precise estimates regarding the accuracy of [...] Read more.
Due to the rapid advancements in coordinate measuring systems, data processing software, and additive manufacturing (AM) techniques, it has become possible to create copies of existing models through the reverse engineering (RE) process. However, the lack of precise estimates regarding the accuracy of the RE process—particularly at the measurement, reconstruction, and computer-aided design (CAD) modeling stages—poses significant challenges. Additionally, the assessment of dimensional and geometrical errors during the manufacturing stage using AM techniques limits the practical implementation of product replicas in the industry. This paper provides an estimation of the errors encountered in the RE process and the AM stage of various models. It includes examples of an electrical box, a lampshade for a standing lamp, a cover for a vacuum unit, and a battery cover. The geometry of these models was measured using a GOM Scan 1 (Carl Zeiss AG, Jena, Germany). Following the measurement process, data processing was performed, along with CAD modeling, which involved primitive detection, profile extraction, and auto-surface methods using Siemens NX 2406 software (Siemens Digital Industries, Plano, TX, USA). The models were produced using a Fortus 360-mc 3D printer (Stratasys, Eden Prairie, MN, USA) with ABS-M30 material. After fabrication, the models were scanned using a GOM Scan 1 scanner to identify any manufacturing errors. The research findings indicated that overall, 95% of the points representing reconstruction errors are within the maximum deviation range of ±0.6 mm to ±1 mm. The highest errors in CAD modeling were attributed to the auto-surfacing method, overall, 95% of the points are within the average range of ±0.9 mm. In contrast, the lowest errors occurred with the detect primitives method, averaging ±0.6 mm. Overall, 95% of the points representing the surface of a model made using the additive manufacturing technology fall within the deviation range ±0.2 mm on average. The findings provide crucial insights for designers utilizing RE and AM techniques in creating functional model replicas. Full article
(This article belongs to the Special Issue Design Process for Additive Manufacturing)
Show Figures

Figure 1

12 pages, 761 KB  
Article
The Iron Age npš and the Utility of Egyptian Comparative Evidence
by Shane M. Thompson
Religions 2025, 16(9), 1117; https://doi.org/10.3390/rel16091117 - 28 Aug 2025
Viewed by 285
Abstract
This purpose of this article is twofold. Firstly, I present an overview of the Egyptian concepts of the ba and ka, as well as the attestations of npš extant in the Iron Age Levant. This brief investigation is meant to illustrate the [...] Read more.
This purpose of this article is twofold. Firstly, I present an overview of the Egyptian concepts of the ba and ka, as well as the attestations of npš extant in the Iron Age Levant. This brief investigation is meant to illustrate the second point, which is the utility of Egyptian evidence for the study of Levantine culture and religion. In addition, this article may stand as a starting point for further investigation of the npš through Egyptian comparative evidence, going beyond iconographic, archaeological, and textual comparison to include comparison of concepts and ideologies. Full article
(This article belongs to the Special Issue Hebrew Bible: Text, Culture, and Archaeology)
9 pages, 247 KB  
Article
Promoting Local Development and Food Literacy in a Rural Angolan Community
by Sofia Campos, Joana Andrade, Eduardo Santos, Inês Figueiredo, Vitor Martins, Eugénia Matos, Ana Paula Cardoso and Manuela Ferreira
Nutrients 2025, 17(17), 2788; https://doi.org/10.3390/nu17172788 - 28 Aug 2025
Viewed by 327
Abstract
Background/Objectives: In Angola, malnutrition contributes each year to the deaths of an estimated 42,000 to 76,000 children under the age of 5. Addressing this issue must stand as a priority and requires providing local residents with access not only to nutritious food but [...] Read more.
Background/Objectives: In Angola, malnutrition contributes each year to the deaths of an estimated 42,000 to 76,000 children under the age of 5. Addressing this issue must stand as a priority and requires providing local residents with access not only to nutritious food but also to adequate and accurate information in order to facilitate informed dietary choices. As part of the “Seigungo—Health, Education and Quality of Maternal and Child Life in Gungo project”, a nutrition-focused study was conducted in Gungo, Angola to evaluate the effectiveness of a training model designed to enhance food literacy among residents. Methods: Data were collected using a 14-item questionnaire developed to assess various key domains of food literacy: information seeking and access; comprehension and thematic knowledge; critical evaluation of information and behaviour; practical application and sound decision-making. Results: Thirty trainees took part in the study, of which 60% were men, with a mean age of 45.6 years. The majority were single (53.3%) and had completed six years of formal education (26.7%). Before attending the training program, 86.7% of the participants demonstrated inadequate or problematic food literacy. Following the intervention, the proportion of participants with adequate food literacy increased significantly from 13.3% to 73.3% (p < 0.001). Conclusions: The training program had a statistically significant impact on improving food literacy. Full article
(This article belongs to the Special Issue Food Fortification and Nutritional Policies)
15 pages, 2130 KB  
Article
Intra-Specific Variation and Correlation of Functional Traits in Cunninghamia lanceolata at Different Stand Ages
by Jiejie Jiao, Chuping Wu, Honggang Sun and Liangjing Yao
Plants 2025, 14(17), 2675; https://doi.org/10.3390/plants14172675 - 27 Aug 2025
Viewed by 312
Abstract
Intra-specific variation in functional traits and their inter-relationships reflect how plants allocate resources, adapt, and evolve in response to environmental changes. This study investigated eight functional traits—leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), chlorophyll content (CHL), leaf nitrogen [...] Read more.
Intra-specific variation in functional traits and their inter-relationships reflect how plants allocate resources, adapt, and evolve in response to environmental changes. This study investigated eight functional traits—leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), chlorophyll content (CHL), leaf nitrogen content (LNC), leaf phosphorus content (LPC), twig tissue density (TTD), and wood density (WD)—in Cunninghamia lanceolata plantations of three stand ages (15, 30, and 50 years), using a space-for-time substitution approach. We examined differences in trait values, intra-specific variation, and trait correlations across forest ages and diameter classes. The results showed that (1) Functional traits exhibited varying degrees of intra-specific variation, with LA having the highest coefficient of variation (21.66%) and LPC is lowest (9.31%). (2) Forest age had a stronger influence on trait variation than diameter class, with all traits differing significantly across ages, while only WD varied significantly among diameter classes. (3) PC1 (25.5%) and PC2 (19.4%) together explained approximately 44.9% of the total variation, with PC1 primarily reflecting functional trait changes driven by forest age. PCA results showed that LA and CHL tended to exhibit higher values in young forests, whereas SLA, LDMC, LPC, and LNC had relatively higher values in mature forests. This pattern suggests a shift in functional trait expression from resource acquisition to resource conservation strategies with increasing forest age. (4) Significant positive correlations between LNC and LPC, and negative correlations between SLA and LDMC, were observed in most groups, except in large-diameter trees at the over-mature stage. C. lanceolata adjusts trait combinations to enhance fitness across developmental stages. Juvenile trees adopt traits favoring efficient light and nutrient use to support rapid growth and competition. Middle-aged trees prioritize balanced water and nutrient use to maintain productivity and resist disturbances. Mature trees focus on sustained resource use and offspring protection to support ecosystem stability and regeneration. These findings reveal age-specific adaptive strategies and provide insights into the coordination and trade-offs among traits in response to environmental conditions. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

22 pages, 1533 KB  
Article
A Markov Chain Monte Carlo Procedure for Efficient Bayesian Inference on the Phase-Type Aging Model
by Cong Nie, Xiaoming Liu, Serge Provost and Jiandong Ren
Stats 2025, 8(3), 77; https://doi.org/10.3390/stats8030077 - 27 Aug 2025
Viewed by 354
Abstract
The phase-type aging model (PTAM) belongs to a class of Coxian-type Markovian models that can provide a quantitative description of well-known aging characteristics that are part of a genetically determined, progressive, and irreversible process. Due to its unique parameter structure, estimation via the [...] Read more.
The phase-type aging model (PTAM) belongs to a class of Coxian-type Markovian models that can provide a quantitative description of well-known aging characteristics that are part of a genetically determined, progressive, and irreversible process. Due to its unique parameter structure, estimation via the MLE method presents a considerable estimability issue, whereby profile likelihood functions are flat and analytically intractable. In this study, a Markov chain Monte Carlo (MCMC)-based Bayesian methodology is proposed and applied to the PTAM, with a view to improving parameter estimability. The proposed method provides two methodological extensions based on an existing MCMC inference method. First, we propose a two-level MCMC sampling scheme that makes the method applicable to situations where the posterior distributions do not assume simple forms after data augmentation. Secondly, an existing data augmentation technique for Bayesian inference on continuous phase-type distributions is further developed in order to incorporate left-truncated data. While numerical results indicate that the proposed methodology improves parameter estimability via sound prior distributions, this approach may also be utilized as a stand-alone statistical model-fitting technique. Full article
Show Figures

Figure 1

11 pages, 348 KB  
Article
Effects of High-Intensity Interval Training with Change of Direction Versus Small-Sided Games on Physical Fitness in School-Aged Children
by Elzan Bibić, Dušan Stupar, Nebojša Mitrović, Dajana Zoretić and Nebojša Trajković
Children 2025, 12(9), 1124; https://doi.org/10.3390/children12091124 - 26 Aug 2025
Viewed by 315
Abstract
Background: This study examined the effects of high-intensity interval training with change of direction (HIITcod) and small-sided games (SSGs) on components of physical fitness in school-aged children. The aim was to provide practical insights for optimizing exercise interventions in constrained indoor environments. Methods: [...] Read more.
Background: This study examined the effects of high-intensity interval training with change of direction (HIITcod) and small-sided games (SSGs) on components of physical fitness in school-aged children. The aim was to provide practical insights for optimizing exercise interventions in constrained indoor environments. Methods: A randomized controlled trial was conducted during regular physical education (PE) classes in a school’s indoor sports hall. Fifty healthy boys (mean ± SD = 12.6 ± 0.6 years) were randomly assigned to a HIITcod group (n = 25) or an SSG group (n = 25). The intervention lasted eight weeks and consisted of structured training sessions designed to progressively increase intensity and training load in a child-friendly and safe environment. Individual maximal heart rate (HRmax) was determined using the 20 m shuttle run test prior to the intervention. Heart rate monitors were worn throughout all sessions to ensure exercise intensity consistently exceeded 75% of HRmax, with real-time monitoring used to adjust effort when necessary. Physical fitness outcomes, including the shuttle run test (SRT), handgrip strength (HG), 20 m sprint, standing broad jump (SBJ), Illinois agility test, and T-test, were assessed pre- and post-intervention. Results: Both groups demonstrated significant improvements over time in the SRT, SBJ, Illinois agility test, and T-test (p < 0.05). No significant group × time interactions were detected (all p > 0.05). Handgrip strength increased significantly in the HIITcod group (35.03 ± 7.19 kg to 36.80 ± 6.68 kg, p = 0.001, d = 0.25) and showed a non-significant trend in the SSG group (38.28 ± 9.09 kg to 39.23 ± 9.12 kg, p = 0.056). No significant changes were observed in 20 m sprint performance. Conclusions: Based on the study results, both HIITcod and SSGs were associated with improvements in multiple components of physical fitness in school-aged boys. These findings suggest that both training modalities may be viable options for implementation during physical education classes, particularly in limited indoor settings. The observed positive changes in fitness could indicate their potential to positively impact children’s fitness in a structured and engaging manner. Full article
(This article belongs to the Special Issue Effects of Exercise Interventions on Children)
Show Figures

Figure 1

18 pages, 3819 KB  
Article
Morpho-Physiological Traits and Flammability of Bark in a Post-Fire Black Pine Population
by Zorica Popović, Nikola Mišić, Milan Protić and Vera Vidaković
Fire 2025, 8(9), 342; https://doi.org/10.3390/fire8090342 - 26 Aug 2025
Viewed by 527
Abstract
Pinus nigra Arnold, which is naturally widespread in mountainous and Mediterranean ecosystems, is a key species for reforestation due to its ecological and economic value. As climate change and changing fire regimes increase the wildfire risk, understanding its fire resilience has become critical. [...] Read more.
Pinus nigra Arnold, which is naturally widespread in mountainous and Mediterranean ecosystems, is a key species for reforestation due to its ecological and economic value. As climate change and changing fire regimes increase the wildfire risk, understanding its fire resilience has become critical. In this study, the morpho-physiological traits (thickness, roughness, moisture content) and flammability characteristics (ignition, heat release, mass loss, as determined in laboratory flammability tests) of the bark of P. nigra were investigated. The trees were selected based on their age (young vs. old) and fire exposure (burned vs. unburned). The bark thickness was significantly greater in older trees, while the bark moisture content was significantly lower in previously burned trees (p ≤ 0.05). The bark thickness correlated strongly with the ignition time, heat release, and mass loss. These results indicate that the age of the tree primarily affects the bark thickness and time to cambium death, while fire exposure primarily affects the bark moisture content, regardless of age. Understanding that the bark thickness and flammability play a key role in tree survival may aid in the selection of individuals or stand structures better suited to survive in fire-prone conditions and in the strategic planning of burns to reduce fuel loads without exceeding the mortality risk of younger or thinner-barked individuals. Full article
Show Figures

Figure 1

19 pages, 3511 KB  
Article
Assessing the Individual and Combined Contributions of Stand Age and Tree Height for Regional-Scale Aboveground Biomass Estimation in Fast-Growing Plantations
by Xiaomin Li, Dan Zhao, Junhua Chen, Jinchen Wu, Xuan Mu, Zhaoju Zheng, Cong Xu, Chunjie Fan, Yuan Zeng and Bingfang Wu
Remote Sens. 2025, 17(17), 2958; https://doi.org/10.3390/rs17172958 - 26 Aug 2025
Viewed by 463
Abstract
Accurate estimation of plantation aboveground biomass (AGB) is critical for quantifying carbon cycles and informing sustainable forest resource management, but enhancing estimation accuracy remains a key challenge. Although tree height and stand age are recognized as critical predictors for enhancing AGB models in [...] Read more.
Accurate estimation of plantation aboveground biomass (AGB) is critical for quantifying carbon cycles and informing sustainable forest resource management, but enhancing estimation accuracy remains a key challenge. Although tree height and stand age are recognized as critical predictors for enhancing AGB models in addition to spectral vegetation indices, their individual and combined contributions in regional plantation forests remain insufficiently quantified, especially concerning the potential for leveraging the distinct characteristics of fast-growing plantations to facilitate AGB estimation. This study developed multi-source remote sensing-based Eucalyptus AGB estimation models for Nanning, Guangxi, integrating stand age and tree height to assess their impacts. Stand age was mapped from Landsat time-series imagery, and tree height was derived from UAV-LiDAR data. Plot-level reference AGB was obtained using fused UAV and terrestrial LiDAR point clouds. A random forest model, incorporating these variables with Sentinel-2 spectral information and topography, then achieved regional AGB estimation. The findings demonstrate that (1) tree height serves as the most influential predictor for AGB estimation at the regional scale, yielding a robust model performance (R2 = 0.84). (2) Tree height captures the majority of the explanatory power associated with stand age. Once tree height was included as a predictor, the subsequent addition of stand age offered no significant improvement in model accuracy (R2 = 0.85). (3) Given the challenges in obtaining precise tree height data and the robust correlation between stand age and tree height in fast-growing plantations, the integration of stand age substantially improved the accuracy of AGB estimations (from the spectral model of R2 = 0.54 to R2 = 0.74), with performance approaching that of tree height-based models (ΔR2 = 0.10). Consequently, in fast-growing plantations, which are often characterized by high stand homogeneity, a hybrid model incorporating stand age can offer a reliable and cost-effective solution for AGB estimation. Full article
Show Figures

Figure 1

20 pages, 6296 KB  
Article
Enhancing Aboveground Biomass Estimation in Rubber Plantations Using UAV Multispectral Data for Satellite Upscaling
by Hongjian Tan, Weili Kou, Weiheng Xu, Leiguang Wang, Huan Wang and Ning Lu
Remote Sens. 2025, 17(17), 2955; https://doi.org/10.3390/rs17172955 - 26 Aug 2025
Viewed by 474
Abstract
The estimation of rubber plantation aboveground biomass (AGB) is crucial for carbon sequestration assessment and management optimization. Unmanned Aerial Vehicles (UAVs) fitted with multispectral sensors present an economical approach for local-scale AGB monitoring. However, the prevailing studies primarily concentrate on spectral characteristics and [...] Read more.
The estimation of rubber plantation aboveground biomass (AGB) is crucial for carbon sequestration assessment and management optimization. Unmanned Aerial Vehicles (UAVs) fitted with multispectral sensors present an economical approach for local-scale AGB monitoring. However, the prevailing studies primarily concentrate on spectral characteristics and algorithmic enhancements, failing to incorporate key ecological parameters such as stand age. Moreover, the current approaches remain constrained to local-scale assessments due to the absence of reliable upscaling methodologies from UAV to satellite platforms, limiting their applicability for regional monitoring. Thus, this study aims to establish an improved estimation model for rubber plantation AGB based on UAV multispectral imagery and stand age, develop an upscaling algorithm to bridge the gap between UAV and satellite scales, and ultimately achieve accurate regional-scale monitoring of rubber forest AGB. Combining optimized multispectral features, Landsat-derived stand age, and machine learning techniques yields the most accurate UAV-scale AGB estimates in this study, with performance metrics of R2 = 0.90, an RMSE = 13.24 t/ha, and an MAE = 11.09 t/ha. Notably, the novel ‘UAV-satellite’ upscaling approach proposed in this study enables regional-scale AGB estimation using Sentinel-2 imagery, with remarkable consistency (correlation coefficient of 0.93). The developed framework synergistically combines Landsat-derived stand age data with spectral features, effectively improving rubber plantation AGB estimation accuracy through machine learning and enabling UAVs to replace manual measurements. This cross-scale upscaling framework demonstrates applicability beyond rubber plantation AGB monitoring, while providing novel insights for estimating critical parameters, including regional-scale stock volume and leaf area index, across diverse tree species. Full article
Show Figures

Figure 1

14 pages, 2827 KB  
Article
Bayesian Diagnosis of Occlusion Myocardial Infarction: A Case-Based Clinical Analysis
by José Nunes de Alencar, Hans Helseth, Henrique Melo de Assis and Stephen W. Smith
Diagnostics 2025, 15(17), 2148; https://doi.org/10.3390/diagnostics15172148 - 25 Aug 2025
Viewed by 1160
Abstract
Background: Millimetric ST-segment elevation (STEMI) rules miss more than half of angiographic coronary occlusions. Re-casting acute infarction as Occlusion MI (OMI) versus Non-Occlusion MI (NOMI) and embedding that paradigm in Bayesian reasoning could shorten time to reperfusion while limiting unnecessary activations. Methods [...] Read more.
Background: Millimetric ST-segment elevation (STEMI) rules miss more than half of angiographic coronary occlusions. Re-casting acute infarction as Occlusion MI (OMI) versus Non-Occlusion MI (NOMI) and embedding that paradigm in Bayesian reasoning could shorten time to reperfusion while limiting unnecessary activations. Methods: We derived age- and sex-specific baseline prevalences of OMI from national emergency-department surveillance data and contemporary angiographic series. Pre-test probabilities were adjusted with published likelihood ratios (LRs) for chest-pain descriptors and clinical risk factors, then updated again with either (1) the stand-alone accuracy of ST-elevation or (2) the pooled accuracy of a broader OMI ECG spectrum. Two decision thresholds were prespecified: post-test probability >10% to trigger catheterization and >75% to justify fibrinolysis when angiography was unavailable. The framework was applied to five consecutive real-world cases that had elicited diagnostic disagreement in clinical practice. Results: The Bayesian scaffold re-classified three “NSTEMI” tracings as intermediate or high-probability OMI (post-test 27–65%) and prompted immediate reperfusion; each was confirmed as a totally occluded artery. A fourth patient with crushing pain and a normal ECG retained a 17% post-ECG probability and was later found to have an occluded circumflex. The fifth case, an apparent South-African-Flag pattern, initially rose to 75% but fell after a normal bedside echo and normal troponins. Conclusions: Layering pre-test context with sign-specific LRs transforms ECG interpretation from a binary rule into a transparent probability calculation. The OMI/NOMI Bayesian framework detected occult occlusions that classic STEMI criteria missed. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Figure 1

14 pages, 345 KB  
Article
Presleep vs. Daytime Consumption of Casein-Enriched Milk: Effects on Muscle Function and Metabolic Health After Sleeve Gastrectomy
by Nida Yıldız, Halil Coşkun, Mert Tanal, Murat Baş and Duygu Sağlam
Nutrients 2025, 17(17), 2750; https://doi.org/10.3390/nu17172750 - 25 Aug 2025
Viewed by 568
Abstract
Background/Objectives: This randomized controlled trial aimed to evaluate the effects of casein-enriched milk (CEM) consumption and its timing (presleep vs. during the day) in the early postoperative period on body composition, muscle strength, physical function, and biochemical parameters in individuals undergoing laparoscopic [...] Read more.
Background/Objectives: This randomized controlled trial aimed to evaluate the effects of casein-enriched milk (CEM) consumption and its timing (presleep vs. during the day) in the early postoperative period on body composition, muscle strength, physical function, and biochemical parameters in individuals undergoing laparoscopic sleeve gastrectomy (SG). Methods: Forty-five adults (60% female, 40% male; mean age 35.1 ± 9.7 years; mean BMI 41.4 ± 4.9 kg/m2) undergoing SG were randomly assigned to three groups: (1) 15 g protein CEM (12 g casein) presleep, (2) the same CEM during the day, or (3) standard-protein diet without supplementation. The primary endpoint was change in fat-free mass (FFM) at 12 weeks; secondary endpoints included handgrip strength, 30 s sit-to-stand test, and serum total protein, albumin, and prealbumin. Assessments were performed preoperatively and at weeks 4, 8, and 12. Results: No significant differences were found between the groups in terms of body composition, muscle strength, or physical performance measurements (p > 0.05). However, a significant increase in handgrip strength was observed over time in Groups 1 and 2 (p < 0.05), which was not observed in Group 3. Prealbumin levels at week 12 were 0.3 ± 0.0 mg/dL in Group 1 and 0.2 ± 0.0 mg/dL in Group 2, both higher than 0.2 ± 0.0 mg/dL in Group 3 (p < 0.05). No significant differences were found in albumin and total protein levels (p > 0.05). Conclusions: Early postoperative CEM consumption following SG did not significantly affect body composition or physical performance; however, the higher prealbumin levels indicate that this marker may be more sensitive in detecting early protein response, highlighting its potential clinical relevance in monitoring nutritional status after bariatric surgery. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

18 pages, 12490 KB  
Article
Differences in Soil CO2 Emissions Between Managed and Unmanaged Stands of Quercus robur L. in the Republic of Serbia
by Velisav Karaklić, Miljan Samardžić, Saša Orlović, Igor Guzina, Milica Kovač, Zoran Novčić and Zoran Galić
Forests 2025, 16(9), 1369; https://doi.org/10.3390/f16091369 - 23 Aug 2025
Viewed by 350
Abstract
Soils act as sources or sinks for three major greenhouse gases (CO2, CH4, and N2O). Approximately 20% of global CO2 emissions are released from soils through the soil respiration process. Soil respiration (soil CO2 emission) [...] Read more.
Soils act as sources or sinks for three major greenhouse gases (CO2, CH4, and N2O). Approximately 20% of global CO2 emissions are released from soils through the soil respiration process. Soil respiration (soil CO2 emission) can account for over 85% of ecosystem respiration. The aim of this study was to compare managed and unmanaged stands of pedunculate oak (Quercus robur L.) in order to investigate the impact of forest management on soil CO2 emissions. We selected one managed and two unmanaged stands. The first stand (S1) represents a managed middle-aged stand, which is the optimal stage of development. The second stand (S2) belongs to the over-mature stage of development in an old-growth oak forest, while the third stand (S3) belongs to the decay stage of development in an old-growth oak forest. The closed chambers method was used for air sampling and the air samples were analyzed using gas chromatography (GC). Multiple regression models that include soil temperature (ST), soil moisture (SM), and their interaction provide a better explanation for variation in soil CO2 emission (SCDE) (higher R2 values) compared to regression models that only involve two variables (ST and SM). The study showed that SCDE in the decay stage of old-growth forest (S3) was significantly lower (p < 0.001) compared to the other two stands (S1 and S2). S3 is characterized by very low canopy cover and intensive natural regeneration, unlike S1 and S2. However, there were no significant differences in SCDE between the managed middle-aged stand (S1) and the over-mature (old-growth) stand (S2). Over a long-term rotation period in pedunculate oak forests, forest management practices that involve the periodic implementation of moderate silvicultural interventions can be deemed acceptable in terms of maintaining the carbon balance in the soil. Full article
Show Figures

Figure 1

19 pages, 3163 KB  
Article
Hydrophobic, Durable, and Reprocessable PEDOT:PSS/PDMS-PUa/SiO2 Film with Conductive Self-Cleaning and De-Icing Functionality
by Jie Fang, Rongqing Dong, Meng Zhou, Lishan Liang, Mingna Yang, Huakun Xing, Yongluo Qiao and Shuai Chen
Coatings 2025, 15(9), 985; https://doi.org/10.3390/coatings15090985 - 23 Aug 2025
Viewed by 427
Abstract
Poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) stands out as a renowned commercial conducting polymer composite, boasting extensive and promising applications in the realm of film electronics. In this study, we have made a concerted effort to overcome the inherent drawbacks of PEDOT:PSS films (especially, high [...] Read more.
Poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) stands out as a renowned commercial conducting polymer composite, boasting extensive and promising applications in the realm of film electronics. In this study, we have made a concerted effort to overcome the inherent drawbacks of PEDOT:PSS films (especially, high moisture absorption, mechanical damage vulnerability, insufficient substrate adhesion ability, etc.) by uniformly blending them with polydimethylsiloxane polyurea (PDMS-PUa) and silica (SiO2) nanoparticles through a feasible mechanical stirring process, which effectively harnesses the intermolecular interactions, as well as the morphological and structural characteristics, among the various components. The Si−O bonds within PDMS-PUa and the −CH3 groups attached to Si atoms significantly enhance the hydrophobicity of the composite film (as evidenced by a water contact angle of 132.89° under optimized component ratios). Meanwhile, SiO2 microscopically modifies the surface morphology, resulting in increased surface roughness. This composite film not only maintains high conductivity (1.21 S/cm, in contrast to 0.83 S/cm for the PEDOT:PSS film) but also preserves its hydrophobicity and electrical properties under rigorous conditions, including high-temperature exposure (60–200 °C), ultraviolet (UV) aging (365.0 nm, 1.32 mW/cm2), and abradability testing (2000 CW abrasive paper, drag force of approximately 0.98 N, 40 cycles). Furthermore, the film demonstrates enhanced resistance to both acidic (1 mol/L, 24 h) and alkaline (1 mol/L, 24 h) environments, along with excellent self-cleaning and de-icing capabilities (−6 °C), and satisfactory adhesion (Level 2). Notably, the dried composite film can be re-dispersed into a solution with the aid of isopropanol through simple magnetic stirring, and the sequentially coated films also exhibit good surface hydrophobicity (136.49°), equivalent to that of the pristine film. This research aims to overcome the intrinsic performance drawbacks of PEDOT:PSS-based materials, enabling them to meet the demands of complex application scenarios in the field of organic electronics while endowing them with multifunctionality. Full article
Show Figures

Graphical abstract

Back to TopTop