Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (323)

Search Parameters:
Keywords = stirred container

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 9623 KB  
Article
Broken Mirrors: Multiple Circular Polarization and Inversion in the Ground and Photoexcited States of Mirror-Symmetric Helical Poly(di-iso-alkylsilane)s in Achiral Molecular Solvents
by Michiya Fujiki, Takashi Mori, Julian R. Koe and Mohamed Mehawed Abdellatif
Symmetry 2025, 17(9), 1544; https://doi.org/10.3390/sym17091544 - 15 Sep 2025
Viewed by 328
Abstract
This paper comprehensively reports experimental proof of parity violation in the ground and photoexcited states of three mirror-symmetric Si–Si bond polymers in homogeneous solutions of achiral molecules under non-stirring conditions by analyzing 370 chiroptical datasets relating to multiple second-order helix–helix transitions in the [...] Read more.
This paper comprehensively reports experimental proof of parity violation in the ground and photoexcited states of three mirror-symmetric Si–Si bond polymers in homogeneous solutions of achiral molecules under non-stirring conditions by analyzing 370 chiroptical datasets relating to multiple second-order helix–helix transitions in the circular dichroism (CD) of poly(di-i-butylsilane) (iBS), poly(di-i-pentylsilane) (iPS), and poly(di-i-hexylsilane) (iHS) in achiral alkanols and p-dioxane-h8/-d8. Particularly large (–)-CD of gabs = −3.1 × 10−2 at 290 nm was found for iBS in i-pentanol at 25 °C. Notably, iPS in n-propanol at −5 °C generated (–)-CD with gabs = −0.48 × 10−2 at 300 nm, but (+)-circularly polarized luminescence (CPL) with glum = +0.84 × 10−2 at 326 nm. In contrast, iHS in n-octanol at 0 °C showed only very weak (–)-CD of gabs ~−0.03 × 10−2 at 310 nm. The H/D isotopes of p-dioxane-h8/-d8 weakly affected the helix–helix transition characteristics of iBS. (–)-Sign vibrational CD signals assigned to the handed symmetric and asymmetric bending modes of the CH3 and CH2 groups of the solvents and other achiral molecules were observed. We assumed (i) three 1H nuclear-spin-1/2 induced handed motions of CH3 rotors at i-alkyl side chains and achiral alkanols, and (ii) helical main-chain Si atoms +) coordinated by handed lone pairs at oxygen ) in gauche-containing n- and i-alkanols induced by the CH3 rotors. A possible origin of biomolecular handedness is proposed based on the first observation of far-UV CD and UV spectra of zwitterionic glycine bearing H3N+ rotor in neutral H2O. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Graphical abstract

20 pages, 2252 KB  
Article
Co-Immobilization of Clostridium carboxidivorans and Clostridium kluyveri in a Synthetic Dual-Layer Biofilm for Syngas Conversion
by Josha Herzog, Simon Gregg, Lukas Gröninger, Filippo Kastlunger, Johannes Poppe, Verena Uhlig, Yixin Wei and Dirk Weuster-Botz
Appl. Sci. 2025, 15(17), 9800; https://doi.org/10.3390/app15179800 - 6 Sep 2025
Viewed by 690
Abstract
Syngas fermentation in combination with chain elongation offers great promise for sustainable medium-chain fatty acid production. While immobilization has proven effective for stabilizing monocultures of C. kluyveri for chain elongation, its applicability to co-cultures involving C. carboxidivorans for simultaneous syngas fermentation remains unexplored. [...] Read more.
Syngas fermentation in combination with chain elongation offers great promise for sustainable medium-chain fatty acid production. While immobilization has proven effective for stabilizing monocultures of C. kluyveri for chain elongation, its applicability to co-cultures involving C. carboxidivorans for simultaneous syngas fermentation remains unexplored. This study investigates the physiological compatibility of C. carboxidivorans with agar-based hydrogel immobilization and its co-cultivation potential with C. kluyveri in a synthetic dual-layer biofilm reactor. First, we conducted autotrophic batch fermentations using suspended and immobilized cells, proving metabolic activity similar for both. Applying different sulfur feeding rates, experiments showed best ethanol formation with C. carboxidivorans at increased sulfur feeding, enabling better conditions for chain elongation with C. kluyveri. In the synthetic dual-layer biofilm reactor, with the C. carboxidivorans biofilm in contact with the CO-containing gas phase above the C. kluyveri biofilm, the formation of 1-butyrate and 1-hexanoate was observed with product formation rates of 0.46 g L−1 d−1 1-butyrate, and 0.91 g L−1 d−1 1-hexanoate, respectively. The formation rate of 1-hexanoate in the dual-layer biofilm reactor was approximately 7.6 times higher than that reported with suspended cells in a stirred tank bioreactor. Spatial analysis revealed species-specific migration behavior and confirmed that C. carboxidivorans reduced local CO concentrations, improving the environment for C. kluyveri. Full article
Show Figures

Figure 1

23 pages, 4458 KB  
Article
Ultrasonic Pulp Conditioning-Induced Nanoparticles: A Critical Driver for Sonication-Assisted Ultrafine Smithsonite Flotation
by Weiguang Zhou, Weiwei Cao, Chenwei Li, Yaoli Peng, Yanru Cui and Liuyang Dong
Minerals 2025, 15(9), 927; https://doi.org/10.3390/min15090927 - 30 Aug 2025
Viewed by 447
Abstract
Extensive studies have established that ultrasonic micro-jets and acoustic cavitation selectively intensify interfacial interactions at multiphase boundaries, thereby enhancing the flotation of soluble salt minerals and oxide ores. Although a growing body of evidence shows that pulp-borne nanoparticles (i.e., nanosolids, colloids, and nanoscale [...] Read more.
Extensive studies have established that ultrasonic micro-jets and acoustic cavitation selectively intensify interfacial interactions at multiphase boundaries, thereby enhancing the flotation of soluble salt minerals and oxide ores. Although a growing body of evidence shows that pulp-borne nanoparticles (i.e., nanosolids, colloids, and nanoscale gas nuclei) mediate these effects, their role in the flotation of ultrafine smithsonite after collector addition has not yet been systematically examined. To fill this gap, we compared the flotation response of ultrafine smithsonite under conventional stirring (SC) and ultrasonic conditioning (UC), using sodium oleate (NaOL) as the collector, and dissected the governing mechanisms across three pillars, mineral–NaOL interaction, particle aggregation, and frothability, with particular attention paid to how nanoparticles modulate each dimension. The flotation results show that flotation performance under UC is dictated by NaOL concentration. At low NaOL levels (i.e., below 4 × 10−4 M), UC depresses both recovery and kinetics relative to SC, while at high NaOL levels, the trend reverses and UC outperforms SC. Mechanistic analysis reveals that sonication erodes mineral surfaces and generates cavitation, flooding the pulp with various nanoparticles. When NaOL is scarce, zinc-containing components and zinc-rich nanosolids sequester the collector through non-selective adsorption and precipitation, leaving smithsonite poorly hydrophobized. Consequently, particle aggregation and pulp frothability are markedly inferior to those in the SC system, so the flotation recovery and kinetics remain lower. As the NaOL concentration rises, smithsonite becomes adequately hydrophobized, and the pulp fills with hydrophobic zinc-rich nanosolids, along with cavitation-induced gas nuclei or tiny bubbles. These nanoparticles now act as bridges, accelerating the aggregation of ultrafine smithsonite once sonication stops and agitation begins, while simultaneously improving frothability. Although the strong dispersive action of ultrasound still suppresses initial flotation kinetics, cumulative recovery ultimately surpasses that of SC. The findings delineate a nanoparticle-regulated flotation paradigm and establish a critical NaOL concentration window for effective UC in ultrafine smithsonite flotation. This framework is readily transferable to the beneficiation of other ultrafine, soluble oxidized minerals (rhodochrosite, dolomite, etc.). Full article
Show Figures

Figure 1

22 pages, 2597 KB  
Article
Valorization of the Bioactive Potential of Juniperus communis L. Berry Extracts Using a Box–Behnken Design and Characterization of Kernel Oil Compounds
by Theofania Tsitsirigka, Dimitrios Kalompatsios, Vassilis Athanasiadis, Eleni Bozinou, Athanassios I. Sfougaris and Stavros I. Lalas
Separations 2025, 12(8), 209; https://doi.org/10.3390/separations12080209 - 11 Aug 2025
Viewed by 651
Abstract
This study presents a comprehensive valorization of Juniperus communis L., a plant known for its culinary and therapeutic applications. Juniper berries are rich in antioxidant compounds such as polyphenols and ascorbic acid, while their kernels contain volatile terpenes with notable pharmaceutical properties. We [...] Read more.
This study presents a comprehensive valorization of Juniperus communis L., a plant known for its culinary and therapeutic applications. Juniper berries are rich in antioxidant compounds such as polyphenols and ascorbic acid, while their kernels contain volatile terpenes with notable pharmaceutical properties. We optimized extraction parameters through stirring extraction (1:20 g/mL solid-to-solvent ratio, 55% v/v aqueous ethanol, 80 °C, 30 min) and response surface methodology via a Box–Behnken design. The optimal conditions—55% v/v aqueous ethanol at 80 °C for 30 min—yielded a high polyphenol content of 55.11 ± 1.54 mg GAE/g of defatted dry weight. Antioxidant capacity was confirmed through ferric-reducing and radical-scavenging assays, and 11 individual polyphenols (totaling 5.41 ± 0.27 mg/g) were quantified using a validated HPLC-DAD method. Additionally, this study identified several bioactive compounds in juniper berry raw kernel oil, which exhibited a high oleic acid content (58.75 ± 2.76%)—a nutritionally valuable fatty acid contributing to the oil’s strong radical-scavenging activity (399.83 ± 34.18 µmol Trolox equivalents/kg oil). GC–MS analysis revealed 58 volatile compounds, underscoring the terpene-rich profile of the oil and its influence on antioxidant potential and aroma. These findings underscore the dual valorization of juniper berry fruit and kernel for both medicinal and food industries. The aromatic kernel oil and polyphenol-rich extracts offer natural alternatives to synthetic antioxidants, with added benefits of flavor enhancement and promotion of health. Full article
Show Figures

Graphical abstract

24 pages, 4295 KB  
Article
Acrocomia aculeata Oil-Loaded Nanoemulsion: A Promising Candidate for Cancer and Diabetes Management
by Ariadna Lafourcade Prada, Jesus Rafael Rodríguez Amado, Renata Trentin Perdomo, Giovanna Bicudo Gomes, Danielle Ayr Tavares de Almeida, Leandro Fontoura Cavalheiro, Arquimedes Gasparotto Junior, Serafim Florentino Neto and Marco Antonio Utrera Martines
Pharmaceuticals 2025, 18(8), 1094; https://doi.org/10.3390/ph18081094 - 24 Jul 2025
Viewed by 662
Abstract
Background: Diabetes and cancer are two of the most life-threatening disorders affecting individuals of all ages worldwide. This study aimed to develop a novel Acrocomia aculeata (bocaiuva) fruit pulp oil-loaded nanoemulsion and evaluate its inhibitory effects on α-glucosidase and pancreatic lipase, as well [...] Read more.
Background: Diabetes and cancer are two of the most life-threatening disorders affecting individuals of all ages worldwide. This study aimed to develop a novel Acrocomia aculeata (bocaiuva) fruit pulp oil-loaded nanoemulsion and evaluate its inhibitory effects on α-glucosidase and pancreatic lipase, as well as its antiglycant activity and cytotoxicity against cancer cells. Additionally, this study assessed the impact of both the oil and the nanoemulsion on blood cells. Methods: The pulp oil was extracted by cold pressing. The oil’s physicochemical properties were determined according to the AOAC and the Brazilian Pharmacopeia. The lipid profile was performed by GC-MS. The nanoemulsion was prepared by the phase inversion method using ultrasonic stirring for particle size reduction and for homogenization. Response Surface Methodology was used for optimizing nanoemulsion preparation. Enzyme inhibition tests were conducted using assay kits. Cytotoxicity in cancer cells was evaluated using the Sulforhodamine B assay. Results: Comprehensive physicochemical and chemical characterization of bocaiuva oil was performed, identifying oleic acid (71.25%) as the main component. The oil contains 23.04% saturated fatty acids, 73.79% monounsaturated acids, and 3.0% polyunsaturated fatty acids. The nanoemulsion (particle size 173.6 nm; zeta potential −14.10 mV) inhibited α-glucosidase (IC50: 43.21 µg/mL) and pancreatic lipase (IC50: 41.99 µg/mL), and revealed a potent antiglycation effect (oxidative IC50: 18.36 µg/mL; non-oxidative pathway IC50: 16.33 µg/mL). The nanoemulsion demonstrated good cytotoxicity and selectivity against prostate cancer cells (IC50: 19.13 µg/mL) and breast cancer cells (IC50: 27.22 µg/mL), without inducing hemolysis, platelet aggregation, or anticoagulant effects. Conclusions: In this study, a comprehensive physical and chemical characterization of bocaiuva fruit pulp oil was conducted for the first time as a preliminary step toward its future standardization as an active ingredient in cosmetic and pharmaceutical formulations. The resulting nanoemulsion represents a novel alternative for managing diabetes and cancer. Although the nanoemulsion exhibited lower cytotoxicity compared to doxorubicin, it remains promising due to its composition of essential fatty acids, phenols, and carotenoids, which offer multiple health benefits. Further studies are needed to validate its efficacy and safety in clinical applications. Full article
(This article belongs to the Special Issue Nanotechnology in Biomedical Applications)
Show Figures

Graphical abstract

21 pages, 3729 KB  
Article
Short-Chain Fatty Acid Utilization in Cyberlindnera jadinii for Single-Cell Protein and Odd-Chain Fatty Acid Production
by Christian Hermansen, Rowanne Siao, Gi Gi Chua, Mikko Ru Xuan Lee, Aaron Thong, Melanie Weingarten, Nic Lindley and Eric Charles Peterson
Microorganisms 2025, 13(7), 1558; https://doi.org/10.3390/microorganisms13071558 - 2 Jul 2025
Viewed by 913
Abstract
In view of the growing global need for sustainable protein sources, this study explores the utilization of short-chain fatty acids into single-cell protein using the non-conventional yeast Cyberlindnera jadinii. Short-chain fatty acids can be sustainably produced via anaerobic digestion of organic waste, [...] Read more.
In view of the growing global need for sustainable protein sources, this study explores the utilization of short-chain fatty acids into single-cell protein using the non-conventional yeast Cyberlindnera jadinii. Short-chain fatty acids can be sustainably produced via anaerobic digestion of organic waste, presenting a promising fermentation substrate for a circular bioeconomy. Cyberlindnera jadinii is demonstrated to be capable of growing on acetate, propionate and butyrate as both a carbon and energy source without strong inhibition. Bioprocess development was conducted in stirred tank bioreactors, where a fed-batch pH-stat bioprocess led to improved efficiency without substrate inhibition. The highest titer of 31.3 ± 1.0 g/L, rate of 0.67 ± 0.02 g/L/h and yield of 0.36 ± 0.01 g/g was achieved with propionate. The resulting biomass contained 41.3% crude protein, and 17.3% crude lipids with 81% unsaturated fatty acids. In contrast to acetate and butyrate, propionate as a substrate led to accumulation of 37% odd-chain fatty acids with titer, rate and yield of 1.74 ± 0.06 g/L, 0.037 ± 0.001 g/L/h and 0.020 ± 0.001 g/g. These findings confirm that short-chain fatty acids are viable fermentation substrates not only for single-cell protein, but also unsaturated and odd-chain fatty acid production with Cyberlindnera jadinii. Full article
(This article belongs to the Special Issue Yeasts Biochemistry and Biotechnology, 2nd Edition)
Show Figures

Figure 1

14 pages, 2508 KB  
Article
Enhancement of Efficiency in an Ex Situ Coprecipitation Method for Superparamagnetic Bacterial Cellulose Hybrid Materials
by Thaís Cavalcante de Souza, Italo José Batista Durval, Hugo Moraes Meira, Andréa Fernanda de Santana Costa, Eduardo Padrón Hernández, Attilio Converti, Glória Maria Vinhas and Leonie Asfora Sarubbo
Membranes 2025, 15(7), 198; https://doi.org/10.3390/membranes15070198 - 1 Jul 2025
Viewed by 735
Abstract
Superparamagnetic magnetite nanoparticles (Fe3O4) have garnered considerable interest due to their unique magnetic properties and potential for integration into multifunctional biomaterials. In particular, their incorporation into bacterial cellulose (BC) matrices offers a promising route for developing sustainable and high-performance [...] Read more.
Superparamagnetic magnetite nanoparticles (Fe3O4) have garnered considerable interest due to their unique magnetic properties and potential for integration into multifunctional biomaterials. In particular, their incorporation into bacterial cellulose (BC) matrices offers a promising route for developing sustainable and high-performance magnetic composites. Numerous studies have explored BC-magnetite systems; however, innovations combining ex situ coprecipitation synthesis within BC matrices, tailored reagent molar ratios, stirring protocols, and purification processes remain limited. This study aimed to optimize the ex situ coprecipitation method for synthesizing superparamagnetic magnetite nanoparticles embedded in BC membranes, focusing on enhancing particle stability and crystallinity. BC membranes containing varying concentrations of magnetite (40%, 50%, 60%, and 70%) were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). The resulting magnetic BC membranes demonstrated homogenous dispersion of nanoparticles, improved crystallite size (6.96 nm), and enhanced magnetic saturation (Ms) (50.4 emu/g), compared to previously reported methods. The adoption and synergistic optimization of synthesis parameters—unique to this study—conferred greater control over the physicochemical and magnetic properties of the composites. These findings position the optimized BC-magnetite nanocomposites as highly promising candidates for advanced applications, including electromagnetic interference (EMI) shielding, electronic devices, gas sensors, MRI contrast agents, and targeted drug delivery systems. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

18 pages, 14557 KB  
Article
A Full Chain of Applying Struvite Recovered from Biogas Slurry to Promote Vegetable Growth
by Yunhan Li, Wei Wang, Linhe Sun, Jian Cui, Xiaojing Liu, Jixiang Liu, Yajun Chang and Dongrui Yao
Agriculture 2025, 15(13), 1352; https://doi.org/10.3390/agriculture15131352 - 25 Jun 2025
Viewed by 506
Abstract
The expansion of the livestock industry has led to an increase in biogas slurry discharge, which contains high levels of nitrogen (N) and phosphorous (P). Struvite precipitation is an effective method for the recovery of N and P from biogas slurry, and the [...] Read more.
The expansion of the livestock industry has led to an increase in biogas slurry discharge, which contains high levels of nitrogen (N) and phosphorous (P). Struvite precipitation is an effective method for the recovery of N and P from biogas slurry, and the recovered N and P can be applied as a slow-release fertilizer in agricultural production. To form an industrial chain for struvite recovery and application in agriculture, we investigated the factors affecting struvite recovery from biogas slurry generated on a pig farm and evaluated its efficacy as a fertilizer. The N and P recovery efficiency was higher when magnesium chloride (MgCl2) was used as a magnesium (Mg) source compared with magnesium oxide (MgO), and the optimal reaction conditions were pH 10, a reaction time of 20 min, a stirring rate of 200 rpm, and a Mg/P/N ratio of 1.2:1.0:1.0, which achieved N and P recovery rates of 81.83% and 99.67%, respectively. To further investigate the commercial utility of using struvite recovered from biogas slurry as a fertilizer, the growth and content of nutrients in two common vegetables in China were measured. The vegetable quality-related parameters of bock choy (Brassica chinensis) improved as the proportion of struvite in the fertilizer increased. Fresh weight, soluble sugar, and soluble protein increased by 194.47%, 46.13%, and 82.42%, respectively. The quality-related parameters of water celery (Oenanthe javanica (Blume) DC.) increased with an increasing proportion of struvite (27.90 mg·g−1 soluble sugar and 42.20 mg·g−1 soluble protein). The application of struvite precipitated from biogas slurry in plant cultivation shows great potential and lays a solid foundation for the resourceful recovery and utilization of biogas slurry. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Graphical abstract

17 pages, 2850 KB  
Article
Influence of NaCl on Phase Development and Corrosion Resistance of Portland Cement
by Byung-Hyun Shin, Miyoung You, Jinyong Park, Junghyun Cho, Seongjun Kim, Jung-Woo Ok, Jonggi Hong, Taekyu Lee, Jong-Seong Bae, Pungkeun Song and Jang-Hee Yoon
Crystals 2025, 15(6), 579; https://doi.org/10.3390/cryst15060579 - 19 Jun 2025
Cited by 1 | Viewed by 542
Abstract
Portland cement is one of the most widely used construction materials employed in both large-scale structures and everyday applications. Although various materials are often added during production to enhance their performance, NaCl can be introduced in the process for various reasons. Despite this [...] Read more.
Portland cement is one of the most widely used construction materials employed in both large-scale structures and everyday applications. Although various materials are often added during production to enhance their performance, NaCl can be introduced in the process for various reasons. Despite this issue, existing studies lack sufficient quantitative data on the effects of NaCl on cement properties. Therefore, this study aims to investigate the physical and chemical degradation mechanisms in cement containing NaCl. Cement specimens were prepared by mixing cement, water, and NaCl, followed by stirring at 60 rpm and curing at room temperature for seven days. Microstructural changes as a function of the NaCl concentration were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Electrochemical properties were evaluated via open-circuit potential (OCP) measurements, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization tests. The results indicate that increasing the NaCl concentration leads to the formation of fine precipitates, the degradation of the cement matrix, and the reduced stability of major hydration products. Furthermore, the electrochemical analysis revealed that higher NaCl concentrations weaken the passive layer on the cement surface, resulting in an increased corrosion rate from 1 × 10−7 to 4 × 10−7 on the active polarization of the potentiodynamic polarization curve. Additionally, the pitting potential (Epit) decreased from 0.73 V to 0.61 V with an increasing NaCl concentration up to 3 wt.%. This study quantitatively evaluates the impact of NaCl on the durability of Portland cement and provides fundamental data to ensure the long-term stability of cement structures in chloride-rich environments. Full article
Show Figures

Figure 1

18 pages, 5037 KB  
Article
Micromodification Mechanism and High-Temperature Rheological Properties of Activated Rubber/Styrene–Butadiene–Styrene Compound-Modified Asphalt
by Kai Zhang, Xuwen Zhong, Xukun Huang, Weihua Wan, Hai Zhou and Bin Liu
Materials 2025, 18(11), 2643; https://doi.org/10.3390/ma18112643 - 4 Jun 2025
Viewed by 674
Abstract
Currently, research on the modification mechanisms of activated rubber/SBS (styrene–butadiene–styrene) composites and the microscopic processes involved remains limited. To investigate the impact of the rubber activation treatment combined with SBS modifier on asphalt modification, this study employs composite-modified asphalt formulations using either a [...] Read more.
Currently, research on the modification mechanisms of activated rubber/SBS (styrene–butadiene–styrene) composites and the microscopic processes involved remains limited. To investigate the impact of the rubber activation treatment combined with SBS modifier on asphalt modification, this study employs composite-modified asphalt formulations using either a conventional mix or activated rubber in conjunction with SBS. Infrared spectroscopy (IR) and scanning electron microscopy (SEM) were utilized to analyze the chemical components and microscopic morphology of the composite-modified asphalt following activation treatment. Microscopic analysis revealed that the asphalt stirred for 20 min has a characteristic peak with a wave number of 966 cm−1, while the characteristic peak with a wave number of 700 cm−1 is not obvious. That is, the asphalt sample contains the polybutadiene component and a reduced amount of the polystyrene component. Therefore, it can be inferred that the asphalt sample only contains activated rubber, along with less SBS modifier content. Traditional rubber undergoes significant expansion reactions during the mixing stage, but there are difficulties in degradation, which leave large particles and reduce the proportions of the lightweight asphalt components. However, active rubber and SBS mainly expand and degrade more completely during the shear stage, forming many micro-volume particles in asphalt. Additionally, frequency scanning and multiple creep recovery tests were conducted to evaluate the high-temperature rheological properties of the asphalt. The results indicate that activated rubber, doped at 20%, and SBS, doped at 2%, significantly enhance the high-temperature rheological properties of the composite-modified asphalt compared to base asphalt, exhibiting a 417.16% increase in the complex modulus at 64 °C and 1 Hz. Furthermore, these modifiers interact synergistically to improve modification efficiency. Full article
Show Figures

Figure 1

13 pages, 5518 KB  
Article
Remediating Per- and Polyfluoroalkyl Substances (PFAS)-Contaminated Water by Foam Fractionation and Electrochemical Oxidation
by Steve Comfort, Amanda Araújo da Silva, Jessica Powell, Rebecca Cain, Ashleigh McGreer and Renato F. Dantas
Environments 2025, 12(6), 185; https://doi.org/10.3390/environments12060185 - 31 May 2025
Viewed by 1851
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a family of synthetic chemicals that were used to improve the quality of several commercial products by making them resistant to heat, oil, stains, and grease. By containing a fluorinated carbon tail and a hydrophilic head (-COOH, [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) are a family of synthetic chemicals that were used to improve the quality of several commercial products by making them resistant to heat, oil, stains, and grease. By containing a fluorinated carbon tail and a hydrophilic head (-COOH, -SO3H), PFASs act as surfactants that are attracted to bubble–water interfaces. Foam fractionation is the process of facilitating PFAS–air bubble interactions for the purpose of removing contaminants from tainted water. In this paper, we report on the use of foam fractionation and electrochemical oxidation (EO) under stirred batch conditions (200 mL) to remediate PFAS-contaminated water. We used radiolabeled PFOA (perfluorooctanoic acid; 14C-PFOA) as a representative surrogate to quickly screen treatment variables of flow rate, pH, temperature, and soap mass. Using radiolabeled PFASs eliminated the possibility of cross-contamination and greatly reduced analytical costs and processing time. The results showed that foam fractionation can remove 80 to 90 percent of PFOA from water within 30 min and that 90 to 100 percent of the PFOA in the concentrated foamate can be oxidized via electrochemical oxidation (-14COOH → 14CO2). We also tested the efficacy of the combined foam fractionation–EO treatment in natural waters by spiking 14C-PFOA and a cosolvent (CTAB) into PFAS-contaminated water obtained from two field sites with divergent PFAS concentrations and differing sources of PFAS contamination (natural drainage ditch vs. WWTP). Using a larger-scale tank (3500 mL), we observed that foam fractionation was 90% effective in removing 14C-PFOA from the WWTP effluent but only 50% effective for the drainage ditch water. Regardless, EO was highly effective in oxidizing 14C-PFOA in the foamate from both sources with half-lives (T1/2) ranging from 8.7 to 15 min. While water chemistry differences between source waters may have influenced foam fractionation and require additional investigations, tank experiments provide the first proof-of-concept experiment using 14C-PFASs that foam fractionation and electrochemical oxidation can be used in tandem to treat PFAS-contaminated water. Full article
Show Figures

Figure 1

17 pages, 5463 KB  
Article
The Effect of Forced Melt Flow by a Rotating Magnetic Field and Solid/Liquid Front Velocity on the Size and Morphology of Primary Si in a Hypereutectic Al-18 wt.% Si Alloy
by Dimah Zakaraia, András Roósz, Arnold Rónaföldi and Zsolt Veres
Materials 2025, 18(11), 2581; https://doi.org/10.3390/ma18112581 - 31 May 2025
Viewed by 536
Abstract
Hypereutectic Al-Si alloys containing primary Si exhibit unique material properties that make them suitable for various industrial applications. Understanding the characteristics of primary Si is crucial for predicting the effect of solidification conditions on the microstructure of these alloys. This paper presents a [...] Read more.
Hypereutectic Al-Si alloys containing primary Si exhibit unique material properties that make them suitable for various industrial applications. Understanding the characteristics of primary Si is crucial for predicting the effect of solidification conditions on the microstructure of these alloys. This paper presents a comprehensive characterisation study of primary Si in hypereutectic alloys. This study provides a detailed analysis of the size, distribution, and morphology of primary Si, providing valuable insights into the alloy structure, mechanical properties, and even the performance of the production process. The effect of forced melt flow by a rotating magnetic field (RMF) and solid/liquid front velocity on the size and morphology of primary Si in a hypereutectic Al-18 wt.% Si alloy was investigated. The purpose of using the RMF technique during the solidification process of Al-Si alloys is to enhance the alloy’s microstructure by inducing electromagnetic stirring. The hypereutectic samples were solidified at five different front velocities (0.02, 0.04, 0.08, 0.2, and 0.4 mm/s), under an average temperature gradient (G) of 8 K/mm, in a crystalliser equipped with an RMF inductor. Each sample was divided into two parts: the first solidified without stirring, while the second underwent electromagnetic stirring using RMF at an induction (B) of 7.2 mT. The results revealed that increasing the front velocity during solidification refined the primary Si in stirred and non-stirred parts. In non-stirred parts, it decreased dendritic forms and increased star-like Si, while polyhedral shapes remained nearly constant. Stirred parts showed stable Si morphology across velocities. Higher velocities also promoted equiaxed over elongated Si forms in both parts. Full article
Show Figures

Figure 1

24 pages, 4281 KB  
Article
Copper–Ammonia–Thiosulfate Leaching of High-Sulfide Concentrates: Process Optimization and Additive Effects on Gold Extraction
by Azizbek Bolikulovich Buronov, Blackie Korul Yayabu, Labone Lorraine Godirilwe, Batnasan Altansukh, Sanghee Jeon, Kazutoshi Haga and Atsushi Shibayama
Metals 2025, 15(6), 572; https://doi.org/10.3390/met15060572 - 22 May 2025
Viewed by 1360
Abstract
This research focuses on finding an environmentally friendly method for extracting gold from a sulfide flotation concentrate. In this study, an ammonia–copper–thiosulfate leaching system was utilized for the extraction of gold. The flotation concentrate sample contains about 190 ppm of gold, 160 ppm [...] Read more.
This research focuses on finding an environmentally friendly method for extracting gold from a sulfide flotation concentrate. In this study, an ammonia–copper–thiosulfate leaching system was utilized for the extraction of gold. The flotation concentrate sample contains about 190 ppm of gold, 160 ppm of silver, and 6.89% of copper. To achieve an optimized gold extraction, various parameters, such as thiosulfate, ammonia and copper concentrations, pulp density, pH, stirring rate, temperature, and time, were investigated. About 87% of gold was leached under the following conditions: 0.5 M S2O32−, 1.0 M NH3, 0.1 M Cu2+, a stirring rate of 350 rpm, a pH of 12, a pulp density of 10% solids, a temperature of 25 °C, and a leaching time of 2 h. Additionally, to improve the economic effectiveness of the leaching system, thiosulfate consumption was investigated by utilizing different additives, such as diethylenetriamine (DETA), glycerol, and ammonium dihydrogen phosphate (ADP). The results showed that with the use of ADP, gold extraction increased from 87% to 91% while reducing copper dissolution. Additionally, the thiosulfate consumption also decreased from 0.37 M to 0.3 M. The inclusion of ADP was particularly effective, enhancing gold extraction efficiency and reducing reagent consumption, thereby making the process more sustainable. Considering the high economic value of gold, the optimization of recovery efficiency is prioritized over reagent costs in this study. Overall, this study indicates that the optimized ammonia–copper–thiosulfate leaching system with ADP additive is a promising environmentally friendly method for the extraction of gold. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

20 pages, 3404 KB  
Article
A Data-Driven Approach to Link GC-MS and LC-MS with Sensory Attributes of Chicken Bouillon with Added Yeast-Derived Flavor Products in a Combined Prediction Model
by Simon Leygeber, Carmen Diez-Simon, Justus L. Großmann, Anne-Charlotte Dubbelman, Amy C. Harms, Johan A. Westerhuis, Doris M. Jacobs, Peter W. Lindenburg, Margriet M. W. B. Hendriks, Brenda C. H. Ammerlaan, Marco A. van den Berg, Rudi van Doorn, Roland Mumm, Age K. Smilde, Robert D. Hall and Thomas Hankemeier
Metabolites 2025, 15(5), 317; https://doi.org/10.3390/metabo15050317 - 8 May 2025
Viewed by 1072
Abstract
Background: There is a continuous demand to create new, superior sensory food experiences. In the food industry, yeast-derived flavor products (YPs) are often used as ingredients in foods to create new aromas and taste qualities that are appreciated by consumers. Methods: Chicken bouillon [...] Read more.
Background: There is a continuous demand to create new, superior sensory food experiences. In the food industry, yeast-derived flavor products (YPs) are often used as ingredients in foods to create new aromas and taste qualities that are appreciated by consumers. Methods: Chicken bouillon samples containing diverse YPs were chemically and sensorially characterized using statistical multivariate analyses. The sensory evaluation was performed using quantitative descriptive analysis (QDA) by trained panelists. Thirty-four sensory attributes were scored, including odor, flavor, mouthfeel, aftertaste and afterfeel. Untargeted metabolomic profiles were obtained using stir bar sorptive extraction (SBSE) coupled to GC-MS, RPLC-MS and targeted HILIC-MS. Results: In total, 261 volatiles were detected using GC-MS, from chemical groups of predominantly aldehydes, esters, pyrazines and ketones. Random Forest (RF) modeling revealed volatiles associated with roast odor (2-ethyl-5-methyl pyrazine, 2,3,5-trimethyl-6-isopentyl pyrazine) and chicken odor (2,4-nonadienal, 2,4-decadienal, 2-acetyl furan), which could be predicted by our combined model with R2 > 0.5. In total, 2305 non-volatiles were detected for RPLC-MS and 34 for targeted HILIC-MS, where fructose-isoleucine and cyclo-leucine-proline were found to correlate with roast flavor and odor. Furthermore, a list of metabolites (glutamate, monophosphates, methionyl-leucine) was linked to umami-related flavor. This study describes a straightforward data-driven approach for studying foods with added YPs to identify flavor-impacting correlations between molecular composition and sensory perception. It also highlights limitations and preconditions for good prediction models. Overall, this study emphasizes a matrix-based approach for the prediction of food taste, which can be used to analyze foods for targeted flavor design or quality control. Full article
(This article belongs to the Section Food Metabolomics)
Show Figures

Figure 1

18 pages, 8239 KB  
Article
Enhanced Mechanical Properties of 3D-Printed Glass Fibre-Reinforced Polyethylene Composites
by Jan Sezemský, Gregor Primc, Taťana Vacková, Zdeňka Jeníková, Miran Mozetič and Petr Špatenka
Polymers 2025, 17(9), 1154; https://doi.org/10.3390/polym17091154 - 24 Apr 2025
Cited by 2 | Viewed by 917
Abstract
Optimisation of the tensile strength of thermoplastic polymer-matrix composites remains a scientific as well as technological challenge for 3D printing technology due to the mass application of composite materials. Inadequate mechanical properties are due to the mismatch in the surface energies of the [...] Read more.
Optimisation of the tensile strength of thermoplastic polymer-matrix composites remains a scientific as well as technological challenge for 3D printing technology due to the mass application of composite materials. Inadequate mechanical properties are due to the mismatch in the surface energies of the polymer and fillers. In this study, an additively manufactured composite was 3D-printed and tested. The composite consisted of a linear low-density polyethylene matrix filled with glass fibres. Composite filaments were extruded from neat and plasma-treated polymer powders. Plasma was sustained in oxygen at 100 Pa by a pulsed microwave discharge, and 250 g of polymer powder of average diameter 150 µm was placed into a dish and stirred during the plasma treatment. The O-atom density at the position of the dish containing polymer powder was about 2 × 1021 m−3, and the treatment time was varied up to 30 min. A gradual improvement in the composites’ tensile and flexural strength was observed at the plasma treatment time up to about 10 min, and the mechanical properties remained unchanged with prolonged treatment time. The tensile strength of composites prepared from plasma-treated polymer increased by one-third compared to those based on untreated powder. However, reinforcing the modified polyethylene with plasma-treated glass fibres did not result in further significant mechanical improvement compared to untreated fibres. In contrast, strength values doubled using glass fibres with silane sizing in combination with plasma-modified matrix. The results were explained by the increased surface energy of the polymer powder due to functionalisation with polar functional groups during plasma treatment. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

Back to TopTop