Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = stratospheric intrusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3075 KB  
Article
The Impact of Stratospheric Intrusion on Surface Ozone in Urban Areas of the Northeastern Tibetan Plateau
by Mingge Li, Yawen Kong, Meng Fan, Chao Yu, Ying Zhang, Jianbin Gu, Jinhua Tao and Liangfu Chen
Atmosphere 2025, 16(6), 708; https://doi.org/10.3390/atmos16060708 - 12 Jun 2025
Viewed by 1348
Abstract
In recent years, high-altitude cities with low emissions in western China have exhibited an upward trend in surface ozone (O3). Based on observations and reanalysis data, this study analyzed the evolutionary characteristics and pollution mechanisms of ozone in Xining and quantified [...] Read more.
In recent years, high-altitude cities with low emissions in western China have exhibited an upward trend in surface ozone (O3). Based on observations and reanalysis data, this study analyzed the evolutionary characteristics and pollution mechanisms of ozone in Xining and quantified the impact of stratospheric intrusion. The results indicated that an upward trend in summer O3 was observed in Xining. A total of 29 ozone exceedance days were found. Potential exceedance days (>150 and >140 μg/m3) showed substantial increases from 2022 to 2023. Using a stratospheric intrusion to surface (SITS) event identification algorithm, 42 events were found in Xining, with an average duration of 8.4 h. Spring exhibited the highest event frequency (13 events) and longest average duration. SITS events contributed an average of 19.7% to surface ozone, significantly exacerbating local exceedance risks. A typical ozone pollution episode from 25 July to 3 August 2021 was analyzed. The peak O3 reached 170 μg/m3. Elevated temperature, intensified radiation, and unfavorable meteorological conditions synergistically promoted local photochemical ozone production and accumulation. Notably, a SITS event was simultaneously detected, elevating surface ozone by 24%, which confirmed that stratospheric intrusion was the main cause of pollution. Full article
(This article belongs to the Special Issue Coordinated Control of PM2.5 and O3 and Its Impacts in China)
Show Figures

Figure 1

17 pages, 4041 KB  
Article
Sources and Trends of CO, O3, and Aerosols at the Mount Bachelor Observatory (2004–2022)
by Noah Bernays, Jakob Johnson and Daniel Jaffe
Atmosphere 2025, 16(1), 85; https://doi.org/10.3390/atmos16010085 - 15 Jan 2025
Viewed by 1019
Abstract
Understanding baseline O3 is important as it defines the fraction of O3 coming from global sources and not subject to local control. We report the occurrence and sources of high baseline ozone days, defined as a day where the daily maximum [...] Read more.
Understanding baseline O3 is important as it defines the fraction of O3 coming from global sources and not subject to local control. We report the occurrence and sources of high baseline ozone days, defined as a day where the daily maximum 8 h average (MDA8) exceeds 70 ppb, as observed at the Mount Bachelor Observatory (MBO, 2.8 km asl) in Central Oregon from 2004 to 2022. We used various indicators and enhancement ratios to categorize each high-O3 day: carbon monoxide (CO), aerosol scattering, the water vapor mixing ratio (WV), the aerosol scattering-to-CO ratio, backward trajectories, and the NOAA Hazard Mapping System Fire and Smoke maps. Using these, we identified four causes of high-O3 days at the MBO: Upper Troposphere/Lower Stratosphere intrusions (UTLS), Asian long-range transport (ALRT), a mixed UTLS/ALRT category, and events enhanced by wildfire emissions. Wildfire sources were further divided into two categories: smoke transported in the boundary layer to the MBO and smoke transported in the free troposphere from more distant fires. Over the 19-year period, 167 high-ozone days were identified, with an increasing fraction due to contributions from wildfire emissions and a decreasing fraction of ALRT events. We further evaluated trends in the O3 and CO data distributions by season. For O3, we found an overall increase in the mean and median values of 2.2 and 1.5 ppb, respectively, from the earliest part of the record (2004–2013) compared to the later part (2014–2022), but no significant linear trends in any season. For CO, we found a significant positive trend in the summer 95th percentiles, associated with increasing fires in the Western U.S., and a strong negative trend in the springtime values at all percentiles (1.6% yr−1 for 50th percentile). This decline was likely associated with decreasing emissions from East Asia. Overall, our findings are consistent with the positive trend in wildfires in the Western United States and the efforts in Asia to decrease emissions. This work demonstrates the changing influence of these two source categories on global background O3 and CO. Full article
(This article belongs to the Special Issue Measurement and Variability of Atmospheric Ozone)
Show Figures

Figure 1

20 pages, 7579 KB  
Article
AIRS and MODIS Satellite-Based Assessment of Air Pollution in Southwestern China: Impact of Stratospheric Intrusions and Cross-Border Transport of Biomass Burning
by Puyu Lian, Kaihui Zhao and Zibing Yuan
Remote Sens. 2024, 16(13), 2409; https://doi.org/10.3390/rs16132409 - 1 Jul 2024
Cited by 3 | Viewed by 2275
Abstract
The exacerbation of air pollution during spring in Yunnan province, China, has attracted widespread attention. However, many studies have focused solely on the impacts of anthropogenic emissions while ignoring the role of natural processes. This study used satellite data spanning 21 years from [...] Read more.
The exacerbation of air pollution during spring in Yunnan province, China, has attracted widespread attention. However, many studies have focused solely on the impacts of anthropogenic emissions while ignoring the role of natural processes. This study used satellite data spanning 21 years from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) to reveal two natural processes closely related to springtime ozone (O3) and PM2.5 pollution: stratospheric intrusions (SIs) and cross-border transport of biomass burning (BB). We aimed to assess the mechanisms through which SIs and cross-border BB transport influence O3 and PM2.5 pollution in Southwestern China during the spring. The unique geographical conditions and prevalent southwest winds are considered the key driving factors for SIs and cross-border BB transport. Frequent tropopause folding provides favorable dynamic conditions for SIs in the upper troposphere. In the lower troposphere, the distribution patterns of O3 and stratospheric O3 tracer (O3S) are similar to the terrain, indicating that O3 is more likely to reach the surface with increasing altitude. Using stratospheric tracer tagging methods, we quantified the contributions of SIs to surface O3, ranging from 6 to 31 ppbv and accounting for 10–38% of surface O3 levels. Additionally, as Yunnan is located downwind of Myanmar and has complex terrain, it provides favorable conditions for PM2.5 and O3 generation from cross-border BB transport. The decreasing terrain distribution from north to south in Yunnan facilitates PM2.5 transport to lower-elevation border cities, whereas higher-elevation cities hinder PM2.5 transport, leading to spatial heterogeneity in PM2.5. This study provides scientific support for elucidating the two key processes governing springtime PM2.5 and O3 pollution in Yunnan, SIs and cross-border BB transport, and can assist policymakers in formulating optimal emission reduction strategies. Full article
(This article belongs to the Special Issue Application of Satellite Aerosol Remote Sensing in Air Quality)
Show Figures

Graphical abstract

14 pages, 11225 KB  
Technical Note
3-D Changes of Tropospheric O3 in Central and Eastern China Induced by Tropical Cyclones over the Northwest Pacific: Recent-Year Characterization with Multi-Source Observations
by Yongcheng Jiang, Tianliang Zhao, Kai Meng, Xugeng Cheng and Qiaoyi Lv
Remote Sens. 2024, 16(7), 1178; https://doi.org/10.3390/rs16071178 - 28 Mar 2024
Cited by 1 | Viewed by 1523
Abstract
In this study, the multi-year data of meteorology and O3 from remote sensing and ground observations are applied to characterize the 3-D changes of O3 in the troposphere over central and eastern China (CEC) induced by the tropical cyclones (TCs) in [...] Read more.
In this study, the multi-year data of meteorology and O3 from remote sensing and ground observations are applied to characterize the 3-D changes of O3 in the troposphere over central and eastern China (CEC) induced by the tropical cyclones (TCs) in the tropical and subtropical ocean regions over Northwest Pacific. The CEC-regional average of near-surface O3 levels is significantly elevated with 6.0 ppb in the large coverage by the TCs in the subtropical ocean, while the TCs in the tropical ocean alter near-surface O3 weakly, indicating the latitudinal-located TCs in the subtropical offshore ocean could largely influence the O3 variations over CEC. The sub-seasonal change with the positive and negative anomalies of near-surface O3 is induced by the tropical TCs from June to July and from August to October. The peripheral circulation of TCs in the subtropical offshore ocean persistently enhances the O3 concentrations over CEC during the season of East Asian summer monsoons. The positive O3 anomalies maintain from the entire troposphere to the lower stratosphere over CEC in the peripheries of subtropical TCs, while the tropical TCs cause the positive O3 anomalies merely in the lower troposphere. The O3 transport and accumulation, photochemical production and stratospheric intrusion are climatologically confirmed as the major meteorological mechanisms of TCs affecting the O3 variations. This study reveals that the downward transport of stratospheric O3 of TCs in the subtropical ocean exerts a large impact on the atmospheric environment over CEC, while the regional O3 transport and photochemical productions dominate the lower troposphere over CEC with less impact of stratospheric intrusion from the TCs in the tropical ocean region. These results present the climatology of tropospheric O3 anomalies in China induced by the TCs over the Northwest Pacific with enhancing our comprehension of the meteorological impact on O3 variations over the East Asian monsoon region. Full article
Show Figures

Graphical abstract

27 pages, 6232 KB  
Article
Observational Analyses of Dry Intrusions and Increased Ozone Concentrations in the Environment of Wildfires
by Christo G. Georgiev, Stephen A. Tjemkes, Athanasios Karagiannidis, Jose Prieto and Konstantinos Lagouvardos
Atmosphere 2022, 13(4), 597; https://doi.org/10.3390/atmos13040597 - 8 Apr 2022
Cited by 4 | Viewed by 2564
Abstract
In this study, atmospheric dynamical processes, which govern the intensification of wildfire activity and the associated increase in low-level ozone concentrations, were studied using images, advanced products and vertical profiles derived from satellite observations. The analyses confirm that the influence of deep stratospheric [...] Read more.
In this study, atmospheric dynamical processes, which govern the intensification of wildfire activity and the associated increase in low-level ozone concentrations, were studied using images, advanced products and vertical profiles derived from satellite observations. The analyses confirm that the influence of deep stratospheric intrusions, identified in the satellite water vapor imagery, on a fire-risk area contributes to the increase in fire activity. The depth of dry stratospheric intrusions, the associated synoptic evolution and the enhanced low-level ozone concentrations caused by vertical transport of stratospheric air and/or related to biomass burning emissions were analyzed using satellite measurements from SEVIRI, IASI and CrIS instruments, complemented with surface observations near the wildfires’ locations. It is shown that the spatial and vertical resolutions of these soundings provide a way of identifying areas of enhanced ozone downwind of wildfires. Influences of the upper-troposphere dynamics and the wind field evolution as factors of uncertainty and complexity in studying the ozone production from wildfire emissions are considered. The combination of satellite soundings and satellite estimations of fire radiative energy and WV imagery may contribute to better understand the ozone enhancement associated with stratospheric intrusion and wildfire emissions. Full article
(This article belongs to the Special Issue Advances in Fire-Atmosphere Interaction)
Show Figures

Figure 1

25 pages, 12326 KB  
Article
Relationships between Extratropical Precipitation Systems and UTLS Temperatures and Tropopause Height from GPM and GPS-RO
by Benjamin R. Johnston, Feiqin Xie and Chuntao Liu
Atmosphere 2022, 13(2), 196; https://doi.org/10.3390/atmos13020196 - 26 Jan 2022
Cited by 1 | Viewed by 3242
Abstract
This study characterizes the relationship between extratropical precipitation systems to changes in upper troposphere and lower stratosphere (UTLS) temperature and tropopause height within different environments. Precipitation features (PFs) observed by the Global Precipitation Measurement (GPM) satellite are collocated with GPS radio occultation (RO) [...] Read more.
This study characterizes the relationship between extratropical precipitation systems to changes in upper troposphere and lower stratosphere (UTLS) temperature and tropopause height within different environments. Precipitation features (PFs) observed by the Global Precipitation Measurement (GPM) satellite are collocated with GPS radio occultation (RO) temperature profiles from 2014 to 2017 and classified as non-deep stratospheric intrusion (non-DSI; related to convective instability) or deep stratospheric intrusion (DSI; related to strong dynamic effects on the tropopause). Non-DSI PFs introduce warming (up to 1 K) in the upper troposphere, transitioning to strong cooling (up to −3.5 K) around the lapse rate tropopause (LRT), and back to warming (up to 2.5 K, particularly over the ocean) in the lower stratosphere. UTLS temperature anomalies for DSI events are driven predominantly by large scale dynamics, with major cooling (up to −6 K) observed from the mid-troposphere to the LRT, which transitions to strong warming (up to 4 K) in the lower stratosphere. Small and deep non-DSI PFs typically result in a lower LRT (up to 0.4 km), whereas large but weaker PFs lead to a higher LRT with similar magnitudes. DSI events are associated with larger LRT height decreases, with anomalies of almost −2 km near the deepest PFs. These results suggest intricate relationships between precipitation systems and the UTLS temperature structure. Importantly, non-DSI PF temperature anomalies show patterns similar to tropical convection, which provides unification of previous tropical research with extratropical barotropic convective impacts to UTLS temperatures. Full article
(This article belongs to the Special Issue Advances in GNSS Radio Occultation Technique and Applications)
Show Figures

Figure 1

18 pages, 9849 KB  
Article
Simulation of the Multi-Timescale Stratospheric Intrusion Processes in a Typical Cut-Off Low over Northeast Asia
by Dan Chen, Tianjiao Zhou, Dong Guo and Shuhao Ge
Atmosphere 2022, 13(1), 68; https://doi.org/10.3390/atmos13010068 - 31 Dec 2021
Cited by 2 | Viewed by 2279
Abstract
This study used the FLEXPART-WRF trajectory model to perform forward and backward simulations of a cut-off low (COL) event over northeast Asia. The analysis reveals the detailed trajectories and sources of air masses within the COL. Their trajectories illustrate the multi-timescale deep intrusion [...] Read more.
This study used the FLEXPART-WRF trajectory model to perform forward and backward simulations of a cut-off low (COL) event over northeast Asia. The analysis reveals the detailed trajectories and sources of air masses within the COL. Their trajectories illustrate the multi-timescale deep intrusion processes in the upper troposphere and lower stratosphere (UTLS) caused by the COL. The processes of air intrusion from the lower stratosphere to the middle troposphere can be divided into three stages: a slow descent stage, a rapid intrusion stage and a relatively slow intrusion stage. A source analysis of targeted air masses at 300 hPa and 500 hPa shows that the ozone-rich air in the COL primarily originated from an extratropical cyclone over central Siberia and from the extratropical jet stream. The sources of air masses in different parts of the COL show some differences. These results can help explain the ozone distribution characteristics in the main body of a COL at 300 hPa and at 500 hPa that were revealed in a previous study. Full article
(This article belongs to the Special Issue Ozone Pollution in East Asia: Factors and Sources)
Show Figures

Figure 1

19 pages, 1017 KB  
Review
Review on Applications of 17O in Hydrological Cycle
by Yalalt Nyamgerel, Yeongcheol Han, Minji Kim, Dongchan Koh and Jeonghoon Lee
Molecules 2021, 26(15), 4468; https://doi.org/10.3390/molecules26154468 - 24 Jul 2021
Cited by 6 | Viewed by 4184
Abstract
The triple oxygen isotopes (16O, 17O, and 18O) are very useful in hydrological and climatological studies because of their sensitivity to environmental conditions. This review presents an overview of the published literature on the potential applications of 17O [...] Read more.
The triple oxygen isotopes (16O, 17O, and 18O) are very useful in hydrological and climatological studies because of their sensitivity to environmental conditions. This review presents an overview of the published literature on the potential applications of 17O in hydrological studies. Dual-inlet isotope ratio mass spectrometry and laser absorption spectroscopy have been used to measure 17O, which provides information on atmospheric conditions at the moisture source and isotopic fractionations during transport and deposition processes. The variations of δ17O from the developed global meteoric water line, with a slope of 0.528, indicate the importance of regional or local effects on the 17O distribution. In polar regions, factors such as the supersaturation effect, intrusion of stratospheric vapor, post-depositional processes (local moisture recycling through sublimation), regional circulation patterns, sea ice concentration and local meteorological conditions determine the distribution of 17O-excess. Numerous studies have used these isotopes to detect the changes in the moisture source, mixing of different water vapor, evaporative loss in dry regions, re-evaporation of rain drops during warm precipitation and convective storms in low and mid-latitude waters. Owing to the large variation of the spatial scale of hydrological processes with their extent (i.e., whether the processes are local or regional), more studies based on isotopic composition of surface and subsurface water, convective precipitation, and water vapor, are required. In particular, in situ measurements are important for accurate simulations of atmospheric hydrological cycles by isotope-enabled general circulation models. Full article
(This article belongs to the Special Issue Applications of Stable Isotope Analysis)
Show Figures

Figure 1

16 pages, 3242 KB  
Article
The Combined Effect of Ozone and Aerosols on Erythemal Irradiance in an Extremely Low Ozone Event during May 2020
by Ioannis-Panagiotis Raptis, Kostas Eleftheratos, Stelios Kazadzis, Panagiotis Kosmopoulos, Kyriakoula Papachristopoulou and Stavros Solomos
Atmosphere 2021, 12(2), 145; https://doi.org/10.3390/atmos12020145 - 24 Jan 2021
Cited by 12 | Viewed by 4306
Abstract
In this study we focus on measurements and modeled UV index in the region of Athens, Greece, during a low ozone event. During the period of 12–19 May 2020, total ozone column (TOC) showed extremely low values, 35–55 Dobson Units (up to 15%) [...] Read more.
In this study we focus on measurements and modeled UV index in the region of Athens, Greece, during a low ozone event. During the period of 12–19 May 2020, total ozone column (TOC) showed extremely low values, 35–55 Dobson Units (up to 15%) decrease from the climatic mean (being lower than the −2σ). This condition favors the increase of UV erythemal irradiance, since stratospheric ozone is the most important attenuator at the UVB spectral region. Simultaneously, an intrusion of Saharan dust aerosols in the region has masked a large part of the low ozone effect on UV irradiance. In order to investigate the event, we have used spectral solar irradiance measurements from the Precision Solar Radiometer (PSR), TOC from the Brewer spectrophotometer, and Radiative Transfer Model (RTM) calculations. Model calculations of the UV Index (UVI) showed an increase of ~30% compared to the long-term normal UVI due to the low TOC while at the same time and for particular days, aerosols masked this effect by ~20%. The RTM has been used to investigate the response in the UV spectral region of these variations at different solar zenith angles (SZAs). Spectra simulated with the RTM have been compared to measured ones and an average difference of ~2% was found. The study points out the importance of accurate measurements or forecasts of both ozone and aerosols when deriving UVI under unusual low ozone–high aerosol conditions. Full article
(This article belongs to the Special Issue Changes in the Composition of the Atmosphere)
Show Figures

Figure 1

19 pages, 6291 KB  
Article
Comparison of Major Sudden Stratospheric Warming Impacts on the Mid-Latitude Mesosphere Based on Local Microwave Radiometer CO Observations in 2018 and 2019
by Yu Shi, Valerii Shulga, Oksana Ivaniha, Yuke Wang, Oleksandr Evtushevsky, Gennadi Milinevsky, Andrew Klekociuk, Aleksey Patoka, Wei Han and Dmitry Shulga
Remote Sens. 2020, 12(23), 3950; https://doi.org/10.3390/rs12233950 - 3 Dec 2020
Cited by 11 | Viewed by 3567
Abstract
In this paper, a comparison of the impact of major sudden stratospheric warmings (SSWs) in the Arctic in February 2018 (SSW1) and January 2019 (SSW2) on the mid-latitude mesosphere is given. The mesospheric carbon monoxide (CO) and zonal wind in these two major [...] Read more.
In this paper, a comparison of the impact of major sudden stratospheric warmings (SSWs) in the Arctic in February 2018 (SSW1) and January 2019 (SSW2) on the mid-latitude mesosphere is given. The mesospheric carbon monoxide (CO) and zonal wind in these two major SSW events were observed at altitudes of 70–85 km using a microwave radiometer (MWR) at Kharkiv, Ukraine (50.0°N, 36.3°E). Data from ERA-Interim and MERRA-2 reanalyses and Aura Microwave Limb Sounder measurements were also used. It is shown that: (i) The differences between SSW1 and SSW2, in terms of local variability in zonal wind, temperature, and CO in the stratosphere and mesosphere, were clearly defined by the polar vortex (westerly in cyclonic circulation) and mid-latitude anticyclone (easterly) migrating over the MWR station, therefore; (ii) mesospheric intrusions of CO-rich air into the stratosphere over the Kharkiv region occurred only occasionally, (iii) the larger zonal wave 1–3 amplitudes before SSW1 were followed by weaker polar vortex recovery than that after SSW2, (iv) the strong vortex recovery after SSW2 was supported by earlier event timing (midwinter) favoring vortex cooling due to low solar irradiance and enhanced zonal circulation, and (v) vortex strengthening after SSW2 was accompanied by wave 1–3 amplification in March 2019, which was absent after SSW1. Finally, the influence of the large-scale circulation structures formed in individual major SSW events on the locally recorded characteristics of the atmosphere is discussed. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

30 pages, 13345 KB  
Article
Gridded Satellite Sounding Retrievals in Operational Weather Forecasting: Product Description and Emerging Applications
by Emily Berndt, Nadia Smith, Jason Burks, Kris White, Rebekah Esmaili, Arunas Kuciauskas, Erika Duran, Roger Allen, Frank LaFontaine and Jeff Szkodzinski
Remote Sens. 2020, 12(20), 3311; https://doi.org/10.3390/rs12203311 - 12 Oct 2020
Cited by 22 | Viewed by 5269
Abstract
The National Aeronautics and Space Administration (NASA) Short-term Prediction Research and Transition Center (SPoRT) has been part of a collaborative effort within the National Oceanic and Atmospheric Administration (NOAA) Joint Polar Satellite System (JPSS) Proving Ground and Risk Reduction (PGRR) Program to develop [...] Read more.
The National Aeronautics and Space Administration (NASA) Short-term Prediction Research and Transition Center (SPoRT) has been part of a collaborative effort within the National Oceanic and Atmospheric Administration (NOAA) Joint Polar Satellite System (JPSS) Proving Ground and Risk Reduction (PGRR) Program to develop gridded satellite sounding retrievals for the operational weather forecasting community. The NOAA Unique Combined Atmospheric Processing System (NUCAPS) retrieves vertical profiles of temperature, water vapor, trace gases, and cloud properties derived from infrared and microwave sounder measurements. A new, optimized method for deriving NUCAPS level 2 horizontally and vertically gridded products is described here. This work represents the development of approaches to better synthesize remote sensing observations that ultimately increase the availability and usability of NUCAPS observations. This approach, known as “Gridded NUCAPS”, was developed to more effectively visualize NUCAPS observations to aid in the quick identification of thermodynamic spatial gradients. Gridded NUCAPS development was based on operations-to-research feedback and is now part of the operational National Weather Service display system. In this paper, we discuss how Gridded NUCAPS was designed, how relevant atmospheric fields are derived, its operational application in pre-convective weather forecasting, and several emerging applications that expand the utility of NUCAPS for monitoring phenomena such as fire weather, the Saharan Air Layer, and stratospheric air intrusions. Full article
Show Figures

Graphical abstract

14 pages, 16516 KB  
Article
A Stratospheric Intrusion-Influenced Ozone Pollution Episode Associated with an Intense Horizontal-Trough Event
by Yiping Wang, Hongyue Wang and Wuke Wang
Atmosphere 2020, 11(2), 164; https://doi.org/10.3390/atmos11020164 - 4 Feb 2020
Cited by 23 | Viewed by 5236
Abstract
Ozone pollution is currently a serious issue in China. As an important source of tropospheric ozone, the stratospheric ozone has received less concern. This study uses a combination of ground-based ozone measurements, the latest ERA5 reanalysis data as well as chemistry-climate model and [...] Read more.
Ozone pollution is currently a serious issue in China. As an important source of tropospheric ozone, the stratospheric ozone has received less concern. This study uses a combination of ground-based ozone measurements, the latest ERA5 reanalysis data as well as chemistry-climate model and Lagrangian Particle Dispersion Modeling (LPDM) simulations to investigate the potential impacts of stratospheric intrusion (SI) on surface ozone pollution episodes in eastern China. Station-based observations indicate that severe ozone pollution occurred from 27 April to 28 April 2018 in eastern China, with maximal values over 140 ppbv. ERA5 meteorological and ozone data suggest that a strong horizontal-trough exists at the same time, which leads to an evident SI event and brings ozone-rich air from the stratosphere to the troposphere. Using a stratospheric ozone tracer defined by NCAR’s Community Atmosphere Model with Chemistry (CAM-Chem), we conclude that this SI event contributed about 15 ppbv (15%) to the surface ozone pollution episode during 27–28 April in eastern China. The potential impacts of SI events on surface ozone variations should be therefore considered in ozone forecast and control. Full article
(This article belongs to the Special Issue Ozone Evolution in the Past and Future)
Show Figures

Figure 1

17 pages, 4600 KB  
Article
An Assessment of Stratospheric Intrusions in Italian Mountain Regions Using STEFLUX
by Paolo Cristofanelli, Piero Di Carlo, Eleonora Aruffo, Francesco Apadula, Mariantonia Bencardino, Francesco D’Amore, Paolo Bonasoni and Davide Putero
Atmosphere 2018, 9(10), 413; https://doi.org/10.3390/atmos9100413 - 22 Oct 2018
Cited by 5 | Viewed by 4085
Abstract
The Mediterranean basin is considered a global hot-spot region for climate change and air quality, especially concerning summer-time ozone (O3). Previous investigations indicated that the Mediterranean basin is a preferred region for stratosphere-to-troposphere exchange (STE) and deep stratospheric intrusion (SI) events. [...] Read more.
The Mediterranean basin is considered a global hot-spot region for climate change and air quality, especially concerning summer-time ozone (O3). Previous investigations indicated that the Mediterranean basin is a preferred region for stratosphere-to-troposphere exchange (STE) and deep stratospheric intrusion (SI) events. The Lagrangian tool STEFLUX, based on a STE climatology that uses the ERA Interim data, was hereby used to diagnose the occurrence of deep SI events in four mountain regions over the Italian peninsula, spanning from the Alpine region to the southern Apennines. By using near-surface O3 and relative humidity (RH) observations at three high-mountain observatories, we investigated the performance of STEFLUX in detecting deep SI events. Both experimental and STEFLUX detections agreed in describing the seasonal cycle of SI occurrence. Moreover, STEFLUX showed skills in detecting “long-lasting” SI events, especially in the Alps and in the northern Apennines. By using STEFLUX, we found positive tendencies in the SI occurrence during 1979–2017. However, in contrast to similar studies carried out in the Alpine region, the negative long-term (1996–2016) trend of O3 in the northern Apennines did not appear to be related to the SI’s variability. Full article
(This article belongs to the Special Issue Stratosphere–Troposphere Exchanges)
Show Figures

Figure 1

13 pages, 5020 KB  
Article
Satellite Assessments of Tropopause Dry Intrusions Correlated to Mid-Latitude Storms
by Yi-Xuan Shou, Feng Lu and Shaowen Shou
Atmosphere 2016, 7(10), 128; https://doi.org/10.3390/atmos7100128 - 11 Oct 2016
Cited by 1 | Viewed by 5940
Abstract
Dry intrusion is an important mid-latitude atmosphere phenomenon within the upper troposphere and lower stratosphere. It is often found to be related to the cyclogenesis, rainstorm, as well as convection generation and precipitation enhancement. Since the atmosphere environment for any of these above-mentioned [...] Read more.
Dry intrusion is an important mid-latitude atmosphere phenomenon within the upper troposphere and lower stratosphere. It is often found to be related to the cyclogenesis, rainstorm, as well as convection generation and precipitation enhancement. Since the atmosphere environment for any of these above-mentioned weather is terribly complicated, those preexisting popular schemes which takes no account of water vapor may not suitable for detecting the dry intrusion related to such weather events. With regard to the merits and demerits of the current preexisting schemes, a new scheme based on Fengyun-2E geo-stationary satellite data is presented in this study to detect the tropopause dry intrusion. The scheme is set up based on the statistical relationship between water vapor at high level troposphere, the general moist potential vorticity, ozone concentration and upper-level jets. Validations are made by using Fengyun-3B observed ozone profiles and NCEP FNL analysis data. Two mid-latitude storm episodes occurred in China in 2012 and 2014 are selected as demonstration to show the applicability of the method we developed in this study. Good application effects in both cases suggest that the new method for detecting dry intrusion is applicable and can be helpful in middle-latitude disastrous weather monitoring and forecasting. Full article
Show Figures

Figure 1

28 pages, 5236 KB  
Article
An Investigation of Two Highest Ozone Episodes During the Last Decade in New England
by Tzu-Ling Lai, Robert Talbot and Huiting Mao
Atmosphere 2012, 3(1), 59-86; https://doi.org/10.3390/atmos3010059 - 27 Dec 2011
Cited by 9 | Viewed by 7335
Abstract
This study examined the role of meteorological processes in two of the highest ozone (O3) episodes within the last decade at monitoring sites in southern New Hampshire (NH), USA. The highest O3 levels occurred on 14 August 2002 at Thompson [...] Read more.
This study examined the role of meteorological processes in two of the highest ozone (O3) episodes within the last decade at monitoring sites in southern New Hampshire (NH), USA. The highest O3 levels occurred on 14 August 2002 at Thompson Farm (TF) and 22 July 2004 at Castle Springs (CS). Ozone mixing ratios in the 2002 episode showed continual high values (>100 ppbv) at the beginning of the episode, and reached 151 ppbv on 14 August. The 2004 episode consisted of one day of high O3 (>100 ppbv) on 22 July at CS with the peak level of 111 ppbv. Our analysis suggested that the August 2002 high O3 event at TF occurred under stagnant synoptic high-pressure conditions that prevailed over the entire eastern USA for an unusually extended time period. The clear skies and stable meteorological conditions resulted in accumulation of pollutants in the boundary layer. At the same time, the mesoscale low-level-jet (LLJ) played an important role in transporting air masses from the polluted Mid-Atlantic areas to the Northeast. Local land-sea-breeze circulations also added to the impact of this event. Our examination showed that the unprecedented high levels of O3 on 22 July 2004 at CS was driven by two mechanisms, stratospheric intrusion and the Appalachian lee trough (APLT), which was not found during other O3 episodes at the site in the decade long data record. This study demonstrated that unusually high O3 levels at New England rural sites were driven by multi-scale processes, and the regional/local scale processes controlled the magnitude and timing of the local pollution episodes. Full article
Show Figures

Figure 1

Back to TopTop