Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = stereospecific analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2215 KiB  
Article
Detoxification of Ustiloxin A Through Oxidative Deamination and Decarboxylation by Endophytic Fungus Petriella setifera
by Peng Li, Gan Gu, Xuwen Hou, Dan Xu, Jungui Dai, Yu Kuang, Mingan Wang, Daowan Lai and Ligang Zhou
Toxins 2025, 17(2), 48; https://doi.org/10.3390/toxins17020048 - 22 Jan 2025
Cited by 1 | Viewed by 901
Abstract
Ustiloxins are a group of cyclopeptide mycotoxins produced by rice false smut pathogen Villosiclava virens (anamorph: Ustilaginoidea virens) which seriously threaten the safety production of rice and the health of humans and livestock. Ustiloxin A, accounting for 60% of the total ustiloxins, [...] Read more.
Ustiloxins are a group of cyclopeptide mycotoxins produced by rice false smut pathogen Villosiclava virens (anamorph: Ustilaginoidea virens) which seriously threaten the safety production of rice and the health of humans and livestock. Ustiloxin A, accounting for 60% of the total ustiloxins, is the main toxic component. Biotransformation, a process of modifying the functional groups of compounds by means of regio- or stereo-specific reactions catalyzed by the enzymes produced by organisms, has been considered as an efficient way to detoxify mycotoxins. In this study, the endophytic fungus Petriella setifera Nitaf10 was found to be able to detoxify ustiloxin A through biotransformation. Two transformed products were obtained by using the cell-free extract (CFE) containing intracellular enzymes of P. setifera Nitaf10. They were structurally characterized as novel ustiloxin analogs named ustiloxins A1 (1) and A2 (2) by analysis of the 1D and 2D NMR and HRESIMS spectra as well as by comparison with known ustiloxins. The cytotoxic activity of ustiloxins A1 (1) and A2 (2) was much weaker than that of ustiloxin A. The biotransformation of ustiloxin A was found to proceed via oxidative deamination and decarboxylation and was possibly catalyzed by the intracellular amine oxidase and oxidative decarboxylase in the CFE. An appropriate bioconversion was achieved by incubating ustiloxin A with the CFE prepared in 0.5 mol/L phosphate buffer (pH 7.0) for 24 to 48 h. The optimum initial pH values for the bioconversion of ustiloxin A were 7–9. Among eight metal ions (Co2+, Cu2+, Fe3+, Zn2+, Ba2+, Ca2+, Mg2+ and Mn2+) tested at 5 mmol/L, Cu2+, Fe3+ and Zn2+ totally inhibited the conversion of ustiloxin A. In conclusion, detoxification of ustiloxin A through oxidative deamination and decarboxylation is an efficient strategy. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

17 pages, 2306 KiB  
Article
Catalytic Stability of S-1-(4-Hydroxyphenyl)-Ethanol Dehydrogenase from Aromatoleum aromaticum
by Mateusz Tataruch, Viera Illeová, Anna Kluza, Patrik Cabadaj and Milan Polakovič
Int. J. Mol. Sci. 2024, 25(13), 7385; https://doi.org/10.3390/ijms25137385 - 5 Jul 2024
Viewed by 1044
Abstract
Derived from the denitrifying bacterium Aromatoleum aromaticum EbN1 (Azoarcus sp.), the enzyme S-1-(4-hydroxyphenyl)-ethanol dehydrogenase (S-HPED) belongs to the short-chain dehydrogenase/reductase family. Using research techniques like UV-Vis spectroscopy, dynamic light scattering, thermal-shift assay and HPLC, we investigated the catalytic and structural stability [...] Read more.
Derived from the denitrifying bacterium Aromatoleum aromaticum EbN1 (Azoarcus sp.), the enzyme S-1-(4-hydroxyphenyl)-ethanol dehydrogenase (S-HPED) belongs to the short-chain dehydrogenase/reductase family. Using research techniques like UV-Vis spectroscopy, dynamic light scattering, thermal-shift assay and HPLC, we investigated the catalytic and structural stability of S-HPED over a wide temperature range and within the pH range of 5.5 to 9.0 under storage and reaction conditions. The relationship between aggregation and inactivation of the enzyme in various pH environments was also examined and interpreted. At pH 9.0, where the enzyme exhibited no aggregation, we characterized thermally induced enzyme inactivation. Through isothermal and multitemperature analysis of inactivation data, we identified and confirmed the first-order inactivation mechanism under these pH conditions and determined the kinetic parameters of the inactivation process. Additionally, we report the positive impact of glucose as an enzyme stabilizer, which slows down the dynamics of S-HPED inactivation over a wide range of pH and temperature and limits enzyme aggregation. Besides characterizing the stability of S-HPED, the enzyme’s catalytic activity and high stereospecificity for 10 prochiral carbonyl compounds were positively verified, thus expanding the spectrum of substrates reduced by S-HPED. Our research contributes to advancing knowledge about the biocatalytic potential of this catalyst. Full article
Show Figures

Figure 1

15 pages, 2326 KiB  
Article
Optically Pure Calixarenyl Phosphine via Stereospecific Alkylation on Evans’ Oxazolidinone Moiety
by Claude Bauder and David Sémeril
Molecules 2024, 29(5), 1156; https://doi.org/10.3390/molecules29051156 - 5 Mar 2024
Viewed by 1080
Abstract
A convenient protocol for the synthesis of 25,26,27-tribenzoyl-28-[((S)-1-diphenylphos- phanyl-propan-2-yl)oxy]-calix[4]arene via stereospecific methylation on Evans’ oxazolidinone moiety was reported. According to the 13C NMR analysis of this phosphine, the calix[4]arene skeleton adopted a 1,3-alternate conformation. The latter conformation of the macrocycle [...] Read more.
A convenient protocol for the synthesis of 25,26,27-tribenzoyl-28-[((S)-1-diphenylphos- phanyl-propan-2-yl)oxy]-calix[4]arene via stereospecific methylation on Evans’ oxazolidinone moiety was reported. According to the 13C NMR analysis of this phosphine, the calix[4]arene skeleton adopted a 1,3-alternate conformation. The latter conformation of the macrocycle and the (S)-chirality of the carbon atom bearing the methyl substituent were confirmed by a single-crystal X-ray diffraction study. After coordination of the phosphinated ligand to the dimeric [RuCl2(p-cymene)]2 organometallic precursor, the resulting arene–ruthenium complex was tested in the asymmetric reduction of acetophenone and alcohol was obtained with modest enantiomeric excess. Full article
(This article belongs to the Special Issue Development and Application of Chiral Materials)
Show Figures

Graphical abstract

11 pages, 1501 KiB  
Article
Evaluation of Cryogen-Free Thermal Modulation-Based Enantioselective Comprehensive Two-Dimensional Gas Chromatography for Stereo-Differentiation of Monoterpenes in Citrus spp. Leaf Oils
by Haneen Ibrahim Al Othman, Atiqah Zaid, Francesco Cacciola, Zhijun Zhao, Xiaosheng Guan, Jalal T. Althakafy and Yong Foo Wong
Molecules 2023, 28(3), 1381; https://doi.org/10.3390/molecules28031381 - 1 Feb 2023
Cited by 3 | Viewed by 2209
Abstract
This study evaluates the applicability of enantioselective gas chromatography (eGC) and enantioselective comprehensive two-dimensional gas chromatography (eGC×GC) coupled with flame ionization detection for the stereospecific analysis of designated chiral monoterpenes within essential oils distilled from the leaves of Citrus [...] Read more.
This study evaluates the applicability of enantioselective gas chromatography (eGC) and enantioselective comprehensive two-dimensional gas chromatography (eGC×GC) coupled with flame ionization detection for the stereospecific analysis of designated chiral monoterpenes within essential oils distilled from the leaves of Citrus hystrix (CH), C. limon (CL), C. pyriformis (CP), and C. microcarpa (CM). A cryogen-free solid-state modulator with a combination of enantioselective first-dimension and polar second-dimension column arrangements was used to resolve potential interferences in Citrus spp. leaf oils that can complicate the accurate determination of enantiomeric compositions. Interestingly, considerable variations were observed for the enantiomeric fractions (EFs) of the chiral terpenes. (+)-limonene was identified as the predominant enantiomer (60.3–98.9%) in all Citrus oils, (+)-linalool was the major enantiomer in CM (95.9%), (−)-terpenin-4-ol was the major isomer in CM (66.4%) and CP (61.1%), (−)-α-pinene was the dominant antipode in CL (55.5%) and CM (92.1%). CH contained (−)-citronellal (100%) as the pure enantiomer, while CL and CP have lower proportions (9.0–34.6%), and citronellal is absent in CM. The obtained enantiomeric compositions were compared and discussed with results from eGC using the same enantioselective column. To our knowledge, this work encapsulates the first report that details the EFs of these chiral monoterpenes in Citrus spp. leaf oil. Full article
Show Figures

Figure 1

25 pages, 19956 KiB  
Article
Genome-Wide Classification and Evolutionary Analysis Reveal Diverged Patterns of Chalcone Isomerase in Plants
by Jianyong Wang, Yifei Jiang, Tong Sun, Chenhao Zhang, Xuhui Liu and Yangsheng Li
Biomolecules 2022, 12(7), 961; https://doi.org/10.3390/biom12070961 - 8 Jul 2022
Cited by 10 | Viewed by 3312
Abstract
Flavonoids as a class of important secondary metabolites are widely present in land plants, and chalcone isomerase (CHI) is the key rate-limiting enzyme that participates in catalyzing the stereospecific isomerization of chalcones to yield their corresponding flavanones. However, the phylogenetic dynamics and functional [...] Read more.
Flavonoids as a class of important secondary metabolites are widely present in land plants, and chalcone isomerase (CHI) is the key rate-limiting enzyme that participates in catalyzing the stereospecific isomerization of chalcones to yield their corresponding flavanones. However, the phylogenetic dynamics and functional divergence of CHI family genes during the evolutionary path of green plants remains poorly understood. Here, a total of 122 CHI genes were identified by performing a genome-wide survey of 15 representative green plants from the most ancestral basal plant chlorophyte algae to higher angiosperm plants. Phylogenetic, orthologous groups (OG) classification, and genome structure analysis showed that the CHI family genes have evolved into four distinct types (types I–IV) containing eight OGs after gene duplication, and further studies indicated type III CHIs consist of three subfamilies (FAP1, FAP2, and FAP3). The phylogeny showed FAP3 CHIs as an ancestral out-group positioned on the outer layers of the main branch, followed by type IV CHIs, which are placed in an evolutionary intermediate between FAP3 CHIs and bona fide CHIs (including type I and type II). The results imply a potential intrinsic evolutionary connection between CHIs existing in the green plants. The amino acid substitutions occurring in several residues have potentially affected the functional divergence between CHI proteins. This is supported by the analysis of transcriptional divergence and cis-acting element analysis. Evolutionary dynamics analyses revealed that the differences in the total number of CHI family genes in each plant are primarily attributed to the lineage-specific expansion by natural selective forces. The current studies provide a deeper understanding of the phylogenetic relationships and functional diversification of CHI family genes in green plants, which will guide further investigation on molecular characteristics and biological functions of CHIs. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

16 pages, 673 KiB  
Review
Regio- and Stereospecific Analysis of Triacylglycerols—A Brief Overview of the Challenges and the Achievements
by Svetlana Momchilova and Boryana Nikolova-Damyanova
Symmetry 2022, 14(2), 247; https://doi.org/10.3390/sym14020247 - 27 Jan 2022
Cited by 9 | Viewed by 3726
Abstract
The efforts to reveal, in detail, the molecular and intramolecular structures of one of the main lipid classes, namely, triacyl-sn-glycerols, which are now known to affect their specific and important role in all living organisms, are briefly overviewed. Some milestones of [...] Read more.
The efforts to reveal, in detail, the molecular and intramolecular structures of one of the main lipid classes, namely, triacyl-sn-glycerols, which are now known to affect their specific and important role in all living organisms, are briefly overviewed. Some milestones of significance in the gradual but continuous development and improvement of the analytical methodology to identify the triacylglycerol regio- and stereoisomers in complex lipid samples are traced throughout the years: the use of chromatography based on different separation principles; the improvements in the chromatographic technique; the development and use of different detection techniques; the attempts to simplify and automatize the analysis without losing the accuracy of identification. The spectacular recent achievements of two- and multidimensional methods used as tools in lipidomics are presented. Full article
Show Figures

Figure 1

14 pages, 7460 KiB  
Article
Identification and Biochemical Characterization of a Novel Hormone-Sensitive Lipase Family Esterase Est19 from the Antarctic Bacterium Pseudomonas sp. E2-15
by Xiaoyu Liu, Mingyang Zhou, Shu Xing, Tao Wu, Hailun He, John Kevin Bielicki and Jianbin Chen
Biomolecules 2021, 11(11), 1552; https://doi.org/10.3390/biom11111552 - 20 Oct 2021
Cited by 16 | Viewed by 2845
Abstract
Esterases represent an important class of enzymes with a wide variety of industrial applications. A novel hormone-sensitive lipase (HSL) family esterase, Est19, from the Antarctic bacterium Pseudomonas sp. E2-15 is identified, cloned, and expressed. The enzyme possesses a GESAG motif containing an active [...] Read more.
Esterases represent an important class of enzymes with a wide variety of industrial applications. A novel hormone-sensitive lipase (HSL) family esterase, Est19, from the Antarctic bacterium Pseudomonas sp. E2-15 is identified, cloned, and expressed. The enzyme possesses a GESAG motif containing an active serine (S) located within a highly conserved catalytic triad of Ser155, Asp253, and His282 residues. The catalytic efficiency (kcat/Km) of Est19 for the pNPC6 substrate is 148.68 s−1mM−1 at 40 °C. Replacing Glu154 juxtaposed to the critical catalytic serine with Asp (E154→D substitution) reduced the activity and catalytic efficiency of the enzyme two-fold, with little change in the substrate affinity. The wild-type enzyme retained near complete activity over a temperature range of 10–60 °C, while ~50% of its activity was retained at 0 °C. A phylogenetic analysis suggested that Est19 and its homologs may represent a new subfamily of HSL. The thermal stability and stereo-specificity suggest that the Est19 esterase may be useful for cold and chiral catalyses. Full article
(This article belongs to the Special Issue State-of-Art in Protein Engineering)
Show Figures

Figure 1

13 pages, 699 KiB  
Article
Characterization of the Triacylglycerol Fraction of Italian and Extra-European Hemp Seed Oil
by Carmela Tringaniello, Lina Cossignani and Francesca Blasi
Foods 2021, 10(5), 916; https://doi.org/10.3390/foods10050916 - 22 Apr 2021
Cited by 10 | Viewed by 2626
Abstract
Hemp seed oil (HSO) has received considerable attention for its health properties, especially due to unsaturated fatty acid (UFA) content. In this work, the triacylglycerol (TAG) fraction of Italian and Extra-European HSO was characterized by applying an enzymatic approach, based on the use [...] Read more.
Hemp seed oil (HSO) has received considerable attention for its health properties, especially due to unsaturated fatty acid (UFA) content. In this work, the triacylglycerol (TAG) fraction of Italian and Extra-European HSO was characterized by applying an enzymatic approach, based on the use of pancreatic lipase and sn-1,2-diacylglycerol kinase. This procedure allows determination of the intrapositional FA% composition of TAG. The results of the stereospecific analysis are useful for deepening knowledge on HSO nutritional aspects. The high percentage of UFA (88.3–89.9%), in particular essential FA (74.4–85.9%), of HSO samples in sn-2 position is important for long-term health effects, but also to enhance the use of this oil as a functional ingredient in food, cosmetic and nutraceutical fields. Furthermore, the results of total and intrapositional FA % compositions, subjected to principal component analysis, were able to differentiate HSO Italian samples from Extra-European ones. Based on the obtained results, it can be stated that the stereospecific analysis represents a potent analytical tool providing the fingerprint of TAG fraction, useful to highlight possible chemical descriptors for HSO authenticity and traceability purposes. Full article
(This article belongs to the Special Issue Food Lipids: Analytical and Biotechnological Advances)
Show Figures

Graphical abstract

14 pages, 721 KiB  
Article
Neurodevelopmental Outcomes and Gut Bifidobacteria in Term Infants Fed an Infant Formula Containing High sn-2 Palmitate: A Cluster Randomized Clinical Trial
by Wei Wu, Ai Zhao, Biao Liu, Wen-Hui Ye, Hong-Wen Su, Jing Li and Yu-Mei Zhang
Nutrients 2021, 13(2), 693; https://doi.org/10.3390/nu13020693 - 22 Feb 2021
Cited by 31 | Viewed by 6480
Abstract
A few studies suggested high stereo-specifically numbered (sn)-2 palmitate in a formula might favor the gut Bifidobacteria of infants. The initial colonization and subsequent development of gut microbiota in early life might be associated with development and later life functions of the central [...] Read more.
A few studies suggested high stereo-specifically numbered (sn)-2 palmitate in a formula might favor the gut Bifidobacteria of infants. The initial colonization and subsequent development of gut microbiota in early life might be associated with development and later life functions of the central nervous system via the microbiota–gut–brain axis, such as children with autism. This study aims to assess the hypothesized effect of increasing the amount of palmitic acid esterified in the sn-2 position in infant formula on neurodevelopment in healthy full-term infants and to explore the association of this effect with the altered gut Bifidobacteria. One hundred and ninety-nine infants were enrolled in this cluster randomized clinical trial: 66 breast-fed (BF group) and 133 formula-fed infants who were clustered and randomly assigned to receive formula containing high sn-2 palmitate (sn-2 group, n = 66) or low sn-2 palmitate (control group, n = 67), where 46.3% and 10.3% of the palmitic acid (PA) was sn-2-palmitate, respectively. Infants’ neurodevelopmental outcomes were measured by the Ages and Stages Questionnaire, third edition (ASQ-3). Stool samples were collected for the analysis of Bifidobacteria (Trial registration number: ChiCTR1800014479). At week 16, the risk of scoring close to the threshold for fine motor skills (reference: scoring above the typical development threshold) was significantly lower in the sn-2 group than the control group after adjustment for the maternal education level (p = 0.036) but did not differ significantly versus the BF group (p = 0.513). At week 16 and week 24, the sn-2 group (week 16: 15.7% and week 24: 15.6%) had a significantly higher relative abundance of fecal Bifidobacteria than the control group (week 16: 6.6%, p = 0.001 and week 24:11.2%, p = 0.028) and did not differ from the BF group (week 16: 14.4%, p = 0.674 and week 24: 14.9%, p = 0.749). At week 16, a higher relative abundance of Bifidobacteria was associated with the decreased odds of only one domain scoring close to the threshold in the formula-fed infants group (odds ratio (OR), 95% confidence interval (CI): 0.947 (0.901–0.996)). Elevating the sn-2 palmitate level in the formula improved infants’ development of fine motor skills, and the beneficial effects of high sn-2 palmitate on infant neurodevelopment was associated with the increased gut Bifidobacteria level. Full article
(This article belongs to the Special Issue Nutrition and Gut-Brain Axis)
Show Figures

Figure 1

14 pages, 3217 KiB  
Article
Understand the Specific Regio- and Enantioselectivity of Fluostatin Conjugation in the Post-Biosynthesis
by Yuanqi Wang, Changsheng Zhang, Yi-Lei Zhao, Rosalinda Zhao and Kendall N. Houk
Biomolecules 2020, 10(6), 815; https://doi.org/10.3390/biom10060815 - 26 May 2020
Cited by 15 | Viewed by 4355
Abstract
Fluostatins, benzofluorene-containing aromatic polyketides in the atypical angucycline family, conjugate into dimeric and even trimeric compounds in the post-biosynthesis. The formation of the C–C bond involves a non-enzymatic stereospecific coupling reaction. In this work, the unusual regio- and enantioselectivities were rationalized by density [...] Read more.
Fluostatins, benzofluorene-containing aromatic polyketides in the atypical angucycline family, conjugate into dimeric and even trimeric compounds in the post-biosynthesis. The formation of the C–C bond involves a non-enzymatic stereospecific coupling reaction. In this work, the unusual regio- and enantioselectivities were rationalized by density functional theory calculations with the M06-2X (SMD, water)/6–311 + G(d,p)//6–31G(d) method. These DFT calculations reproduce the lowest energy C1-(R)-C10′-(S) coupling pathway observed in a nonenzymatic reaction. Bonding of the reactive carbon atoms (C1 and C10′) of the two reactant molecules maximizes the HOMO–LUMO interactions and Fukui function involving the highest occupied molecular orbital (HOMO) of nucleophile p-QM and lowest unoccupied molecular orbital (LUMO) of electrophile FST2 anion. In particular, the significant π–π stacking interactions of the low-energy pre-reaction state are retained in the lowest energy pathway for C–C coupling. The distortion/interaction–activation strain analysis indicates that the transition state (TScp-I) of the lowest energy pathway involves the highest stabilizing interactions and small distortion among all possible C–C coupling reactions. One of the two chiral centers generated in this step is lost upon aromatization of the phenol ring in the final difluostatin products. Thus, the π–π stacking interactions between the fluostatin 6-5-6 aromatic ring system play a critical role in the stereoselectivity of the nonenzymatic fluostatin conjugation. Full article
(This article belongs to the Special Issue Recent Advance of Actinomycetes)
Show Figures

Figure 1

52 pages, 51178 KiB  
Review
Asymmetric Electrophilic Reactions in Phosphorus Chemistry
by Anastasy O. Kolodiazhna and Oleg I. Kolodiazhnyi
Symmetry 2020, 12(1), 108; https://doi.org/10.3390/sym12010108 - 6 Jan 2020
Cited by 12 | Viewed by 9008
Abstract
This review is devoted to the theoretic and synthetic aspects of asymmetric electrophilic substitution reactions at the stereogenic phosphorus center. The stereochemistry and mechanisms of electrophilic reactions are discussed—the substitution, addition and addition-elimination of many important reactions. The reactions of bimolecular electrophilic substitution [...] Read more.
This review is devoted to the theoretic and synthetic aspects of asymmetric electrophilic substitution reactions at the stereogenic phosphorus center. The stereochemistry and mechanisms of electrophilic reactions are discussed—the substitution, addition and addition-elimination of many important reactions. The reactions of bimolecular electrophilic substitution SE2(P) proceed stereospecifically with the retention of absolute configuration at the phosphorus center, in contrast to the reactions of bimolecular nucleophilic substitution SN2(P), proceeding with inversion of absolute configuration. This conclusion was made based on stereochemical analysis of a wide range of trivalent phosphorus reactions with typical electrophiles and investigation of examples of a sizeable number of diverse compounds. The combination of stereospecific electrophilic reactions and stereoselective nucleophilic reactions is useful and promising for the further development of organophosphorus chemistry. The study of phosphoryl group transfer reactions is important for biological and molecular chemistry, as well as in studying mechanisms of chemical processes involving organophosphorus compounds. New versions of asymmetric electrophilic reactions applicable for the synthesis of enantiopure P-chiral secondary and tertiary phosphines are discussed. Full article
Show Figures

Scheme 1

17 pages, 2718 KiB  
Article
Stereoselectivity of Aldose Reductase in the Reduction of Glutathionyl-Hydroxynonanal Adduct
by Francesco Balestri, Vito Barracco, Giovanni Renzone, Tiziano Tuccinardi, Christian Silvio Pomelli, Mario Cappiello, Marco Lessi, Rossella Rotondo, Fabio Bellina, Andrea Scaloni, Umberto Mura, Antonella Del Corso and Roberta Moschini
Antioxidants 2019, 8(10), 502; https://doi.org/10.3390/antiox8100502 - 22 Oct 2019
Cited by 12 | Viewed by 3789
Abstract
The formation of the adduct between the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) and glutathione, which leads to the generation of 3-glutathionyl-4-hydroxynonane (GSHNE), is one of the main routes of HNE detoxification. The aldo-keto reductase AKR1B1 is involved in the reduction of the aldehydic [...] Read more.
The formation of the adduct between the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) and glutathione, which leads to the generation of 3-glutathionyl-4-hydroxynonane (GSHNE), is one of the main routes of HNE detoxification. The aldo-keto reductase AKR1B1 is involved in the reduction of the aldehydic group of both HNE and GSHNE. In the present study, the effect of chirality on the recognition by aldose reductase of HNE and GSHNE was evaluated. AKR1B1 discriminates very modestly between the two possible enantiomers of HNE as substrates. Conversely, a combined kinetic analysis of the glutathionyl adducts obtained starting from either 4R- or 4S-HNE and mass spectrometry analysis of GSHNE products obtained from racemic HNE revealed that AKR1B1 possesses a marked preference toward the 3S,4R-GSHNE diastereoisomer. Density functional theory and molecular modeling studies revealed that this diastereoisomer, besides having a higher tendency to be in an open aldehydic form (the one recognized by AKR1B1) in solution than other GSHNE diastereoisomers, is further stabilized in its open form by a specific interaction with the enzyme active site. The relevance of this stereospecificity to the final metabolic fate of GSHNE is discussed. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

11 pages, 846 KiB  
Article
Varietal Authentication of Extra Virgin Olive Oils by Triacylglycerols and Volatiles Analysis
by Francesca Blasi, Luna Pollini and Lina Cossignani
Foods 2019, 8(2), 58; https://doi.org/10.3390/foods8020058 - 5 Feb 2019
Cited by 40 | Viewed by 5427
Abstract
In recent years, there is an increasing interest in high-quality extra virgin olive oils (EVOOs) produced from local cultivars. They have particular chemical/organoleptic characteristics and are frequently subjected to fraud, whereby the control of quality requires a powerful varietal check. In the present [...] Read more.
In recent years, there is an increasing interest in high-quality extra virgin olive oils (EVOOs) produced from local cultivars. They have particular chemical/organoleptic characteristics and are frequently subjected to fraud, whereby the control of quality requires a powerful varietal check. In the present research, triacylglycerols (TAGs) and volatiles have been studied as chemical markers for the authentication of EVOO samples from four Italian varieties of Olea europea (Dolce Agogia, Frantoio, Leccino, and Moraiolo). The monocultivar EVOO samples have been subjected to a chemical–enzymatic chromatographic method in order to perform a stereospecific analysis, an important procedure for the characterization of TAG of food products. The results, combined with chemometric analysis (linear discriminant analysis, LDA), were elaborated in order to classify Italian EVOO monocultivar samples. In accordance with the total and intrapositional fatty acid (FA) composition of TAG fraction, the results were allowed to carry out a varietal discrimination. In addition, volatile compounds were also determined by solid-phase micro-extraction gas chromatography-mass spectrometry analysis. All EVOO samples were correctly classified when TAG stereospecific data and volatile results were elaborated by the LDA procedure, even if volatile compounds showed a higher discriminant power. Full article
(This article belongs to the Special Issue Olive Oil: Processing, Characterization, and Health Benefits)
Show Figures

Graphical abstract

14 pages, 816 KiB  
Article
Chemical and Nutritional Characterization of Seed Oil from Cucurbita maxima L. (var. Berrettina) Pumpkin
by Domenico Montesano, Francesca Blasi, Maria Stella Simonetti, Antonello Santini and Lina Cossignani
Foods 2018, 7(3), 30; https://doi.org/10.3390/foods7030030 - 1 Mar 2018
Cited by 113 | Viewed by 16557
Abstract
Pumpkin (Cucurbita spp.) has received considerable attention in recent years because of the nutritional and health-protective value of seed oil. The nutritional composition of pumpkin native to central Italy, locally known as “Berrettina” (Cucurbita maxima L.), was evaluated. In particular, the [...] Read more.
Pumpkin (Cucurbita spp.) has received considerable attention in recent years because of the nutritional and health-protective value of seed oil. The nutritional composition of pumpkin native to central Italy, locally known as “Berrettina” (Cucurbita maxima L.), was evaluated. In particular, the lipid fraction of seed oil was characterized, and the triacylglycerol (TAG) was thoroughly studied by using a stereospecific procedure to obtain the intrapositional fatty acid composition of the three sn-positions of the glycerol backbone of TAG. Moreover, alkaline hydrolysis was carried out to study the main components of the unsaponifiable fraction, i.e., sterols and alcohols. It was observed that monounsaturated fatty acids and polyunsaturated fatty acids were the most abundant (41.7% and 37.2%, respectively) in Berrettina pumpkin seed oil, with high content of oleic and linoleic acid (41.4% and 37.0%, respectively). The main sterols of Berrettina pumpkin seed oil were Δ7,22,25-stigmastatrienol, Δ7,25-stigmastadienol, and spinasterol; with regard to the alcoholic fraction, triterpenic compounds were more abundant than aliphatic compounds (63.2% vs. 36.8%). The obtained data are useful to evaluate pumpkin seed oil from a nutritional point of view. The oil obtained from the seed could be used as a preservative and as a functional ingredient in different areas, e.g., cosmetics, foods, and nutraceuticals. Full article
(This article belongs to the Special Issue Nutraceuticals: The New Frontier)
Show Figures

Graphical abstract

12 pages, 3417 KiB  
Article
Crystal Structure of a Putative Cytochrome P450 Alkane Hydroxylase (CYP153D17) from Sphingomonas sp. PAMC 26605 and Its Conformational Substrate Binding
by Chang Woo Lee, Sang-Cheol Yu, Joo-Ho Lee, Sun-Ha Park, Hyun Park, Tae-Jin Oh and Jun Hyuck Lee
Int. J. Mol. Sci. 2016, 17(12), 2067; https://doi.org/10.3390/ijms17122067 - 9 Dec 2016
Cited by 8 | Viewed by 5326
Abstract
Enzymatic alkane hydroxylation reactions are useful for producing pharmaceutical and agricultural chemical intermediates from hydrocarbons. Several cytochrome P450 enzymes catalyze the regio- and stereo-specific hydroxylation of alkanes. We evaluated the substrate binding of a putative CYP alkane hydroxylase (CYP153D17) from the bacterium Sphingomonas [...] Read more.
Enzymatic alkane hydroxylation reactions are useful for producing pharmaceutical and agricultural chemical intermediates from hydrocarbons. Several cytochrome P450 enzymes catalyze the regio- and stereo-specific hydroxylation of alkanes. We evaluated the substrate binding of a putative CYP alkane hydroxylase (CYP153D17) from the bacterium Sphingomonas sp. PAMC 26605. Substrate affinities to C10–C12 n-alkanes and C10–C14 fatty acids with Kd values varied from 0.42 to 0.59 μM. A longer alkane (C12) bound more strongly than a shorter alkane (C10), while shorter fatty acids (C10, capric acid; C12, lauric acid) bound more strongly than a longer fatty acid (C14, myristic acid). These data displayed a broad substrate specificity of CYP153D17, hence it was named as a putative CYP alkane hydroxylase. Moreover, the crystal structure of CYP153D17 was determined at 3.1 Å resolution. This is the first study to provide structural information for the CYP153D family. Structural analysis showed that a co-purified alkane-like compound bound near the active-site heme group. The alkane-like substrate is in the hydrophobic pocket containing Thr74, Met90, Ala175, Ile240, Leu241, Val244, Leu292, Met295, and Phe393. Comparison with other CYP structures suggested that conformational changes in the β1–β2, α3–α4, and α6–α7 connecting loop are important for incorporating the long hydrophobic alkane-like substrate. These results improve the understanding of the catalytic mechanism of CYP153D17 and provide valuable information for future protein engineering studies. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop