Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = stray light analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 865 KB  
Article
A Transect Through the Living Environments of Slovakia’s Roma Population: Urban, Sub-Urban, and Rural Settlements, and Exposure to Environmental and Water-Related Health Risks
by Lukáš Ihnacik, Ingrid Papajová, Júlia Šmigová, Mark Brussel, Musa Manga, Ján Papaj, Ingrid Schusterová and Carmen Anthonj
Int. J. Environ. Res. Public Health 2025, 22(7), 988; https://doi.org/10.3390/ijerph22070988 - 23 Jun 2025
Cited by 2 | Viewed by 737
Abstract
The Roma population is one of Europe’s largest ethnic minorities, often living in inadequate living conditions, worse than those of the majority population. They frequently lack access to essential services, even in high-income countries. This lack of basic services—particularly in combination with proximity [...] Read more.
The Roma population is one of Europe’s largest ethnic minorities, often living in inadequate living conditions, worse than those of the majority population. They frequently lack access to essential services, even in high-income countries. This lack of basic services—particularly in combination with proximity to (stray) animals and human and solid waste—significantly increases environmental health risks, and leads to a higher rate of endoparasitic infections. Our study sheds light on the living conditions and health situation in Roma communities in Slovakia, focusing on the prevalence of intestinal endoparasitic infections across various settlement localisations. It highlights disparities and challenges in access to safe drinking water, sanitation, and hygiene (WASH) and other potentially disease-exposing factors among these marginalised populations. This study combines a comprehensive review of living conditions as per national data provided through the Atlas of Roma communities with an analysis of empirical data on parasitological infection rates in humans, animals, and the environment in settlements, applying descriptive statistical methods. It is the first study in Europe to provide detailed insights into how living conditions vary and cause health risks across Roma settlements, ranging from those integrated within villages (inside, urban), to those isolated on the outskirts (edge, sub-urban) or outside villages (natural/rural). Our study shows clear disparities in access to services, and in health outcomes, based on where people live. Our findings underscore the fact that (i) place—geographical centrality in particular—in an already challenged population group plays a major role in health inequalities and disease exposure, as well as (ii) the urgent need for more current and comprehensive data. Our study highlights persistent disparities in living conditions within high-income countries and stresses the need for greater attention and more sensitive targeted health-promoting approaches with marginalised communities in Europe that take into consideration any and all of the humans, ecology, and animals affected (=One Health). Full article
(This article belongs to the Topic Diversity Competence and Social Inequalities)
Show Figures

Figure 1

31 pages, 8626 KB  
Article
Calibration and Validation of NOAA-21 Ozone Mapping and Profiler Suite (OMPS) Nadir Mapper Sensor Data Record Data
by Banghua Yan, Trevor Beck, Junye Chen, Steven Buckner, Xin Jin, Ding Liang, Sirish Uprety, Jingfeng Huang, Lawrence E. Flynn, Likun Wang, Quanhua Liu and Warren D. Porter
Remote Sens. 2024, 16(23), 4488; https://doi.org/10.3390/rs16234488 - 29 Nov 2024
Viewed by 1162
Abstract
The Ozone Mapping and Profiler Suites (OMPS) Nadir Mapper (NM) is a grating spectrometer within the OMPS nadir instruments onboard the SNPP, NOAA-20, and NOAA-21 satellites. It is designed to measure Earth radiance and solar irradiance spectra in wavelengths from 300 nm to [...] Read more.
The Ozone Mapping and Profiler Suites (OMPS) Nadir Mapper (NM) is a grating spectrometer within the OMPS nadir instruments onboard the SNPP, NOAA-20, and NOAA-21 satellites. It is designed to measure Earth radiance and solar irradiance spectra in wavelengths from 300 nm to 380 nm for operational retrievals of the nadir total column ozone. This study presents calibration and validation analysis results for the NOAA-21 OMPS NM SDR data to meet the JPSS scientific requirements. The NOAA-21 OMPS SDR calibration derives updates of several previous OMPS algorithms, including the dark current correction algorithm, one-time wavelength registration from ground to on-orbit, daily intra-orbit wavelength shift correction, and stray light correction. Additionally, this study derives an empirical scale factor to remove 2.2% of systematic biases in solar flux data, which were caused by pre-launch solar calibration errors of the OMPS nadir instruments. The validation of the NOAA-21 OMPS SDR data is conducted using various methods. For example, the 32-day average method and radiative transfer model are employed to estimate inter-sensor radiometric calibration differences from either the SNPP or NOAA-20 data. The quality of the NOAA-21 OMPS NM SDR data is largely consistent with that of the SNPP and NOAA-20 OMPS data, with differences generally within ±2%. This meets the scientific requirements, except for some deviations mainly in the dichroic range between 300 nm and 303 nm. The deep convective cloud target approach is used to monitor the stability of NOAA-21 OMPS reflectance above 330 nm, showing a variation of 0.5% over the observed period. Data from the NOAA-21 VIIRS M1 band are used to estimate OMPS NM data geolocation errors, revealing that along-track errors can reach up to 3 km, while cross-track errors are generally within ±1 km. Full article
(This article belongs to the Special Issue Remote Sensing Satellites Calibration and Validation)
Show Figures

Figure 1

19 pages, 3703 KB  
Article
Detection Capability Analysis of Field of View-Gated Optical Imaging System for All-Time Star Sensor
by Liang Fang, Hui Zhang, Xin Cheng, Zhenjie Fan, Zhiyuan Liao, Qiang Zhang and Rujin Zhao
Photonics 2024, 11(12), 1118; https://doi.org/10.3390/photonics11121118 - 26 Nov 2024
Viewed by 967
Abstract
The field of view (FOV)-gated optical imaging system can relieve the contradiction between a wide FOV and the effective suppression of sky background radiation, making it particularly suitable for all-time star sensors. The detection capability of this novel optical imaging system during daytime [...] Read more.
The field of view (FOV)-gated optical imaging system can relieve the contradiction between a wide FOV and the effective suppression of sky background radiation, making it particularly suitable for all-time star sensors. The detection capability of this novel optical imaging system during daytime differs significantly from that of traditional optical systems. This paper presents the principle of suppressing sky background radiation through FOV-gated imaging. Subsequently, the detection capabilities, including detectable limiting stellar magnitude and the probability of detecting at least three stars, are analyzed for applications on airborne platforms operating at altitudes of no less than 3km. Based on the analysis results, an FOV-gated imaging system operating in the shortwave infrared wavelength band was designed. Additionally, stray light analysis software, ASAP, was employed to simulate the illumination of stellar signals and sky background radiation on the detector. The evaluation of the detection capability of the designed FOV-gated optical system, based on simulation data, aligns with the theoretical analysis value. It demonstrates the system’s ability to detect multiple stars with a high probability during the daytime, thereby providing a theoretical foundation for the practical application of the FOV-gated optical imaging system on airborne platforms. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

18 pages, 6433 KB  
Article
High-Performance Telescope System Design for Space-Based Gravitational Waves Detection
by Huiru Ji, Lujia Zhao, Zichao Fan, Rundong Fan, Jiamin Cao, Yan Mo, Hao Tan, Zhiyu Jiang and Donglin Ma
Sensors 2024, 24(22), 7309; https://doi.org/10.3390/s24227309 - 15 Nov 2024
Cited by 1 | Viewed by 1282
Abstract
Space-based gravitational wave (GW) detection employs the Michelson interferometry principle to construct ultra-long baseline laser interferometers in space for detecting GW signals with a frequency band of 10−4–1 Hz. The spaceborne telescope, as a core component directly integrated into the laser [...] Read more.
Space-based gravitational wave (GW) detection employs the Michelson interferometry principle to construct ultra-long baseline laser interferometers in space for detecting GW signals with a frequency band of 10−4–1 Hz. The spaceborne telescope, as a core component directly integrated into the laser link, comes in various configurations, with the off-axis four-mirror design being the most prevalent. In this paper, we present a high-performance design based on this configuration, which exhibits a stable structure, ultra-low wavefront aberration, and high-level stray light suppression capabilities, effectively eliminating background noise. Also, a scientifically justified positioning of the entrance and exit pupils has been implemented, thereby paving adequate spatial provision for the integration of subsequent optical systems. The final design realizes a wavefront error of less than λ/500 in the science field of view, and after tolerance allocation and Monte Carlo analysis, a wavefront error of less than λ/30 can be achieved with a probability of 92%. The chief ray spot diagram dimensions are significantly small, indicating excellent control of pupil aberrations. Additionally, the tilt-to-length (TTL) noise and stray light meet the stringent requirements for space-based gravitational wave detection. The refined design presented in this paper proves to be a more fitting candidate for GW detection projects, offering more accurate and rational guidance. Full article
(This article belongs to the Special Issue Advanced Optics and Sensing Technologies for Telescopes)
Show Figures

Figure 1

21 pages, 15396 KB  
Article
Development of an Imaging Spectrometer with a High Signal-to-Noise Ratio Based on High Energy Transmission Efficiency for Soil Organic Matter Detection
by Jize Fan, Yuwei Wang, Guochao Gu, Zhe Li, Xiaoxu Wang, Hanshuang Li, Bo Li and Denghui Hu
Sensors 2024, 24(13), 4385; https://doi.org/10.3390/s24134385 - 5 Jul 2024
Cited by 4 | Viewed by 1499
Abstract
Hyperspectral detection of the change rate of organic matter content in agricultural remote sensing requires a high signal-to-noise ratio (SNR). However, due to the large number and efficiency limitation of the components, it is difficult to improve the SNR. This study uses high-efficiency [...] Read more.
Hyperspectral detection of the change rate of organic matter content in agricultural remote sensing requires a high signal-to-noise ratio (SNR). However, due to the large number and efficiency limitation of the components, it is difficult to improve the SNR. This study uses high-efficiency convex grating with a diffraction efficiency exceeding 50% across the 360–850 nm range, a back-illuminated Complementary Metal Oxide Semiconductor (CMOS) detector with a 95% efficiency in peak wavelength, and silver-coated mirrors to develop an imaging spectrometer for detecting soil organic matter (SOM). The designed system meets the spectral resolution of 10 nm in the 360–850 nm range and achieves a swath of 100 km and a spatial resolution of 100 m at an orbital height of 648.2 km. This study also uses the basic structure of Offner with fewer components in the design and sets the mirrors of the Offner structure to have the same sphere, which can achieve the rapid adjustment of the co-standard. This study performs a theoretical analysis of the developed Offner imaging spectrometer based on the classical Rowland circular structure, with a 21.8 mm slit length; simulates its capacity for suppressing the +2nd-order diffraction stray light with the filter; and analyzes the imaging quality after meeting the tolerance requirements, which is combined with the surface shape characteristics of the high-efficiency grating. After this test, the grating has a diffraction efficiency above 50%, and the silver-coated mirrors have a reflection value above 95% on average. Finally, the laboratory tests show that the SNR over the waveband exceeds 300 and reaches 800 at 550 nm, which is higher than some current instruments in orbit for soil observation. The proposed imaging spectrometer has a spectral resolution of 10 nm, and its modulation transfer function (MTF) is greater than 0.23 at the Nyquist frequency, making it suitable for remote sensing observation of SOM change rate. The manufacture of such a high-efficiency broadband grating and the development of the proposed instrument with high energy transmission efficiency can provide a feasible technical solution for observing faint targets with a high SNR. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

21 pages, 8125 KB  
Article
Optical Design and Stray Light Analysis of Underwater Spectral Radiometer
by Yisu Zhang, Kai Wang, Wei Yue, Shuangkui Liu, Jieling Yu and Xin Ye
Appl. Sci. 2024, 14(8), 3172; https://doi.org/10.3390/app14083172 - 10 Apr 2024
Cited by 4 | Viewed by 2072
Abstract
Underwater spectral detection plays an important role in the study of the underwater environment, ecology, oceanography, and environmental monitoring. A kind of underwater spectral radiometer that can observe the distribution of underwater spectral radiation bidirectionally has been developed. The flat-field concave holographic grating [...] Read more.
Underwater spectral detection plays an important role in the study of the underwater environment, ecology, oceanography, and environmental monitoring. A kind of underwater spectral radiometer that can observe the distribution of underwater spectral radiation bidirectionally has been developed. The flat-field concave holographic grating is used as the only optical component, the optical design parameters are optimized, and the system is miniaturized. The mechanism of stray light generation in the spectrometer is studied, and a method of suppressing stray light is proposed and simulated. The level of stray light in the system is suppressed to the order of 10−4, the signal-to-noise ratio of the system is improved, and the ability to detect weak light is enhanced. The wavelength calibration experiment was completed, and the experimental results show that the wavelength resolution of the underwater spectral radiometer is better than 3 nm. Finally, the quantitative relationship between spectral irradiance and digital output is obtained through radiation in the calibration of the system. Full article
(This article belongs to the Special Issue State of the Art in Spectroscopy Technique and Its Core Components)
Show Figures

Figure 1

16 pages, 1234 KB  
Article
A Best-Path Approach to the Design of a Hybrid Space–Ground Quantum Network with Dynamic Constraints
by David L. Bakker, Yannick Jong, Bob P. F. Dirks and Gustavo C. Amaral
Photonics 2024, 11(3), 268; https://doi.org/10.3390/photonics11030268 - 18 Mar 2024
Cited by 3 | Viewed by 2547
Abstract
The design and operation of quantum networks are both decisive in the current push towards a global quantum internet. Although space-enabled quantum connectivity has already been identified as a beneficial candidate for long-range quantum channels for over two decades, the architecture of a [...] Read more.
The design and operation of quantum networks are both decisive in the current push towards a global quantum internet. Although space-enabled quantum connectivity has already been identified as a beneficial candidate for long-range quantum channels for over two decades, the architecture of a hybrid space–ground network is still a work in progress. Here, we propose an analysis of such a network based on a best-path approach, where either fiber- or satellite-based elementary links can be concatenated to form a repeater chain. The network consisting of quantum information processing nodes, equipped with both ground and space connections, is mapped into a graph structure, where edge weights represent the achievable secret key rates, chosen as the figure of merit for the network analysis. A weight minimization algorithm allows for identifying the best path dynamically, i.e., as the weather conditions, stray light radiance, and satellite orbital position change. From the results, we conclude that satellite links will play a significant role in the future large-scale quantum internet, in particular when node distances exceed 500 km, and both a constellation of satellites—spanning 20 or more satellites—and significant advances in filtering technology are required to achieve continuous coverage. Full article
(This article belongs to the Special Issue Optical Satellite Communications for Quantum Networking)
Show Figures

Figure 1

18 pages, 7756 KB  
Article
Stray Light Analysis and Suppression for an Infrared Fourier Imaging Spectrometer
by Chenzhao Ben, Honghai Shen, Xiao Yu, Lingtong Meng, Huishi Cheng and Ping Jia
Photonics 2024, 11(2), 173; https://doi.org/10.3390/photonics11020173 - 12 Feb 2024
Cited by 4 | Viewed by 2660
Abstract
To improve the accuracy of infrared radiation characteristics measurement in the aviation field, an infrared Fourier transform imaging spectrometer based on a double-swing solid angle reflector was designed. This imaging spectrometer operates in the 3–5 μm wavelength range and has a field of [...] Read more.
To improve the accuracy of infrared radiation characteristics measurement in the aviation field, an infrared Fourier transform imaging spectrometer based on a double-swing solid angle reflector was designed. This imaging spectrometer operates in the 3–5 μm wavelength range and has a field of view of 1.7° × 1.7°. This article presents a comprehensive analysis of the system’s stray light and also studies the impact of external stray light on the imaging quality, along with the influence of internal stray light on the interference effects and the spectral resolution. It also present the design of a hood that suppresses the point source transmittance of the external stray light down to the order of 10−4. Based on this, we propose a method that incorporates the introduction of wedge and inclination angles. Additionally, a numerical range is provided for the addition of these angles on the beam splitter mirror and compensation plate. This ensures the effective suppression of any internal stray light. This study fills the gap in the knowledge about Fourier transform imaging spectrometers operating in the mid-infrared band for aviation applications, and proposes a suppression method suitable for interference systems, which is also suitable for Fourier transform imaging spectrometers based on other types of interferometers. This study broadens the application field of Fourier transform imaging spectrometers in stray light, and has great significance to promote the development of Fourier transform imaging spectrometer. Full article
(This article belongs to the Special Issue Advances in Photoelectric Tracking Systems)
Show Figures

Figure 1

11 pages, 4943 KB  
Article
Research on Coherent Stray Light Fringes in Interference Compensation Testing
by Yutong Sun, Qiang Cheng, Haixiang Hu, Xin Zhang, Xiaokun Wang, Longxiang Li, Donglin Xue and Xuejun Zhang
Photonics 2024, 11(1), 74; https://doi.org/10.3390/photonics11010074 - 11 Jan 2024
Cited by 1 | Viewed by 1759
Abstract
Testing accuracy is an essential factor in determining the manufacturing accuracy of aspheric mirrors. Because of the complexity of the null compensation test, the coherent stray lights generated by multiple reflections and transmissions between optical elements and the crosstalk fringes generated by the [...] Read more.
Testing accuracy is an essential factor in determining the manufacturing accuracy of aspheric mirrors. Because of the complexity of the null compensation test, the coherent stray lights generated by multiple reflections and transmissions between optical elements and the crosstalk fringes generated by the multi-beam interference of the reference light, test light, and stray lights are superimposed on the interference fringes, resulting in reduced testing accuracy. Focusing on this problem, a simulation analysis method for crosstalk fringes based on ray-tracing and multi-beam interference in interference testing is proposed. The coordinates, amplitudes, and phases of the test light and stray lights on the transmission sphere are traced, and the crosstalk fringes and interference testing fringes and their positions, sizes, and intensity information are simulated via multi-beam interference. The influence of crosstalk fringes on interference fringes is determined. An experimental optical path is built to verify the correctness of the crosstalk fringe simulation method. Full article
(This article belongs to the Special Issue Optical Precision Manufacturing and Processing)
Show Figures

Figure 1

14 pages, 3714 KB  
Article
A Vision-Based Pose Estimation of a Non-Cooperative Target Based on a Self-Supervised Transformer Network
by Quan Sun, Xuhui Pan, Xiao Ling, Bo Wang, Qinghong Sheng, Jun Li, Zhijun Yan, Ke Yu and Jiasong Wang
Aerospace 2023, 10(12), 997; https://doi.org/10.3390/aerospace10120997 - 28 Nov 2023
Cited by 1 | Viewed by 2732
Abstract
In the realm of non-cooperative space security and on-orbit service, a significant challenge is accurately determining the pose of abandoned satellites using imaging sensors. Traditional methods for estimating the position of the target encounter problems with stray light interference in space, leading to [...] Read more.
In the realm of non-cooperative space security and on-orbit service, a significant challenge is accurately determining the pose of abandoned satellites using imaging sensors. Traditional methods for estimating the position of the target encounter problems with stray light interference in space, leading to inaccurate results. Conversely, deep learning techniques require a substantial amount of training data, which is especially difficult to obtain for on-orbit satellites. To address these issues, this paper introduces an innovative binocular pose estimation model based on a Self-supervised Transformer Network (STN) to achieve precise pose estimation for targets even under poor imaging conditions. The proposed method generated simulated training samples considering various imaging conditions. Then, by combining the concepts of convolutional neural networks (CNN) and SIFT features for each sample, the proposed method minimized the disruptive effects of stray light. Furthermore, the feedforward network in the Transformer employed in the proposed method was replaced with a global average pooling layer. This integration of CNN’s bias capabilities compensates for the limitations of the Transformer in scenarios with limited data. Comparative analysis against existing pose estimation methods highlights the superior robustness of the proposed method against variations caused by noisy sample sets. The effectiveness of the algorithm is demonstrated through simulated data, enhancing the current landscape of binocular pose estimation technology for non-cooperative targets in space. Full article
Show Figures

Figure 1

16 pages, 8854 KB  
Article
Analysis and Suppression Design of Stray Light Pollution in a Spectral Imager Loaded on a Polar-Orbiting Satellite
by Shuaishuai Chen and Xinhua Niu
Sensors 2023, 23(17), 7625; https://doi.org/10.3390/s23177625 - 2 Sep 2023
Cited by 5 | Viewed by 2367
Abstract
As the non-imaging light of optical instruments, stray light has an important impact on normal imaging and data quantification applications. The FY-3D Medium Resolution Spectral Imager (MERSI) operates in a sun-synchronous orbit, with a scanning field of view of 110° and a surface [...] Read more.
As the non-imaging light of optical instruments, stray light has an important impact on normal imaging and data quantification applications. The FY-3D Medium Resolution Spectral Imager (MERSI) operates in a sun-synchronous orbit, with a scanning field of view of 110° and a surface imaging width of more than 2300 km, which can complete two coverage observations of global targets per day with high detection efficiency. According to the characteristics of the operating orbit and large-angle scanning imaging of MERSI, a stray light radiation model of the polar-orbiting spectrometer is constructed, and the design requirements of stray light suppression are proposed. Using the point source transmittance (PST) as the merit function of the stray light analysis method, the instrument was simulated with all stray light suppression optical paths, and the effectiveness of stray light elimination measures was verified using the stray light test. In this paper, the full-link method of “orbital stray light radiation model-system, internal and external simulation design-system analysis and actual test comparison verification” is proposed, and there is a maximum decrease in the system’s PST by about 10 times after applying the stray light suppression’s optimization design, which can provide a general method for stray light suppression designs for polar-orbit spectral imagers. Full article
Show Figures

Figure 1

18 pages, 21011 KB  
Article
Enhanced Infrared Detection Algorithm for Weak Targets in Complex Backgrounds
by Zhihui Zou, Lianji Ma, Shuai Yang, Yingchao Li, Haodong Shi and Qiang Fu
Electronics 2023, 12(17), 3671; https://doi.org/10.3390/electronics12173671 - 31 Aug 2023
Viewed by 1471
Abstract
In this article, we design a new lightweight infrared optical system that fully meets airborne settings and greatly reduces the collection of invalid information. This new system targets the technical problems of stray light, strong invalid information, weak texture information of small targets, [...] Read more.
In this article, we design a new lightweight infrared optical system that fully meets airborne settings and greatly reduces the collection of invalid information. This new system targets the technical problems of stray light, strong invalid information, weak texture information of small targets, and low intensity of valid information under a complex background, which lead to difficult identification of small targets. Image enhancement of weak, small targets against complex backgrounds has been the key to improving small-target search and tracking technology. For the complex information that is still collected, an improved two-channel image enhancement processing algorithm is proposed: the A-channel adopts an improved nonlinear diffusion method and improved curvature filtering, and the B-channel adopts bootstrap filtering and a local contrast enhancement algorithm. The weak target is then extracted by the algorithm of weighted superposition. The false alarm rate is effectively weakened, and robustness is improved. As a result of the experimental data analysis, the method can effectively extract the weak targets in complex backgrounds, such as artificial backgrounds, surface vegetation, etc., enlarge the target gray value, and reduce Fa by 56%, compared with other advanced methods, while increasing Pd by 17%. The algorithm proposed in this paper is of great significance and value for weak target identification and tracking, and it has been successfully applied to industrial detection, medical detection, and in the military field. Full article
Show Figures

Figure 1

15 pages, 4231 KB  
Article
Stray Light Analysis and Suppression of the Visible to Terahertz Integrated Cloud Detection Optical System
by Haiwei Jiang and Xinhua Niu
Sensors 2023, 23(8), 4115; https://doi.org/10.3390/s23084115 - 19 Apr 2023
Cited by 4 | Viewed by 3342
Abstract
The wide-spectrum integrated imaging method can simultaneously obtain the spectral information of different spectral bands of the same target, which is conducive to the realization of the high-precision detection of target characteristics, and can simultaneously obtain more comprehensive elements such as the structure, [...] Read more.
The wide-spectrum integrated imaging method can simultaneously obtain the spectral information of different spectral bands of the same target, which is conducive to the realization of the high-precision detection of target characteristics, and can simultaneously obtain more comprehensive elements such as the structure, shape, and microphysical parameters of the cloud. However, for stray light, the same surface has different characteristics at different wavelengths, and a wider spectral band means more complex and diverse sources of stray light, which renders the analysis and suppression of stray light more difficult. In this work, according to the characteristics of the visible-to-terahertz integrated optical system design scheme, the influence of material surface treatment on stray light was studied; the stray light analysis and optimization of the whole link of light transmission were carried out. For the sources of stray light in different channels, targeted suppression measures such as front baffle, field stop, special structure baffle, and reflective inner baffle were adopted. The simulation results indicate that when the off-axis field of view was greater than 10°. The point source transmittance (PST) of the terahertz channel is on the order of 10−4, the visible and infrared channels are less than 10−5, and the final terahertz PST was on the order of 10−8, while visible and infrared channels were lower than 10−11. Here, we present a method for stray light suppression based on conventional surface treatments for broadband imaging systems. Full article
Show Figures

Figure 1

14 pages, 3940 KB  
Article
Stray Light Analysis and Suppression of Taiji Telescope for Space Gravitational Wave Detection Based on Phase Noise Requirement
by Benliang Sang, Xiaoqin Deng, Wei Tao, Yuqing Diao and Wei Sha
Appl. Sci. 2023, 13(5), 2923; https://doi.org/10.3390/app13052923 - 24 Feb 2023
Cited by 4 | Viewed by 2688
Abstract
The telescope is the core device for space gravitational wave detection. It is responsible for receiving signal light and emitting outgoing light simultaneously. When the high-energy outgoing laser passes through the telescope, it would produce stray light, which would interfere with the phase [...] Read more.
The telescope is the core device for space gravitational wave detection. It is responsible for receiving signal light and emitting outgoing light simultaneously. When the high-energy outgoing laser passes through the telescope, it would produce stray light, which would interfere with the phase measurement and generate phase noise. Therefore, it is necessary to analyze and suppress the stray light of the telescope. In this paper, the requirement of point source transmittance (PST) of the Taiji telescope is obtained through theoretical derivation, which is less than 4×1010. Through a complete analysis of stray light, we determined that the M4 was the largest source of stray light under the condition that the roughness of each optical surface is equal, which accounted for 67.22%. We also determined the most lenient requirements for surface roughness σλ, and found that when σλ of the M1, M2, M3, and M4 were 20 Å, 4 Å, 1 Å, and 1 Å, respectively, the PST was 3.89×1010, which met the PST requirement. Next, we calculated the effect of particulate contamination on the PST, and based on the results of our analysis, we determined that the cleanliness level of the testing and storage environment of the Taiji telescope was better than 300. Finally, we evaluated the changes in the PST caused by the damage of micrometeoroids, and the analysis results showed that the stray light level would not change significantly during the service period of the Taiji Telescope. Full article
Show Figures

Figure 1

14 pages, 4959 KB  
Article
Analysis and Suppression of Crosstalk Stray Light in a Microlens Array Scanning and Searching System
by Zhiyang Lv, Yunhan Huang and Zhiying Liu
Micromachines 2023, 14(2), 336; https://doi.org/10.3390/mi14020336 - 28 Jan 2023
Cited by 2 | Viewed by 1972
Abstract
The microlens array (MLA) system can aid in realizing fast beam deflection owing to the lateral displacement between arrays. The MLA system has the advantages of miniaturization and good functionality. However, during system operation, crosstalk beams are generated between each microlens array unit, [...] Read more.
The microlens array (MLA) system can aid in realizing fast beam deflection owing to the lateral displacement between arrays. The MLA system has the advantages of miniaturization and good functionality. However, during system operation, crosstalk beams are generated between each microlens array unit, introducing additional stray light, thus affecting the imaging contrast of the system. Therefore, this study uses the matrix operation method to trace the paraxial ray to trace the optical system and analyzes the generation mechanism of crosstalk stray light in the MLA system. Furthermore, this study proposes a crosstalk suppression method based on a stop array to reasonably suppress stray light. Finally, an example of an infrared array scanning infrared optical system is considered so as to verify the correctness and feasibility of the proposed crosstalk stray light suppression method. Therefore, this paper introduces the stray light suppression principle to guide the optical design process of the system, providing a theoretical basis for the design and analysis of the microlens array scanning and search system. Full article
Show Figures

Figure 1

Back to TopTop