Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (587)

Search Parameters:
Keywords = steel–concrete composite structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3252 KB  
Article
Research on Composite Strengthening Methods for External Walls of Box-Shaped Bridge Piers Subjected to Peripheral Ice–Water Pressure
by Xi Li, Yiwei Yu, Jun Ma and Hang Sun
Buildings 2025, 15(17), 2993; https://doi.org/10.3390/buildings15172993 - 22 Aug 2025
Viewed by 82
Abstract
To address concrete cracking in submerged box-shaped hollow thin-walled piers under static ice and hydrostatic pressure, this study proposes a composite strengthening method employing externally bonded steel plates coupled with concrete infill blocks. Based on mechanical theoretical derivation, the strengthened structure is simplified [...] Read more.
To address concrete cracking in submerged box-shaped hollow thin-walled piers under static ice and hydrostatic pressure, this study proposes a composite strengthening method employing externally bonded steel plates coupled with concrete infill blocks. Based on mechanical theoretical derivation, the strengthened structure is simplified as a cooperative system comprising compression–truss and suspended-cable mechanisms. Key design parameters—including steel plate span, thickness, infill block height, and plate corner configuration—are optimized using a genetic algorithm. The optimization objective minimizes strengthening cost, subject to constraints of concrete crack resistance, steel plate strength, and deformation control, ultimately determining the numerically optimal composite strengthening solution. Validation through planar finite element models demonstrates that: (1) the proposed system effectively suppresses cracking in the original structure; (2) peak stresses in the steel plates remain below the yield strength of Q345 steel; and (3) the theoretical design is reasonable and effective, which can solve the cracking problem of the wading-tank hollow thin-walled pier under the action of surrounding load. Full article
(This article belongs to the Section Building Structures)
19 pages, 3765 KB  
Article
Thermal Effects on Main Girders During Construction of Composite Cable-Stayed Bridges Based on Monitoring Data
by Hua Luo, Wan Wu, Qincong She, Bin Li, Chen Yang and Yahua Pan
Buildings 2025, 15(17), 2990; https://doi.org/10.3390/buildings15172990 - 22 Aug 2025
Viewed by 138
Abstract
Thermal effects critically influence the design and construction of steel-concrete composite cable-stayed bridges, where material thermal mismatch complicates structural responses. Current code-specified temperature gradient models inadequately address long-span bridges. This study employs in-situ monitoring of the Chibi Yangtze River Bridge to propose a [...] Read more.
Thermal effects critically influence the design and construction of steel-concrete composite cable-stayed bridges, where material thermal mismatch complicates structural responses. Current code-specified temperature gradient models inadequately address long-span bridges. This study employs in-situ monitoring of the Chibi Yangtze River Bridge to propose a refined vertical temperature gradient model, utilizing an exponential function for the concrete deck and a linear function for the steel web. Finite element analysis across six construction stages reveals: (1) Under negative temperature gradients, the concrete deck develops tensile stresses (2.439–2.591 MPa), approximately 30% lower than code-predicted values (3.613–3.715 MPa), highlighting risks of longitudinal cracking. (2) At the maximum double-cantilever stage, transverse stress distributions show pronounced shear lag effects, positive shear lag in deck sections connected to crossbeams and negative shear lag in non-connected sections. The proposed model reduces tensile stress conservatism in codes by 30–33%, enhancing prediction accuracy for composite girders. This work provides critical insights for thermal effect management in long-span bridge construction. Full article
Show Figures

Figure 1

24 pages, 9251 KB  
Article
Shear Lag Effect in Steel-UHPC Composite Girders of Cable-Stayed Bridges Considering Slip Under Asymmetric Axial Loading
by Hua Luo, Qincong She, Bin Li, Wan Wu, Yahua Pan and Chen Yang
Buildings 2025, 15(16), 2945; https://doi.org/10.3390/buildings15162945 - 20 Aug 2025
Viewed by 287
Abstract
The study presents an analysis of steel-Ultra-High Performance Concrete (UHPC) composite girders. Five composite girder specimens were designed and tested. Analytical strain solutions for the composite girders under asymmetric axial loading were derived using the energy variation method. Results indicate that asymmetric axial [...] Read more.
The study presents an analysis of steel-Ultra-High Performance Concrete (UHPC) composite girders. Five composite girder specimens were designed and tested. Analytical strain solutions for the composite girders under asymmetric axial loading were derived using the energy variation method. Results indicate that asymmetric axial forces significantly exacerbate the shear lag effect. Decreasing the width-to-span ratio reduces the shear lag coefficient, while reducing the width-to-depth ratio increases it. The parametric analysis indicates that, under asymmetric axial loading, increasing the strength of the concrete is an effective method to reduce the shear lag effect of the composite girders. Increasing the thickness of the UHPC slab proves to be effective in reducing the shear lag effect. Furthermore, the study indicates that when the b2/b1 ratio is less than 1, it has a tiny impact on the shear lag effect; however, when the b2/b1 ratio is greater than 1, the shear lag effect becomes more pronounced with increasing b2/b1. Additionally, the thickness of the flange plate and web plate of the steel girder has no significant effect on the shear lag effect. The results of the analysis can provide references for similar designs and constructions of composite structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 8767 KB  
Article
Experimental and Numerical Investigation of Shear Performance of RC Deep Beams Strengthened with Engineered Cementitious Composites
by Hamsavathi Kannan, Sathish Kumar Veerappan and Madappa V. R. Sivasubramanian
Constr. Mater. 2025, 5(3), 51; https://doi.org/10.3390/constrmater5030051 - 31 Jul 2025
Viewed by 245
Abstract
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to [...] Read more.
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to confine the strut area. This study investigates the structural performance of RC deep beams with low-strength concrete, strengthened externally using an Engineered Cementitious Composite (ECC) layer. To ensure effective confinement and uniform shear distribution, shear reinforcement was provided at equal intervals with configurations of zero, one, and two vertical shear reinforcements. Four-point bending tests revealed that the ECC layer significantly enhanced the shear capacity, increasing load-carrying capacity by 51.6%, 54.7%, and 46.7% for beams with zero, one, and two shear reinforcements, respectively. Failure analysis through non-linear finite element modeling corroborated experimental observations, confirming shear–compression failure characterized by damage in the concrete struts. The strut-and-tie method, modified to incorporate the tensile strength of ECC and shear reinforcement actual stress values taken from the FE analysis, was used to predict the shear capacity. The predicted values were within 10% of the experimental results, underscoring the reliability of the analytical approach. Overall, this study demonstrates the effectiveness of ECC in improving shear performance and mitigating strut failure in RC deep beams made with low-strength concrete. Full article
Show Figures

Figure 1

26 pages, 13210 KB  
Article
Flexural Behavior of Lap Splice Connection Between Steel-Plate Composite Wall and Reinforced Concrete Foundation Subjected to Impact Loading
by Wenjie Deng, Jianmin Hua, Neng Wang, Shuai Li, Yuruo Chang, Fei Wang and Xuanyi Xue
Buildings 2025, 15(15), 2707; https://doi.org/10.3390/buildings15152707 - 31 Jul 2025
Viewed by 206
Abstract
The superb dynamic performance of steel-plate composite (SC) structures under unexpected impact loading depends on the good design of the connection between the SC wall and foundation. This study investigated the flexural behavior and dynamic responses of SC wall-to-foundation connections subjected to low-velocity [...] Read more.
The superb dynamic performance of steel-plate composite (SC) structures under unexpected impact loading depends on the good design of the connection between the SC wall and foundation. This study investigated the flexural behavior and dynamic responses of SC wall-to-foundation connections subjected to low-velocity impact. Impact tests were performed on three SC connection specimens to evaluate failure mode, impact force, deflection, and strain responses. The effects of concrete strength grade and impact energy were analyzed in detail. All specimens exhibited flexural failure, with three distinct stages observed during impact. The experimental results demonstrated that compared to the specimen with C30 concrete, the specimen with C50 concrete significantly reduced wall damage, decreased deflections, and enhanced deflection recovery ability. It can be concluded that increasing the concrete strength grade effectively improves the impact resistance of SC wall-to-foundation connections. In addition, peak impact force, global deflection response, residual strains, and interface crack length were highly sensitive to changes in impact energy, whereas deflection recovery exhibited lower sensitivity. Furthermore, a finite element model was developed and validated against experimental results. Parametric studies explored the influence of key parameters with expanded ranges on the impact responses of SC wall-to-foundation connections. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 9220 KB  
Article
Investigation of Stress Intensity Factors in Welds of Steel Girders Within Steel–Concrete Composite Structures
by Da Wang, Pengxin Zhao, Yuxin Shao, Wenping Peng, Junxin Yang, Chenggong Zhao and Benkun Tan
Buildings 2025, 15(15), 2653; https://doi.org/10.3390/buildings15152653 - 27 Jul 2025
Viewed by 404
Abstract
Fatigue damage in steel–concrete composite structures frequently initiates at welded joints due to stress concentrations and inherent defects. This study investigates the stress intensity factors (SIFs) associated with fatigue cracks in the welds of steel longitudinal beams, employing the FRANC3D–ABAQUS interactive technique. A [...] Read more.
Fatigue damage in steel–concrete composite structures frequently initiates at welded joints due to stress concentrations and inherent defects. This study investigates the stress intensity factors (SIFs) associated with fatigue cracks in the welds of steel longitudinal beams, employing the FRANC3D–ABAQUS interactive technique. A finite element model was developed and validated against experimental data, followed by the insertion of cracks at both the weld root and weld toe. The influences of stud spacing, initial crack size, crack shape, and lack-of-penetration defects on Mode I SIFs were systematically analyzed. Results show that both weld root and weld toe cracks are predominantly Mode I in nature, with the toe cracks exhibiting higher SIF values. Increasing the stud spacing, crack depth, or crack aspect ratio significantly raises the SIFs. Lack of penetration defects further amplifies the SIFs, especially at the weld root. Based on the computed SIFs, fatigue life predictions were conducted using a crack propagation approach. These findings highlight the critical roles of crack geometry and welding quality in fatigue performance, providing a numerical foundation for optimizing welded joint design in composite structures. Full article
Show Figures

Figure 1

22 pages, 5346 KB  
Article
Numerical Study of Stud Welding Temperature Fields on Steel–Concrete Composite Bridges
by Sicong Wei, Han Su, Xu Han, Heyuan Zhou and Sen Liu
Materials 2025, 18(15), 3491; https://doi.org/10.3390/ma18153491 - 25 Jul 2025
Viewed by 394
Abstract
Non-uniform temperature fields are developed during the welding of studs in steel–concrete composite bridges. Due to uneven thermal expansion and reversible solid-state phase transformations between ferrite/martensite and austenite structures within the materials, residual stresses are induced, which ultimately degrades the mechanical performance of [...] Read more.
Non-uniform temperature fields are developed during the welding of studs in steel–concrete composite bridges. Due to uneven thermal expansion and reversible solid-state phase transformations between ferrite/martensite and austenite structures within the materials, residual stresses are induced, which ultimately degrades the mechanical performance of the structure. For a better understanding of the influence on steel–concrete composite bridges’ structural behavior by residual stress, accurate simulation of the spatio-temporal temperature distribution during stud welding under practical engineering conditions is critical. This study introduces a precise simulation method for temperature evolution during stud welding, in which the Gaussian heat source model was applied. The simulated results were validated by real welding temperature fields measured by the infrared thermography technique. The maximum error between the measured and simulated peak temperatures was 5%, demonstrating good agreement between the measured and simulated temperature distributions. Sensitivity analyses on input current and plate thickness were conducted. The results showed a positive correlation between peak temperature and input current. With lower input current, flatter temperature gradients were observed in both the transverse and thickness directions of the steel plate. Additionally, plate thickness exhibited minimal influence on radial peak temperature, with a maximum observed difference of 130 °C. However, its effect on peak temperature in the thickness direction was significant, yielding a maximum difference of approximately 1000 °C. The thermal influence of group studs was also investigated in this study. The results demonstrated that welding a new stud adjacent to existing ones introduced only minor disturbances to the established temperature field. The maximum peak temperature difference before and after welding was approximately 100 °C. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 4365 KB  
Article
Analytical and Numerical Investigation of Adhesive-Bonded T-Shaped Steel–Concrete Composite Beams for Enhanced Interfacial Performance in Civil Engineering Structures
by Tahar Hassaine Daouadji, Fazilay Abbès, Tayeb Bensatallah and Boussad Abbès
Inventions 2025, 10(4), 61; https://doi.org/10.3390/inventions10040061 - 23 Jul 2025
Viewed by 362
Abstract
This study introduces a new method for modeling the nonlinear behavior of adhesively bonded composite steel–concrete T-beam systems. The model characterizes the interfacial behavior between the steel beam and the concrete slab using a strain compatibility approach within the framework of linear elasticity. [...] Read more.
This study introduces a new method for modeling the nonlinear behavior of adhesively bonded composite steel–concrete T-beam systems. The model characterizes the interfacial behavior between the steel beam and the concrete slab using a strain compatibility approach within the framework of linear elasticity. It captures the nonlinear distribution of shear stresses over the entire depth of the composite section, making it applicable to various material combinations. The approach accounts for both continuous and discontinuous bonding conditions at the bonded steel–concrete interface. The analysis focuses on the top flange of the steel section, using a T-beam configuration commonly employed in bridge construction. This configuration stabilizes slab sliding, making the composite beam rigid, strong, and resistant to deformation. The numerical results demonstrate the advantages of the proposed solution over existing steel beam models and highlight key characteristics at the steel–concrete interface. The theoretical predictions are validated through comparison with existing analytical and experimental results, as well as finite element models, confirming the model’s accuracy and offering a deeper understanding of critical design parameters. The comparison shows excellent agreement between analytical predictions and finite element simulations, with discrepancies ranging from 1.7% to 4%. This research contributes to a better understanding of the mechanical behavior at the interface and supports the design of hybrid steel–concrete structures. Full article
Show Figures

Figure 1

17 pages, 4491 KB  
Article
Effect of Synthesized C-S-H Nanoparticles on the Early Hydration and Microstructure of Cement
by Yoojung Hwang, Suji Woo and Young-Cheol Choi
Materials 2025, 18(14), 3396; https://doi.org/10.3390/ma18143396 - 20 Jul 2025
Viewed by 432
Abstract
Ground granulated blast-furnace slag (GGBS), a waste product generated during steel production, can be added as a substitute for cement in concrete to mitigate the environmental impact of the cement and steel industries. However, the use of GGBS is limited because it decreases [...] Read more.
Ground granulated blast-furnace slag (GGBS), a waste product generated during steel production, can be added as a substitute for cement in concrete to mitigate the environmental impact of the cement and steel industries. However, the use of GGBS is limited because it decreases the early strength development of cement or concrete. This study evaluated the performance of incorporating synthesized C-S-H nanoparticles to enhance the compressive strength, early hydration, and microstructure of cement composite. The synthesized C-S-H nanoparticles were produced at standard atmospheric pressure and room temperature. Heat of hydration, X-ray diffraction, and thermogravimetric analyses were conducted to investigate the hydration and mechanical properties of the cement containing the C-S-H nanoparticles. Further, mercury intrusion porosimetry was conducted to examine the pore structures. The experimental finding demonstrated that adding C-S-H nanoparticles accelerated the early hydration progress in the cement composites, thereby increasing their initial compressive strength. Full article
Show Figures

Figure 1

20 pages, 5397 KB  
Article
Continuously Formed Fiber-Reinforced Thermoplastic Composite Rebar for Concrete Reinforcement
by Jacob C. Clark, William G. Davids, Roberto A. Lopez-Anido, Andrew P. Schanck and Cody A. Sheltra
J. Compos. Sci. 2025, 9(7), 378; https://doi.org/10.3390/jcs9070378 - 18 Jul 2025
Viewed by 810
Abstract
Despite the strength and ductility of steel reinforcing bars, their susceptibility to corrosion can limit the long-term durability of reinforced concrete structures. Fiber-reinforced polymer (FRP) reinforcing bars made with a thermosetting matrix offer corrosion resistance but cannot be field-bent, which limits flexibility during [...] Read more.
Despite the strength and ductility of steel reinforcing bars, their susceptibility to corrosion can limit the long-term durability of reinforced concrete structures. Fiber-reinforced polymer (FRP) reinforcing bars made with a thermosetting matrix offer corrosion resistance but cannot be field-bent, which limits flexibility during construction. FRP reinforcing bars made with fiber-reinforced thermoplastic polymers (FRTP) address this limitation; however, their high processing viscosity presents manufacturing challenges. In this study, the Continuous Forming Machine, a novel pultrusion device that uses pre-consolidated fiber-reinforced thermoplastic tapes as feedstock, is described and used to fabricate 12.7 mm nominal diameter thermoplastic composite rebars. Simple bend tests on FRTP rebar that rely on basic equipment are performed to verify its ability to be field-formed. The manual bending technique demonstrated here is practical and straightforward, although it does result in some fiber misalignment. Subsequently, surface deformations are introduced to the rebar to promote mechanical bonding with concrete, and tensile tests of the bars are conducted to determine their mechanical properties. Finally, flexural tests of simply-supported, 6 m long beams reinforced with FRTP rebar are performed to assess their strength and stiffness as well as the practicality of using FRTP rebar. The beam tests demonstrated the prototype FRTP rebar’s potential for reinforcing concrete beams, and the beam load–deformation response and capacity agree well with predictions developed using conventional structural analysis principles. Overall, the results of the research reported indicate that thermoplastic rebars manufactured via the Continuous Forming Machine are a promising alternative to both steel and conventional thermoset composite rebar. However, both the beam and tension test results indicate that improvements in material properties, especially elastic modulus, are necessary to meet the requirements of current FRP rebar specifications. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

26 pages, 7471 KB  
Article
Seismic Performance and Moment–Rotation Relationship Modeling of Novel Prefabricated Frame Joints
by Jiaqi Liu, Dafu Cao, Kun Wang, Wenhai Wang, Hua Ye, Houcun Zou and Changhong Jiang
Buildings 2025, 15(14), 2504; https://doi.org/10.3390/buildings15142504 - 16 Jul 2025
Viewed by 354
Abstract
This study investigates two novel prefabricated frame joints: prestressed steel sleeve-connected prefabricated reinforced concrete joints (PSFRC) and non-prestressed steel sleeve-connected prefabricated reinforced concrete joints (SSFRC). A total of three PSFRC specimens, four SSFRC specimens, and one cast-in-place joint were designed and fabricated. Seismic [...] Read more.
This study investigates two novel prefabricated frame joints: prestressed steel sleeve-connected prefabricated reinforced concrete joints (PSFRC) and non-prestressed steel sleeve-connected prefabricated reinforced concrete joints (SSFRC). A total of three PSFRC specimens, four SSFRC specimens, and one cast-in-place joint were designed and fabricated. Seismic performance tests were conducted using different end-plate thicknesses, grout strengths, stiffener configurations, and prestressing tendon configurations. The experimental results showed that all specimens experienced beam end failures, and three failure modes occurred: (1) failure of the end plate of the beam sleeve, (2) failure of the variable cross-section of the prefabricated beam, and (3) failure of prefabricated beams at the connection with the steel sleeves. The load-bearing capacity and initial stiffness of the structure are increased by 35.41% and 32.64%, respectively, by increasing the thickness of the end plate. Specimens utilizing C80 grout exhibited a 39.05% higher load capacity than those with lower-grade materials. Adding stiffening ribs improved the initial stiffness substantially. Specimen XF2 had 219.08% higher initial stiffness than XF1, confirming the efficacy of stiffeners in enhancing joint rigidity. The configuration of the prestressed tendons significantly influenced the load-bearing capacity. Specimen YL2 with symmetrical double tendon bundles demonstrated a 27.27% higher ultimate load capacity than specimen YL1 with single centrally placed tendon bundles. An analytical model to calculate the moment–rotation relationship was established following the evaluation criteria specified in Eurocode 3. The results demonstrated a good agreement, providing empirical references for practical engineering applications. Full article
(This article belongs to the Special Issue Research on Industrialization and Intelligence in Building Structures)
Show Figures

Figure 1

18 pages, 5580 KB  
Article
Experimental Study on the Eccentric Compression Behavior of Stiffened Alkali-Activated Concrete-Filled Steel Tube Short Columns
by Hongjie Wang, Zhixin Peng, Tianqi Wang and Changchun Pei
Buildings 2025, 15(14), 2457; https://doi.org/10.3390/buildings15142457 - 13 Jul 2025
Viewed by 343
Abstract
To enhance the environmental sustainability and structural performance of concrete-filled steel tubes (CFSTs), this study experimentally investigates the eccentric compression behavior of short CFST columns incorporating alkali-activated concrete (AAC) and internal stiffeners. Fifteen specimens were tested, varying in steel tube thickness, stiffener thickness, [...] Read more.
To enhance the environmental sustainability and structural performance of concrete-filled steel tubes (CFSTs), this study experimentally investigates the eccentric compression behavior of short CFST columns incorporating alkali-activated concrete (AAC) and internal stiffeners. Fifteen specimens were tested, varying in steel tube thickness, stiffener thickness, and eccentricity. The results show that increasing eccentricity reduces load-bearing capacity and stiffness, while stiffeners delay local buckling and improve stability. Based on the experimental findings, the applicability of the GB 50936-2014, Design of Steel and Composite Structures Specification, and the American AISC-LRFD specification to the design of ACFST columns is further evaluated. Corresponding design recommendations are proposed, and a regression-based predictive model for eccentric bearing capacity is developed, showing good agreement with the test results, with prediction errors within 10%.providing technical references for the development of low-carbon, high-performance CFST members. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

33 pages, 6318 KB  
Review
A Review of External Confinement Methods for Enhancing the Strength of Concrete Columns
by Oliwia Sikora and Krzysztof Adam Ostrowski
Materials 2025, 18(14), 3222; https://doi.org/10.3390/ma18143222 - 8 Jul 2025
Viewed by 410
Abstract
The growing application of carbon fiber-reinforced polymers (CFRPs) in construction opens new possibilities for replacing traditional materials such as steel, particularly in strengthening and retrofitting concrete structures. CFRP materials offer notable advantages, including high tensile strength, low self-weight, corrosion resistance, and the ability [...] Read more.
The growing application of carbon fiber-reinforced polymers (CFRPs) in construction opens new possibilities for replacing traditional materials such as steel, particularly in strengthening and retrofitting concrete structures. CFRP materials offer notable advantages, including high tensile strength, low self-weight, corrosion resistance, and the ability to be tailored to complex geometries. This paper provides a comprehensive review of current technologies used to strengthen concrete columns, with a particular focus on the application of fiber-reinforced polymer (FRP) tubes in composite column systems. The manufacturing processes of FRP composites are discussed, emphasizing the influence of resin types and fabrication methods on the mechanical properties and durability of composite elements. This review also analyzes how factors such as fiber type, orientation, thickness, and application method affect the load-bearing capacity of both newly constructed and retrofitted damaged concrete elements. Furthermore, the paper identifies research gaps concerning the use of perforated CFRP tubes as internal reinforcement components. Considering the increasing interest in innovative column strengthening methods, this paper highlights future research directions, particularly the application of perforated CFRP tubes combined with external composite strengthening and self-compacting concrete (SCC). Full article
Show Figures

Graphical abstract

25 pages, 3278 KB  
Article
Study on the Performance of Composite-Modified Epoxy Resin Potting Adhesive for Repairing Oblique Cracks
by Zimin Chen, Zhengyi Li, Zhihong Ran, Yan Zhang, Fan Lin and Yu Zhou
Materials 2025, 18(13), 3197; https://doi.org/10.3390/ma18133197 - 7 Jul 2025
Viewed by 435
Abstract
Reinforced concrete structures are prone to the development of microcracks during service. In this study, a composite-modified epoxy potting adhesive was formulated using nano-TiO2, carboxyl-terminated butadiene nitrile liquid rubber (CTBN), and the reactive diluent D-669. The mechanical properties and effectiveness of [...] Read more.
Reinforced concrete structures are prone to the development of microcracks during service. In this study, a composite-modified epoxy potting adhesive was formulated using nano-TiO2, carboxyl-terminated butadiene nitrile liquid rubber (CTBN), and the reactive diluent D-669. The mechanical properties and effectiveness of this composite adhesive in repairing oblique cracks were systematically evaluated and compared with those of single-component-modified epoxy adhesives. Key material parameters influencing the performance of oblique crack repair were identified, and the underlying repair mechanisms were analyzed. Based on these findings, a theoretical formula for calculating the shear-bearing capacity of beams with repaired web reinforcement was proposed. Experimental results demonstrated that compared to single-component-modified epoxy resin, the optimally formulated composite adhesive improved the tensile strength, elongation at break, and bond strength by 4.07–21.16 MPa, 13.28–20.4%, and 1.05–3.79 MPa, respectively, while reducing the viscosity by 48–872 mPa·s. The viscosity of the adhesive was found to play a critical role in determining the repair effectiveness, with toughness enhancing the crack resistance and bond strength contributing to the structural stiffness recovery. The adhesive effectively penetrated the steel–concrete interface, forming a continuous bonding layer that improved energy dissipation and significantly enhanced the load-bearing capacity of the repaired beams. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 16120 KB  
Article
Lateral Performance of Steel–Concrete Anchors Embedded in RC Columns Subjected to Fire Scenario
by Amer Alkloub, Mahmoud Dwaikat, Ahmed Ashteyat, Farouq Sammour and Asala Jaradat
Infrastructures 2025, 10(7), 173; https://doi.org/10.3390/infrastructures10070173 - 5 Jul 2025
Viewed by 392
Abstract
The use of both structural steel and reinforced concrete is common in civil and military infrastructure projects. Anchorage plays a crucial role in these systems, serving as the key element that connects structural components and secures attachments within complex composite structures. This research [...] Read more.
The use of both structural steel and reinforced concrete is common in civil and military infrastructure projects. Anchorage plays a crucial role in these systems, serving as the key element that connects structural components and secures attachments within complex composite structures. This research focuses on evaluating the performance of steel–concrete column connections under the combined effects of lateral loading and fire exposure. Additionally, the study investigates the use of carbon fiber-reinforced polymers (CFRP) for strengthening and repairing these connections. The research methodology combines experimental testing and finite-element modeling to achieve its objectives. First, experimental investigation was carried out to test two groups of steel-reinforced concrete column specimens, each group made of three specimens. The first group specimens were designed based on special moment frame (SMF) detailing, and the other group specimens were designed based on intermediate moment frame (IMF) detailing. These two types of design were selected based on seismic demands, with SMFs offering high ductility and resilience for severe earthquakes and IMFs providing a cost-effective solution for moderate seismic zones, both benefiting from ongoing innovations in connection detailing and design approaches. Then, finite-element analysis was conducted to model the test specimens. High-fidelity finite-element modeling was conducted using ANSYS program, which included three-dimensional coupled thermal-stress analyses for the six tested specimens and incorporated nonlinear temperature-dependent materials characteristics of each component and the interfaces. Both the experimental and numerical results of this study show that fire has a more noticeable effect on displacement compared to the peak capacities of both types of specimens. Fire exposure results in a larger reduction in the initial residual lateral stiffness of the SMF specimens when compared to IMF specimens. While the effect of CFRP wraps on initial residual lateral stiffness was consistent for all specimens, it caused more improvement for the IMF specimen in terms of post-fire ductility when compared to SMF specimens. This exploratory study confirms the need for further research on the effect of fire on the concrete–steel anchorage zones. Full article
Show Figures

Figure 1

Back to TopTop