Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = straw-strip-collecting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 13274 KB  
Article
Design and Experiment of Monomer Profiling Strip Tillage Machine with Straw-Strip-Collecting and Subsoiling Functions
by Baoci Qiu, Qiyue Zhang, Hanyu Yang, Jin He, Quanyu Wang, Hang Li, Lu Tan, Xianliang Wang and Han Lin
Agriculture 2025, 15(16), 1771; https://doi.org/10.3390/agriculture15161771 - 18 Aug 2025
Viewed by 285
Abstract
Aiming at the problems of intensified soil compaction under the conditions of no-tillage operations and machine blockage caused by large-scale straw returning to the field, an operation mode of “straw strip collecting-strip subsoiling” was proposed, and a Monomer Profiling Strip Tillage Machine (MPSTM) [...] Read more.
Aiming at the problems of intensified soil compaction under the conditions of no-tillage operations and machine blockage caused by large-scale straw returning to the field, an operation mode of “straw strip collecting-strip subsoiling” was proposed, and a Monomer Profiling Strip Tillage Machine (MPSTM) with Straw-Strip-Collecting and Subsoiling Functions was designed to achieve anti-blocking operation and three-dimensional soil compaction reduction. The principle and mechanism parameters of monomer profiling in strip tillage are analyzed, and the effective profiling conditions are clarified. It is determined that the deflection angle, inclination angle, and installation spacing have a key influence on the straw clearance effect. The theory of soil failure and soil compaction reduction under the operation of the subsoiling and strip tillage mechanism is studied, and a combination of a medium-sized Subsoiler shovel handle and a 150 mm double-wing shovel is adopted. Using the EDEM discrete element method, taking the spatial parameters of the stubble clean disc (SCD) as the test factors and the straw removal rate (SRR) as the test indicator, a quadratic orthogonal rotation test is conducted to clarify the influence of each parameter on the straw clearance. The optimal SCD spatial parameters were determined as a deflection angle of 16.5°, an inclination angle of 25°, and an installation spacing of 100 mm, achieving a maximum SRR of 95.34%. Field test results demonstrated stable machine operation. Post-operation measurements yielded the following results: the width of the straw-cleaning band (WSCB) in the sowing strip is 193.7 mm; the overall straw removal rate (OSRR) is 84.82%, which is basically consistent with the simulation results; the subsoiling depth (SD) is 271.7 mm; the subsoiling depth stability (SDS) is 91.85%; the soil fragmentation rate (SFR) is 81.19%; and the reduction of soil compaction in the 0–10, 10–20, and 20–30 cm soil layer is 50.08%, 21.78%, and 40.83%, respectively. These results confirm that the machine effectively cleaned straw within the seeding band and reduced soil compaction, meeting the agronomic and technical requirements for strip tillage. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

18 pages, 4642 KB  
Article
Establishment of a Practical Sperm Cryopreservation Pathway for the Axolotl (Ambystoma mexicanum): A Community-Level Approach to Germplasm Repository Development
by Nicholas Coxe, Yue Liu, Lucía Arregui, Rose Upton, Sarah Bodenstein, Steven Randal Voss, Maria T. Gutierrez-Wing and Terrence R. Tiersch
Animals 2024, 14(2), 206; https://doi.org/10.3390/ani14020206 - 8 Jan 2024
Cited by 5 | Viewed by 2993
Abstract
The axolotl (Ambystoma mexicanum) draws great attention around the world for its importance as a biomedical research model, but housing and maintaining live animals is increasingly expensive and risky as new transgenic lines are developed. The goal of this work was [...] Read more.
The axolotl (Ambystoma mexicanum) draws great attention around the world for its importance as a biomedical research model, but housing and maintaining live animals is increasingly expensive and risky as new transgenic lines are developed. The goal of this work was to develop an initial practical pathway for sperm cryopreservation to support germplasm repository development. The present study assembled a pathway through the investigation of axolotl sperm collection by stripping, refrigerated storage in various osmotic pressures, cryopreservation in various cryoprotectants, and in vitro fertilization using thawed sperm. By the stripping of males, 25–800 µL of sperm fluid was collected at concentrations of 1.6 × 106 to 8.9 × 107 sperm/mL. Sperm remained motile for 5 d in Hanks’ Balanced Salt Solution (HBSS) at osmolalities of 100–600 mOsm/kg. Sperm cryopreserved in 0.25 mL French straws at 20 °C/min in a final concentration of 5% DMFA plus 200 mM trehalose and thawed at 25 °C for 15 s resulted in 52 ± 12% total post-thaw motility. In six in vitro fertilization trials, 20% of eggs tested with thawed sperm continued to develop to stage 7–8 after 24 h, and a third of those embryos (58) hatched. This work is the first report of successful production of axolotl offspring with cryopreserved sperm, providing a general framework for pathway development to establish Ambystoma germplasm repositories for future research and applications. Full article
Show Figures

Figure 1

13 pages, 4816 KB  
Article
Simulation and Experimental Study of the Tillage Mechanism for the Optimal Design of Wheat Rotary Strip–Tiller Blades
by Yanshan Yang, Zhichao Hu, Fengwei Gu and Qishuo Ding
Agriculture 2023, 13(3), 632; https://doi.org/10.3390/agriculture13030632 - 7 Mar 2023
Cited by 13 | Viewed by 3217
Abstract
In order to clarify the mechanism of tiller–soil interaction in the process of strip rotary tillage, this paper conducted a simulation and experimental research on four blade configurations composed of three rotary blades (bent C, straight and hoe) at three rotation speeds (280, [...] Read more.
In order to clarify the mechanism of tiller–soil interaction in the process of strip rotary tillage, this paper conducted a simulation and experimental research on four blade configurations composed of three rotary blades (bent C, straight and hoe) at three rotation speeds (280, 380 and 510 rpm). The study found that the soil throwing characteristics of the blades are the key factors affecting the quality of tillage. The increase in the rotation speed not only improved the soil breaking effect, but also enhanced the phenomenon of soil throwing and then led to a reduction in the soil backfill. In the BC configuration (combination of four bent C blades), the bent C blades showed the best soil throwing characteristics and created the best soil fragmentation. However, due to the obvious side throwing of the soil, the backfill effect of soil fragmentation was the worst. The backfill rate was only 8% when the rotation speed was 510 rpm and could not allow reaching the required seed–soil contact during sowing. The hoe blades in the HC configuration (combination of four hoe blades) could collect part of the soil fragments and throw them towards the direction of the machine during the cultivation process, which led to a good soil breaking effect and a low soil side throwing rate. When the rotation speed was 510 rpm, 36% of the soil was backfilled into the seedbed. In the SC configuration (combination of four straight blades), the straight blades could well control the scattering of the side-thrown soil fragments. At a super-high rotation speed (510 rpm), the side throwing rate was only 70%, and the backfill rate was as high as 60%. However, the soil fragments created by the blades were too large (average soil block diameter > 40 mm) and could not form a loose and finely broken seedbed environment. The MC configuration (combination of two straight blades and two hoe blades) benefited from the combination of straight blades and hoe blades, offering outstanding advantages for backfill and soil fragmentation. Therefore, under the condition of a centralized configuration of field surface straw, it is recommended to use the MC configuration of the wheat rotary strip–till planter for cohesive paddy soil. Full article
Show Figures

Figure 1

22 pages, 6503 KB  
Article
Development and First Results of a No-Till Pneumatic Seeder for Maize Precise Sowing in Huang-Huai-Hai Plain of China
by Hui Li, Hu Liu, Jilei Zhou, Guojian Wei, Song Shi, Xiangcai Zhang, Rongfang Zhang, Huibin Zhu and Tengfei He
Agriculture 2021, 11(10), 1023; https://doi.org/10.3390/agriculture11101023 - 19 Oct 2021
Cited by 14 | Viewed by 4499
Abstract
In Huang-Huai-Hai plain of China, farmers collect the maize straw for livestock during maize harvest to increase their revenue. To maintain the sustainable productivity of the soil, all straw after the wheat harvest is returned to the field. This straw brings difficulties in [...] Read more.
In Huang-Huai-Hai plain of China, farmers collect the maize straw for livestock during maize harvest to increase their revenue. To maintain the sustainable productivity of the soil, all straw after the wheat harvest is returned to the field. This straw brings difficulties in the no-till seeding for maize after wheat harvest, and thus it is necessary to develop efficient no-till seeders that can cope with heavy residue and improve sowing quality. In this work, we designed a wide-strip-till no-till pneumatic maize (WNPM) seeder to satisfy the need in this plain. The key parameters of the opposite-placed anti-blocking mechanism of the WNPM seeder were determined via the discrete element method (DEM) technology, while the parameters of the pneumatic maize seed meter were specified using the coupled simulation of computational fluid dynamics (CFD) and DEM. We also carried out field experiment to test the performance of our machine. Under the operating speed of 8 km/h, the soil disturbance was 38.2%. Moreover, the straw cleaning rate achieved 94.4% in the seeding belt while the residue cover index of the seed plot was over 58%, and the seeding performance was improved significantly. The qualified seed spacing index, uniformity variation coefficient, qualified index of sowing depth and variation coefficient of sowing depth were 96.6%, 19.1%, 95.1% and 3.2%, respectively. In general, the WNPM seeder improves the working efficiency of maize sowing because both the reliable working speed and the sowing quality were increased. These results are of considerable importance for crop production in Huang-Huai-Hai plain of China. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

Back to TopTop