Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = steel safety barriers (SSBs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2204 KB  
Review
Overview of the Patents and Patent Applications on Upper Guardrail Protection Systems for Motorcyclists
by Laura Brigita Parežnik, Marko Renčelj and Tomaž Tollazzi
Infrastructures 2025, 10(7), 165; https://doi.org/10.3390/infrastructures10070165 - 30 Jun 2025
Viewed by 457
Abstract
Upright-posture motorcycle crashes against steel safety barriers (SSBs) often result in severe upper-body injuries due to the sharp upper edge of the rail. While solutions for sliding crashes on curves, called a ‘motorcyclist-friendly barrier’, are already implemented in practice, protective measures for upright-posture [...] Read more.
Upright-posture motorcycle crashes against steel safety barriers (SSBs) often result in severe upper-body injuries due to the sharp upper edge of the rail. While solutions for sliding crashes on curves, called a ‘motorcyclist-friendly barrier’, are already implemented in practice, protective measures for upright-posture impacts remain underdeveloped. This study systematically reviews patents and patent applications addressing upper guardrail protection for motorcyclists. We identified and analysed a small number of existing innovations aimed at mitigating the consequences of upright crashes. The selected solutions were evaluated according to their technical design, ease of installation, potential for recycling, environmental compatibility, and expected costs. Our comparative analysis reveals that while some patents or patent applications offer promising features, such as flexible caps, bent plates, or modular attachments, none comprehensively address all safety, environmental, and economic requirements. The findings provide a basis for further development of motorcyclist-friendly SSB designs and suggest specific criteria that should be included in future guidelines and standard updates. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

14 pages, 7079 KB  
Article
Strain Rate Sensitivity of Low Carbon Threaded Steel Rods of Grade 4.6
by Jovan Trajkovski and Robert Kunc
Materials 2024, 17(24), 6228; https://doi.org/10.3390/ma17246228 - 20 Dec 2024
Cited by 1 | Viewed by 844
Abstract
Bolt connections are widely used in construction and engineering to securely join structural elements. These connections are essential for distributing loads across components and ensuring that structures can withstand external forces. The planned failure of these bolts is of great importance in steel [...] Read more.
Bolt connections are widely used in construction and engineering to securely join structural elements. These connections are essential for distributing loads across components and ensuring that structures can withstand external forces. The planned failure of these bolts is of great importance in steel safety barriers (SSBs), as it can directly influence the height of the guardrail and the working width of the SSB during the vehicle impact, which consequently affects the crash consequences. Therefore, it is of great importance to determine the bolt response until fractures under different strain rates. For that purpose, experimental tensile tests of low-strength steel rods of grade 4.6 were conducted at various strain rates (0.0025–25 s−1) until fracture. Test specimens were photographed during the testing, and by means of image processing, input data for calculation of true stresses and strains up to the point of fracture were extracted. Based on the experimental data, material parameters were determined for the Cowper–Symonds model, enabling precise numerical simulations of these connections at various strain rates. A validation study was also performed successfully. Full article
Show Figures

Figure 1

Back to TopTop