Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = stannylene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2045 KB  
Article
Ferrocenyl Substituted Stannanethione and Stannaneselone
by Keisuke Iijima, Koh Sugamata and Takahiro Sasamori
Molecules 2025, 30(13), 2826; https://doi.org/10.3390/molecules30132826 - 30 Jun 2025
Viewed by 434
Abstract
Heavier element analogues of a ketone, a C=O double-bond compound, have been fascinating compounds from the viewpoint of main-group element chemistry because of their unique structural features and reactivity as compared with those of a ketone, which plays an important role in organic [...] Read more.
Heavier element analogues of a ketone, a C=O double-bond compound, have been fascinating compounds from the viewpoint of main-group element chemistry because of their unique structural features and reactivity as compared with those of a ketone, which plays an important role in organic chemistry. We will report here the synthesis of diorgano-stannanethione and stannaneselone featuring tin–chalcogen double bonds, which are the heavy-element analogues of a ketone. The newly obtained stannaneselone has been structurally characterized by spectroscopic analyses and single-crystal X-ray diffraction (SC-XRD) analysis, showing the short Sn–Se bond length featuring π-bond character. The obtained bis(ferrocenyl)stannanechalcogenones were found to undergo [2+4]cycloaddition reactions with 2,3-dimethyl-1,3-butadiene, affording the corresponding six-membered ring compound. Notably, thermolysis of the [2+4]cycloadduct of the stannaneselone regenerated the stannaneselone via the retro[2+4]cycloaddition, whereas the sulfur analogue was thermally very stable. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Graphical abstract

18 pages, 6557 KB  
Article
Stannylenes and Germylenes Stabilized by Tetradentate Bis(amidine) Ligands with a Rigid Naphthalene Backbone
by Alejandra Acuña, Sonia Mallet-Ladeira, Jean-Marc Sotiropoulos, Eddy Maerten, Alan R. Cabrera, Antoine Baceiredo, Tsuyoshi Kato, René S. Rojas and David Madec
Molecules 2024, 29(2), 325; https://doi.org/10.3390/molecules29020325 - 9 Jan 2024
Cited by 2 | Viewed by 1998
Abstract
An unusual series of germylenes and stannylenes stabilized by new tetradentate bis(amidine) ligands RNC(R′)N-linker-NC(R′)NR with a rigid naphthalene backbone has been prepared by protonolysis reaction of Lappert’s metallylenes [M(HMDS)2] (M = Ge or Sn). Germylenes and stannylenes were fully characterized by [...] Read more.
An unusual series of germylenes and stannylenes stabilized by new tetradentate bis(amidine) ligands RNC(R′)N-linker-NC(R′)NR with a rigid naphthalene backbone has been prepared by protonolysis reaction of Lappert’s metallylenes [M(HMDS)2] (M = Ge or Sn). Germylenes and stannylenes were fully characterized by NMR spectroscopy and X-ray diffraction analysis. DFT calculations have been performed to clarify the structural and electronic properties associated with tetradentate bis(amidine) ligands. Stannylene L1Sn shows reactivity through oxidation, oxidative addition, and transmetalation reactions, affording the corresponding gallium and aluminum derivatives. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Europe)
Show Figures

Figure 1

15 pages, 2356 KB  
Article
Reactivity of N-Heterocyclic Stannylenes: Oxidative Addition of Chalcogen Elements to a Chiral NH-Sn System
by Kerry R. Flanagan, James D. Parish, Gabriele Kociok-Köhn and Andrew L. Johnson
Inorganics 2023, 11(8), 318; https://doi.org/10.3390/inorganics11080318 - 27 Jul 2023
Cited by 1 | Viewed by 2276
Abstract
The reactivity of the racemic N-heterocyclic stannylene [{MeHCN(tBu)}Sn] (1) with the chalcogenide elements O2, S, Se, and Te has been investigated. In the case of the reaction of 1 with molecular oxygen, the cyclic tristannoxane complex [{MeHCN( [...] Read more.
The reactivity of the racemic N-heterocyclic stannylene [{MeHCN(tBu)}Sn] (1) with the chalcogenide elements O2, S, Se, and Te has been investigated. In the case of the reaction of 1 with molecular oxygen, the cyclic tristannoxane complex [{MeHCN(tBu)}2Sn(μ-O)]3 (3) was isolated and characterised. NMR studies (1H, 13C, and 119Sn) show the formation of D3- and C2- symmetric assemblies. The reaction of 1 with S, Se, and Te, respectively, yielded the cyclo-distannachalcogenide complexes, [{MeHCN(tBu)}2Sn(μ-E)]3 (4: E = S, 5: E = Se, 6: E = Te), again with multinuclear NMR studies proving the formation of C2- and Cs-symmetric assemblies. Single crystal X-ray diffraction studies have been used to elucidate the molecular structures of the products of oxidative addition, 3, 4, 5, and 6. Full article
(This article belongs to the Special Issue Metal Complexes with N-donor Ligands)
Show Figures

Graphical abstract

18 pages, 4970 KB  
Article
N-O Ligand Supported Stannylenes: Preparation, Crystal, and Molecular Structures
by Hannah S. I. Sullivan, Andrew J. Straiton, Gabriele Kociok-Köhn and Andrew L. Johnson
Inorganics 2022, 10(9), 129; https://doi.org/10.3390/inorganics10090129 - 31 Aug 2022
Cited by 3 | Viewed by 3319
Abstract
A new series of tin(II) complexes (1, 2, 4, and 5) were successfully synthesized by employing hydroxy functionalized pyridine ligands, specifically 2-hydroxypyridine (hpH), 8-hydroxyquinoline (hqH), and 10-hydroxybenzo[h]quinoline (hbqH) as stabilizing ligands. Complexes [Sn(μ-κ2ON-OC5H4 [...] Read more.
A new series of tin(II) complexes (1, 2, 4, and 5) were successfully synthesized by employing hydroxy functionalized pyridine ligands, specifically 2-hydroxypyridine (hpH), 8-hydroxyquinoline (hqH), and 10-hydroxybenzo[h]quinoline (hbqH) as stabilizing ligands. Complexes [Sn(μ-κ2ON-OC5H4N)(N{SiMe3}2)]2 (1) and [Sn4(μ-κ2ON-OC5H4N)61O-OC5H4N)2] (2) are the first structurally characterized examples of tin(II) oxypyridinato complexes exhibiting {Sn2(OCN)2} heterocyclic cores. As part of our study, 1H DOSY NMR experiments were undertaken using an external calibration curve (ECC) approach, with temperature-independent normalized diffusion coefficients, to determine the nature of oligomerisation of 2 in solution. An experimentally determined diffusion coefficient (298 K) of 6.87 × 10−10 m2 s−1 corresponds to a hydrodynamic radius of Ca. 4.95 Å. This is consistent with the observation of an averaged hydrodynamic radii and equilibria between dimeric [Sn{hp}2]2 and tetrameric [Sn{hp}2]4 species at 298 K. Testing this hypothesis, 1H DOSY NMR experiments were undertaken at regular intervals between 298 K–348 K and show a clear change in the calculated hydrodynamic radii form 4.95 Å (298 K) to 4.35 Å (348 K) consistent with a tetramer ⇄ dimer equilibria which lies towards the dimeric species at higher temperatures. Using these data, thermodynamic parameters for the equilibrium (ΔH° = 70.4 (±9.22) kJ mol−1, ΔS° = 259 (±29.5) J K−1 mol−1 and ΔG°298 = −6.97 (±12.7) kJ mol−1) were calculated. In the course of our studies, the Sn(II) oxo cluster, [Sn6(m3-O)6(OR)4:{Sn(II)(OR)2}2] (3) (R = C5H4N) was serendipitously isolated, and its molecular structure was determined by single-crystal X-ray diffraction analysis. However, attempts to characterise the complex by multinuclear NMR spectroscopy were thwarted by solubility issues, and attempts to synthesise 3 on a larger scale were unsuccessful. In contrast to the oligomeric structures observed for 1 and 2, single-crystal X-ray diffraction studies unambiguously establish the monomeric 4-coordinate solid-state structures of [Sn(κ2ON-OC9H6N)2)] (4) and [Sn(κ2ON-OC13H8N)2)] (5). Full article
(This article belongs to the Special Issue Synergy between Main Group and Transition Metal Chemistry)
Show Figures

Graphical abstract

14 pages, 5881 KB  
Article
A 1,5-Oligosilanylene Dianion as Building Block for Oligosiloxane Containing Cages, Ferrocenophanes, and Cyclic Germylenes and Stannylenes
by Rainer Zitz, Alexander Pöcheim, Judith Baumgartner and Christoph Marschner
Molecules 2020, 25(6), 1322; https://doi.org/10.3390/molecules25061322 - 13 Mar 2020
Cited by 4 | Viewed by 3678
Abstract
Starting out from dipotassium 1,5-oligosiloxanylene diide 2, a 3,7,10-trioxa-octasilabicyclo[3.3.3]undecane was prepared, which represents the third known example of this cage structure type. Reaction of 1,3-dichlorotetramethyldisiloxane with 1,1’-bis[bis(trimethylsilyl)potassiosilyl]ferrocene gave a ferrocenophane with a disiloxane containg bridge. The compound can be further derivatized by [...] Read more.
Starting out from dipotassium 1,5-oligosiloxanylene diide 2, a 3,7,10-trioxa-octasilabicyclo[3.3.3]undecane was prepared, which represents the third known example of this cage structure type. Reaction of 1,3-dichlorotetramethyldisiloxane with 1,1’-bis[bis(trimethylsilyl)potassiosilyl]ferrocene gave a ferrocenophane with a disiloxane containg bridge. The compound can be further derivatized by conversion into a 1,5-oligosilanyl diide. Reacting 1,5-oligosiloxanylene diide 2 with SnCl2 or GeCl2·dioxane in the presence of PMe3 gave cyclic disilylated tetrylene PMe3 adducts. Release of the base-free stannylene led to a dimerization process which gave a bicyclic distannene as the final product. Abstraction of the PMe3 from the cyclic disilylated germylene PMe3 adduct with B(C6F5)3 caused oxidative addition of the germylene into a para-C-F bond of Me3P·B(C6F5)3. Full article
Show Figures

Figure 1

6 pages, 683 KB  
Article
One-Pot Synthesis of Heavier Group 14 N-Heterocyclic Carbene Using Organosilicon Reductant
by Ravindra K. Raut, Sheikh Farhan Amin, Padmini Sahoo, Vikas Kumar and Moumita Majumdar
Inorganics 2018, 6(3), 69; https://doi.org/10.3390/inorganics6030069 - 12 Jul 2018
Cited by 8 | Viewed by 5295
Abstract
Syntheses of heavier Group 14 analogues of “Arduengo-type” N-heterocyclic carbene majorly involved the use of conventional alkali metal-based reducing agents under harsh reaction conditions. The accompanied reductant-derived metal salts and chances of over-reduced impurities often led to isolation difficulties in this multi-step [...] Read more.
Syntheses of heavier Group 14 analogues of “Arduengo-type” N-heterocyclic carbene majorly involved the use of conventional alkali metal-based reducing agents under harsh reaction conditions. The accompanied reductant-derived metal salts and chances of over-reduced impurities often led to isolation difficulties in this multi-step process. In order to overcome these shortcomings, we have used 1,4-bis-(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene as a milder reducing agent for the preparation of N-heterocyclic germylenes (NHGe) and stannylenes (NHSn). The reaction occurs in a single step with moderate yields from the mixture of N-substituted 1,4-diaza-1,3-butadiene, E(II) (E(II) = GeCl2·dioxane, SnCl2) and the organosilicon reductant. The volatile byproducts trimethylsilyl chloride and pyrazine could be removed readily under vacuum. No significant over reduction was observed in this process. However, N-heterocyclic silylene (NHSi) could not be synthesized using an even stronger organosilicon reductant under thermal and photochemical conditions. Full article
(This article belongs to the Special Issue Coordination Chemistry of Silicon)
Show Figures

Graphical abstract

13 pages, 2335 KB  
Article
Incorporating Methyl and Phenyl Substituted Stannylene Units into Oligosilanes. The Influence on Optical Absorption Properties
by Filippo Stella, Christoph Marschner and Judith Baumgartner
Molecules 2017, 22(12), 2212; https://doi.org/10.3390/molecules22122212 - 12 Dec 2017
Cited by 2 | Viewed by 4293
Abstract
Molecules containing catenated heavy group 14 atoms are known to exhibit the interesting property of σ-bond electron delocalization. While this is well studied for oligo- and polysilanes the current paper addresses the UV-absorption properties of small tin containing oligosilanes in order to evaluate [...] Read more.
Molecules containing catenated heavy group 14 atoms are known to exhibit the interesting property of σ-bond electron delocalization. While this is well studied for oligo- and polysilanes the current paper addresses the UV-absorption properties of small tin containing oligosilanes in order to evaluate the effects of Sn–Si and Sn–Sn bonds as well as the results of substituent exchange from methyl to phenyl groups. The new stannasilanes were compared to previously investigated oligosilanes of equal chain lengths and substituent pattern. Replacing the central SiMe2 group in a pentasilane by a SnMe2 unit caused a bathochromic shift of the low-energy band (λmax = 260 nm) of 14 nm in the UV spectrum. If, instead of a SnMe2, a SnPh2 unit is incorporated, the bathochromic shift of 33 nm is substantially larger. Keeping the SnMe2 unit and replacing the two central silicon with tin atoms causes shift of the respective band (λ = 286 nm) some 26 nm to the red. A similar approach for hexasilanes where the model oligosilane [(Me3Si)3Si]2(SiMe2)2max = 253 nm) was modified in a way that the central tetramethyldisilanylene unit was exchanged for a tetraphenyldistannanylene caused a 50 nm bathochromic shift to a low-energy band with λmax = 303 nm. Full article
(This article belongs to the Special Issue Progress in Silicon and Organosilicon Chemistry)
Show Figures

Figure 1

11 pages, 222 KB  
Article
Regioselective Synthesis of Vinylic Derivatives of Common Monosccarides Through Their Activated Stannylene Acetal Intermediates
by H. Namazi and R. Sharifzadeh
Molecules 2005, 10(7), 772-782; https://doi.org/10.3390/10070772 - 31 Aug 2005
Cited by 10 | Viewed by 10159
Abstract
The regioselective C-2-O-acrylation and metacrylation of methyl 4,6-O-benzylidene-α-D-glucopyranoside and methyl 4,6-O-benzylidene-α-D-galactopyranosidethrough their corresponding organotin intermediates have been studied. Regioselectivitywas achived through the formation of a tin chelate of the 2,3-diols. Thus, methyl 4,6-O-benzylidene-α-D-glucopyranoside and methyl 4,6-O-benzylidene-α-D-galactopyranosidewere reacted with dibutylstannylene to give the corresponding [...] Read more.
The regioselective C-2-O-acrylation and metacrylation of methyl 4,6-O-benzylidene-α-D-glucopyranoside and methyl 4,6-O-benzylidene-α-D-galactopyranosidethrough their corresponding organotin intermediates have been studied. Regioselectivitywas achived through the formation of a tin chelate of the 2,3-diols. Thus, methyl 4,6-O-benzylidene-α-D-glucopyranoside and methyl 4,6-O-benzylidene-α-D-galactopyranosidewere reacted with dibutylstannylene to give the corresponding dibutylstannylene acetalintermediates that were then reacted in a regioselective manner with acryloyl chloride ormetacryloyl chloride in the presence of triethylamine (TEA) or pyridine to give thevinylic type monomeric compounds. The monomeric products containing glucose andgalactose units from each reaction were separated by column chromatography using agradient of n-hexane and ethyl acetate as eluant. The structure of the obtained compoundswere confirmed using 1H-, 13C- and 2D NMR spectroscopy. Full article
Show Figures

Figure 1

Back to TopTop