Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,650)

Search Parameters:
Keywords = stress-related conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2972 KB  
Article
Effect of Nano-Selenium on Intestinal Oxidative Stress Induced by H2O2 in Mice
by Xiangyu Mao, Wenyuan Li, Yuanyuan Li, Xuemei Jiang, Ruinan Zhang, Lianqiang Che, Yong Zhuo, Mengmeng Sun, Xianxiang Wang, De Wu and Shengyu Xu
Antioxidants 2025, 14(9), 1073; https://doi.org/10.3390/antiox14091073 - 1 Sep 2025
Abstract
Selenium is an important trace element with certain antioxidant effects. Nano-selenium, as a novel selenium source, has the advantages of strong biological activity, high absorption efficiency, and low toxicity. The aim of the present study was to compare the protective effects of sodium [...] Read more.
Selenium is an important trace element with certain antioxidant effects. Nano-selenium, as a novel selenium source, has the advantages of strong biological activity, high absorption efficiency, and low toxicity. The aim of the present study was to compare the protective effects of sodium selenite and nano-selenium on intestinal oxidative stress induced by hydrogen peroxide (H2O2) in mice. A total of 60 female mice were randomly divided into 6 groups with 10 replicates per group and 1 mouse per replicate (n = 10). The first three groups were as follows: the Control group (C), fed with basal diet; the sodium selenite group (SS), basal diet + 0.3 mg·kg−1 sodium selenite; and the nano-selenium group (NS), basal diet + 0.3 mg·kg−1 nano-selenium. The latter three groups (CH, SSH, NSH) were fed the same diet as the former three groups, but the last 10 days of the experiment were fed with drinking water containing 0.3% H2O2 to induce oxidative stress. The results showed that under normal conditions, the supplementation with sodium selenite or nano-selenium decreased the spleen index of mice; sodium selenate up-regulates GPX3 expression in the ileum, and increases T-SOD in the colon of mice; and nano-selenium up-regulated GPX1 expression but decreased T-AOC in the jejunum. After drinking water treated with H2O2, H2O2 increased the expression of intestinal inflammatory factors and selenium proteins, such as IL-1β and SOD in jejunum, IL-1β, NF-κB, IL-10, TXNRD1, TXNRD2, GPX1, GPX3, GPX4, and CAT in ileum, and IL-1β and SOD in colon. At the antioxidant level, H2O2 decreased T-AOC in the jejunum. In the H2O2 treatment, sodium selenite and nano-selenium increased the ratio of VH to CD (VH/CD) in jejunum; sodium selenite up-regulated the expression of TXNRD1 in jejunum, down-regulated the expression of GPX3 in ileum, at the antioxidant level, decreased the T-SOD and T-AOC in colon, and increased the content of MDA in ileum; and nano-selenium down-regulated the expression of TXNRD1 in colon. At the same time, the expression of IL-1β, NF-κB, IL-10, TXNRD1, TXNRD2, GPX1, GPX4, and CAT can be restored to normal levels by selenium supplementation. According to the results, drinking H2O2 induced intestinal oxidative stress in mice to a certain extent, and selenium supplementation mitigated the destructive effect of H2O2 on the intestinal morphology of mice jejunum and restored the level of related inflammatory factors, and had a positive effect on antioxidants. Full article
(This article belongs to the Special Issue Applications of Antioxidant Nanoparticles, 2nd Edition)
17 pages, 1315 KB  
Article
MfWRKY40 Positively Regulates Drought Tolerance in Arabidopsis thaliana by Scavenging Reactive Oxygen Species
by Xueli Zhang, Wei Duan, Yuxiang Wang, Zhihu Jiang and Qian Li
Int. J. Mol. Sci. 2025, 26(17), 8495; https://doi.org/10.3390/ijms26178495 (registering DOI) - 1 Sep 2025
Abstract
Drought stress is a major abiotic constraint that severely restricts the growth of Medicago falcata L. by inducing the accumulation of reactive oxygen species (ROS) in plants. WRKY transcription factors (TFs) play a key role in regulating plant responses to drought stress. In [...] Read more.
Drought stress is a major abiotic constraint that severely restricts the growth of Medicago falcata L. by inducing the accumulation of reactive oxygen species (ROS) in plants. WRKY transcription factors (TFs) play a key role in regulating plant responses to drought stress. In this study, we investigated the role of the MfWRKY40 gene in drought tolerance. Under mannitol and ABA stress treatments, MfWRKY40-overexpressing lines (OEs) showed significantly longer primary roots, increased lateral roots, and higher fresh weight compared to wild-type (Col) lines, indicating significantly enhanced growth and drought tolerance. Similarly, under soil drought conditions, transgenic Arabidopsis thaliana exhibited enhanced drought tolerance. NBT staining demonstrated decreased ROS accumulation in transgenic lines after stress treatment. Correspondingly, the MfWRKY40-overexpressing lines displayed significantly lower levels of hydrogen peroxide (H2O2), superoxide anion (O2), and malondialdehyde (MDA) compared to Col, along with elevated activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), as well as increased proline (Pro) content. Furthermore, MfWRKY40 upregulated the expression of antioxidant enzyme genes (AtPOD3, AtSOD4, and AtCAT1) and modulated the expression of other drought-related genes. In summary, our results demonstrate that MfWRKY40 enhances drought tolerance in A. thaliana by improving ROS scavenging capacity. This study provides a theoretical foundation for further exploration of MfWRKY40’s functional mechanisms in drought stress adaptation. Full article
(This article belongs to the Special Issue Abiotic Stress in Plants: Physiological and Molecular Responses)
15 pages, 1266 KB  
Article
Genetic Dissection of Yield-Related Traits in a Set of Maize Recombinant Inbred Lines Under Multiple Environments
by Donglin Li, Weiwei Zeng, Zhongmin Han, Jiawei Shang, Tai An, Yuan Li, Yuan Xu, Fengyu Wang, Xiaochun Jin, Jinsheng Fan, Jianqian Qi, Rui Wang, Liang Li, Kaijian Fan, Dequan Sun and Yuncai Lu
Agronomy 2025, 15(9), 2109; https://doi.org/10.3390/agronomy15092109 - 1 Sep 2025
Abstract
Agronomic advancements have led to significant increases in maize yield per hectare in Northeast China, primarily through improved density tolerance. However, the genetic mechanism underlying grain yield responses to density stress remains poorly understood. Here, a population of 193 recombinant inbred lines (RILs) [...] Read more.
Agronomic advancements have led to significant increases in maize yield per hectare in Northeast China, primarily through improved density tolerance. However, the genetic mechanism underlying grain yield responses to density stress remains poorly understood. Here, a population of 193 recombinant inbred lines (RILs) derived from the cross between ZM058 and PH1219 was employed to identify quantitative trait loci (QTLs) under two planting densities across three locations over two years. Six yield-related traits were investigated: ear tip-barrenness length (BEL), cob diameter (CD), ear diameter (ED), ear length (EL), kernel number per row (KNR), and kernel row number (KRN). These traits exhibited distinct and divergent responses to density stress, with the values of CD, ED, EL, KNR and KRN decreasing as planting density increased, except for BEL. A total of 81 QTLs were identified for these traits: 39 were unique to low planting density, 22 to high planting density, and 20 were shared across both conditions. Additionally, nine QTL clusters implicated in the development of multiple traits were detected. The results indicate that planting density significantly affects yield traits, primarily through the interaction of numerous minor QTLs with multiple effects. This insight enhances our understanding of the genetic basis of yield-related traits and provides valuable guidance for breeding high-density-tolerant varieties. Full article
Show Figures

Figure 1

20 pages, 3988 KB  
Article
Applying 4E Cognition to Acoustic Design: A Theoretical Framework for University Learning Environments
by Samantha Di Loreto, Miriam D’Ignazio, Leonardo Guglielmi and Sergio Montelpare
Architecture 2025, 5(3), 70; https://doi.org/10.3390/architecture5030070 (registering DOI) - 1 Sep 2025
Abstract
The 4E Cognition paradigm offers a novel theoretical framework for understanding how acoustic environments influence cognitive processes in university learning spaces. This research integrates objective characterization of environmental parameters with comprehensive subjective evaluation of student experience to explore how aural conditions relate to [...] Read more.
The 4E Cognition paradigm offers a novel theoretical framework for understanding how acoustic environments influence cognitive processes in university learning spaces. This research integrates objective characterization of environmental parameters with comprehensive subjective evaluation of student experience to explore how aural conditions relate to cognitive processes and physiological stress responses in university learning environments. The study recruited 126 university students from the Engineering Faculty of “G. D’Annunzio” University, with final analysis including 66 valid responses from 28 participants in the acoustically treated classroom and 38 from the control condition. The results revealed modest associations between environmental conditions and cognitive performance measures, with small to moderate effect sizes (Cohen’s d ranging from 0.02 to 0.31). While acoustic treatment produced measurable improvements in speech intelligibility and acoustic quality ratings, differences in cognitive load and allostatic load indices were minimal between conditions. These findings provide preliminary empirical insights for applying the 4E Cognition framework to educational settings, suggesting that acoustic interventions may require extended exposure periods or more intensive treatments to produce substantial physiological and cognitive effects. This work contributes to the emerging field of cognitive architecture by introducing an innovative theoretical approach that reconceptualizes acoustic environments as potential cognitive extensions rather than mere background conditions. The findings offer initial evidence-based insights for integrating environmental considerations into educational facility design, while highlighting the need for longitudinal studies to fully understand how acoustic environments function as cognitive scaffolding in learning contexts. Full article
(This article belongs to the Special Issue Integration of Acoustics into Architectural Design)
Show Figures

Figure 1

17 pages, 1392 KB  
Article
Effects of Cadmium on the Accumulation and Phytotoxicity of Uranium in Radish (Raphanus sativus L.) Seedlings
by Xin-Peng Guo, Xi Chen, Chun-Xia Tu, Yu-Meng Fan, Ming-Xuan Wang, Zheng-Qin Zhao, Shi-Yi Yang, Lan-Lan Cui, Guo Wu, Jin-Long Lai and Qun Li
Plants 2025, 14(17), 2711; https://doi.org/10.3390/plants14172711 - 1 Sep 2025
Abstract
Cadmium (Cd) is a major co-occurring, highly toxic heavy metal in uranium (U) tailings that poses synergistic risks to ecological and human health. This study aimed to investigate the effects of Cd on U accumulation and phytotoxicity in plants using radish (Raphanus [...] Read more.
Cadmium (Cd) is a major co-occurring, highly toxic heavy metal in uranium (U) tailings that poses synergistic risks to ecological and human health. This study aimed to investigate the effects of Cd on U accumulation and phytotoxicity in plants using radish (Raphanus sativus L.) as a model organism under hydroponic conditions. Treatments included U alone (25 μM and 50 μM), low-concentration Cd alone (10 μM), and U + Cd co-treatments (U25 + Cd and U50 + Cd). Results revealed that exposure exerted minimal phytotoxicity, whereas U treatment induced severe root toxicity, characterized by cell death and an 11.9–63.8% reduction in root biomass compared to the control. Notably, U + Cd co-treatment exacerbated root cell death and biomass loss relative to U alone. Physiologically, elevated U concentrations significantly increased superoxide anion radical (O2) production rate, hydrogen peroxide (H2O2) content, and malondialdehyde (MDA)—a marker of oxidative damage—inducing cellular oxidative stress. Under U + Cd co-treatment, O2 production, H2O2 content, and MDA levels in radish roots were all significantly higher than under U alone. Concurrently, activities of antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], and peroxidase [POD]) were lower in U + Cd-treated roots than in U-treated roots, further exacerbating oxidative damage. Regarding heavy metal accumulation, the content of U in radish under U + Cd treatment was significantly higher than that in the U treatment group. However, no significant differences were observed in the expression of uranium (U)-related transport genes (MCA1, MCA3, and ANN1) between the single U treatment and the U-Cd co-treatment. Notably, the inhibitory effect of NRAMP3—a gene associated with Cd transport—was weakened under the coexistence of U, indicating that U exacerbates toxicity by promoting Cd transport. This study shows that Cd appears to enhance the accumulation of U in radish roots and exacerbate the phytotoxicity of U. Full article
(This article belongs to the Special Issue In Vivo and In Vitro Studies on Heavy Metal Tolerance in Plants)
Show Figures

Figure 1

24 pages, 2945 KB  
Article
Comprehensive Investigation of Qatar Soil Bacterial Diversity and Its Correlation with Soil Nutrients
by Muhammad Riaz Ejaz, Kareem Badr, Farzin Shabani, Zahoor Ul Hassan, Nabil Zouari, Roda Al-Thani and Samir Jaoua
Microbiol. Res. 2025, 16(9), 196; https://doi.org/10.3390/microbiolres16090196 - 1 Sep 2025
Abstract
Arid and semi-arid regions show distinctive bacterial groups important for the sustainability of ecosystems and soil health. This study aims to investigate how environmental factors across five Qatari soils influence the taxonomic composition of bacterial communities and their predicted functional roles using 16S [...] Read more.
Arid and semi-arid regions show distinctive bacterial groups important for the sustainability of ecosystems and soil health. This study aims to investigate how environmental factors across five Qatari soils influence the taxonomic composition of bacterial communities and their predicted functional roles using 16S rRNA amplicon sequencing and soil chemical analysis. Soil samples from five different locations in Qatar (three coastal and two inland) identified 26 bacterial phyla, which were dominated by Actinomycetota (35–43%), Pseudomonadota (12–16%), and Acidobacteriota (4–13%). Species-level analysis discovered taxa such as Rubrobacter tropicus, Longimicrobium terrae, Gaiella occulta, Kallotenue papyrolyticum, and Sphingomonas jaspsi, suggesting the presence of possible novel microbial families. The functional predictions showed development in pathways related to amino acid metabolism, carbohydrate metabolism, and stress tolerance. In addition, heavy-metal-related taxa, which are known to harbor genes for metal resistance mechanisms including efflux pumps, metal chelation, and oxidative stress tolerance. The presence of Streptomyces, Pseudomonas, and Bacillus highlights their roles in stress tolerance, biodegradation, and metabolite production. These findings improve the understanding of microbial roles in dry soils, especially in nutrient cycling and ecosystem resilience. They highlight the importance of local bacteria for sustaining desert soil functions. Further research is needed to validate these relationships, using metabolomic approaches while monitoring microbial-community-changing aspects under fluctuating environmental conditions. Full article
Show Figures

Graphical abstract

26 pages, 3150 KB  
Case Report
Metabolic Disorders in Transition Dairy Cows in a 500-Cow Herd—Analysis, Prevention and Follow-Up
by Melanie Schären-Bannert, Benno Waurich, Fanny Rachidi, Adriana Wöckel, Wolf Wippermann, Julia Wittich, Guntram Hermenau, Erik Bannert, Peter Hufe, Detlef May, Sven Dänicke, Hermann Swalve and Alexander Starke
Dairy 2025, 6(5), 49; https://doi.org/10.3390/dairy6050049 (registering DOI) - 1 Sep 2025
Abstract
Managing transition cows and preventing diseases related to this period is challenging due to the latter’s multifactorial nature. The aim of this applied observational case study is to illustrate and discuss the different aspects involved and provide an approach to analysis and the [...] Read more.
Managing transition cows and preventing diseases related to this period is challenging due to the latter’s multifactorial nature. The aim of this applied observational case study is to illustrate and discuss the different aspects involved and provide an approach to analysis and the resulting management solutions using a real-life case within a 500-cow herd. The initial assessment, involving the collection of data on the level of production, animal health and behaviour, and metabolic indicators, as well as management and housing key indicators, revealed key risk factors, including overcrowding, suboptimal feeding strategies, inadequate water supply, and insufficient disease monitoring. These factors contributed to increased cases of metabolic disorders such as hypocalcemia (annual incidence 7.8%), excessive lipomobilisation, and displaced abomasum (annual incidence 5.2%). A holistic approach combining feeding adjustments, disease monitoring, facility improvements, and long-term management strategies was implemented to address these challenges. Short-term interventions, such as optimizing the dietary cation–anion balance and enhancing disease detection protocols, led to noticeable improvements. However, structural constraints and external factors, such as extreme weather conditions (heat stress) and economic limitations, created significant hurdles in achieving immediate and sustained success. The farm ultimately opted for infrastructural improvements, including a new transition cow facility, to provide a long-term solution to these recurring issues. This case highlights the complexity of transition cow management, demonstrating that long-term success depends on continuous monitoring, interdisciplinary collaboration, and adaptability in response to evolving challenges in dairy production. Full article
Show Figures

Figure 1

22 pages, 1801 KB  
Review
The Effects of Microgravity on the Structure and Function of Cardiomyocytes
by Luis Fernando González-Torres, Daniela Grimm and Marcus Krüger
Biomolecules 2025, 15(9), 1261; https://doi.org/10.3390/biom15091261 - 30 Aug 2025
Viewed by 44
Abstract
Spaceflight and microgravity (μg) environments induce numerous cardiovascular changes that affect cardiac structure and function, and understanding these effects is essential for astronaut health and tissue engineering in space. This review compiles and analyzes over 30 years of research on the impact of [...] Read more.
Spaceflight and microgravity (μg) environments induce numerous cardiovascular changes that affect cardiac structure and function, and understanding these effects is essential for astronaut health and tissue engineering in space. This review compiles and analyzes over 30 years of research on the impact of real and simulated μg on cardiomyocytes. A comprehensive literature search was conducted across five databases, and 62 eligible studies involving cardiac cells under μg or spaceflight conditions were compiled and analyzed. Despite the great heterogeneity in terms of cardiac model, microgravity platform, and exposure duration, multiple studies consistently reported alterations in Ca2+ handling, metabolism, contractility, and gene expression. Three-dimensional human-induced pluripotent stem cell-derived cardiomyocyte (HiPSC-CM) models generally showed enhanced tissue maturation and proliferation parameters, suggesting potential therapeutic benefits, while 2D models mostly exhibited stress-related dysfunction. In vivo simulated microgravity studies, such as the hindlimb unloading (HU) model, show structural and functional cardiac remodeling, and real μg studies confirmed various effects seen under the HU model in multiple rodent species. Thus, μg exposure consistently induces cardiac changes at the cellular and molecular level, while model choice, microgravity platform, and exposure duration critically influence the outcomes. Full article
Show Figures

Figure 1

20 pages, 1985 KB  
Article
Oyster Fermentation Broth Alleviated Tripterygium-Glycosides-Induced Reproductive Damage in Male Rats
by Jiajia Yin, Hongguang Zhu, Yu Tian, Tengyu Ma, Wenjing Yan and Haixin Sun
Molecules 2025, 30(17), 3550; https://doi.org/10.3390/molecules30173550 - 29 Aug 2025
Viewed by 162
Abstract
In this study, oyster fermentation broth (OFB) was prepared by fermenting oysters with yeast, and its effects on oxidative stress and reproductive damage induced by tripterygium glycosides (TG) in male rats were investigated. Component analysis revealed that OFB contained bioactive substances including proteins [...] Read more.
In this study, oyster fermentation broth (OFB) was prepared by fermenting oysters with yeast, and its effects on oxidative stress and reproductive damage induced by tripterygium glycosides (TG) in male rats were investigated. Component analysis revealed that OFB contained bioactive substances including proteins (1.19 g/L), taurine (0.76 g/L), organic acids (2.30 mg/mL), polyphenols (123.00 mg GAE/L), flavonoids (1.97 mg RE/L), and zinc (1.10 mg/L). In vitro study revealed that OFB exhibited notable antioxidant activity, with a total antioxidant capacity of 1.28 U/mL, and DPPH, ABTS, and hydroxyl radical scavenging rates of 55.80%, 69.54%, and 48.36%, respectively. Animal experiments showed that, compared with the TG-induced model group, rats administered both low-dose (5 mL/kg) and high-dose (10 mL/kg) OFB showed significantly increased testis and seminal vesicle + prostate indices, sperm count, and serum testosterone (T) levels and decreased sperm malformation rate (p < 0.01 for all). Histological analysis of the testis revealed an increased number of spermatogenic cells and sperm within the seminiferous tubules, along with ameliorated pathological conditions compared to the model group. Potential mechanisms might be related to OFB increasing the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) enzymes and reducing levels of malondialdehyde (MDA) in testis (p < 0.01). The findings demonstrated that OFB successfully alleviated TG-induced reproductive damage in male rats, which might be attributed to its excellent antioxidant effect. The study offers valuable insights for producing functional foods from oysters and further validates OFB’s efficacy in promoting reproductive function. Full article
(This article belongs to the Collection Advances in Food Chemistry)
Show Figures

Figure 1

18 pages, 1215 KB  
Review
The Dual Role of Nanomaterials in Ovarian Cancer and Female Fertility as Anti- and Prooxidants
by Massimo Aloisi, Gianna Rossi and Sandra Cecconi
Antioxidants 2025, 14(9), 1066; https://doi.org/10.3390/antiox14091066 - 29 Aug 2025
Viewed by 122
Abstract
Nanomaterials (NMs) are becoming increasingly important in biomedical applications, especially in reproductive biology and oncology. In this review, we examined the “double face” of NMs as prooxidants and antioxidants in relation to ovarian cancer and female fertility. NMs have been shown to reduce [...] Read more.
Nanomaterials (NMs) are becoming increasingly important in biomedical applications, especially in reproductive biology and oncology. In this review, we examined the “double face” of NMs as prooxidants and antioxidants in relation to ovarian cancer and female fertility. NMs have been shown to reduce oxidative stress pathways in tumors, enhancing the effectiveness of chemotherapy and serving as carriers for drugs and compounds. They are also considered for their protective effects on female fertility by improving oocyte quality, maturation, and survival under various healthy and adverse conditions. However, certain NMs can induce oxidative stress, mitochondrial dysfunction, and ovarian tissue apoptosis when present in high concentrations or after prolonged exposure. These “double face” effects highlight the complex nature of NMs’ concentration, shape, and biocompatibility. Although NMs show promise in cancer treatment and fertility preservation, a comprehensive assessment of their prooxidant potential is necessary for successful clinical application. Full article
16 pages, 578 KB  
Systematic Review
Biomechanical Insights into the Variation of Maxillary Arch Dimension with Clear Aligners: A Finite Element Analysis-Based Scoping Review
by Alessandra Putrino, Gaia Bompiani, Francesco Aristei, Valerio Fornari, Ludovico Massafra, Roberto Uomo and Angela Galeotti
Appl. Sci. 2025, 15(17), 9514; https://doi.org/10.3390/app15179514 (registering DOI) - 29 Aug 2025
Viewed by 75
Abstract
Clear aligners (CAs) have emerged as a widely accepted alternative to conventional fixed orthodontic appliances due to their aesthetic appeal, comfort, and removability. Despite their increasing use, the precise biomechanical behavior of CAs—particularly in relation to maxillary arch expansion and torque control—remains incompletely [...] Read more.
Clear aligners (CAs) have emerged as a widely accepted alternative to conventional fixed orthodontic appliances due to their aesthetic appeal, comfort, and removability. Despite their increasing use, the precise biomechanical behavior of CAs—particularly in relation to maxillary arch expansion and torque control—remains incompletely understood. This scoping review aims to synthesize and critically examine the recent body of evidence derived from finite element analysis (FEA) studies investigating the performance of clear aligners in managing transverse discrepancies and controlling tooth movement. It considered studies published up to April 2025. All included FEA studies assumed dental and bone tissues as linearly elastic, homogeneous, and isotropic, unless otherwise specified. Five in silico studies were included, all employing three-dimensional FEA models to assess the influence of various clinical and design parameters, such as aligner thickness, movement sequence, attachment configuration, and torque compensation. The findings consistently show that movement protocols involving alternating activation patterns and specific attachment designs can significantly improve the efficiency of maxillary expansion, while reducing undesired tipping or anchorage loss. Additionally, greater aligner thicknesses were generally associated with increased force delivery and more pronounced tooth displacement. Although FEA provides a powerful tool for visualizing stress distribution and predicting mechanical responses under controlled conditions, the lack of standardized force application and limited clinical validation remain important limitations. These findings underscore the potential of optimized aligner protocols to enhance treatment outcomes, but they also highlight the need for complementary in vivo studies to confirm their clinical relevance and guide evidence-based practice. Full article
(This article belongs to the Special Issue Advances in Orthodontic Treatment, 2nd Edition)
Show Figures

Figure 1

17 pages, 10585 KB  
Article
Optic Axis Rotation and Bertin Surface Deformation in Lead Tungstate (PWO) and Other Tetragonal Crystals by Stress and Misalignment of Crystallographic Cells: A Theoretical Study
by Luigi Montalto, Daniele Rinaldi and Fabrizio Davì
Crystals 2025, 15(9), 773; https://doi.org/10.3390/cryst15090773 - 29 Aug 2025
Viewed by 47
Abstract
For tetragonal lead tungstate (PWO) and other tetragonal crystals, we study modifications of the Bertin surfaces induced by either the distortion of crystallographic cells, the applied plane stress, or cell misalignment with respect to the specimen faces. In both cases, the distortions of [...] Read more.
For tetragonal lead tungstate (PWO) and other tetragonal crystals, we study modifications of the Bertin surfaces induced by either the distortion of crystallographic cells, the applied plane stress, or cell misalignment with respect to the specimen faces. In both cases, the distortions of the Bertin surfaces result in the reshaping of the interference pattern observed by conoscopy. We provide, for different observation directions of the crystals, analytical relations that allow for the evaluation of the optic plane and the optical indicatrix rotation with or without stress. By the means of these relations, interference image reshaping allows us to detect, provided that some conditions hold, the crystallographic axes’ rotation. This work is a theoretical study aiming to evaluate the optic axes and crystallographic cell orientation by means of conoscopic observations. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

15 pages, 2592 KB  
Article
Heat Stress and Anthropogenic Substrates: Molecular and Behavioral Adaptation of Metridium senile in Human-Modified Marine Environments
by Guangliang Teng, Wen Chen, Xiujuan Shan, Qing Zhu and Xianshi Jin
Int. J. Mol. Sci. 2025, 26(17), 8415; https://doi.org/10.3390/ijms26178415 - 29 Aug 2025
Viewed by 98
Abstract
Marine litter provides novel habitats for substrate-dependent species, potentially facilitating their expansion under climate change. This study investigated the thermal adaptability and substrate selectivity of the cold-water sea anemone Metridium senile in the Yellow Sea, where rising temperatures and anthropogenic substrates may drive [...] Read more.
Marine litter provides novel habitats for substrate-dependent species, potentially facilitating their expansion under climate change. This study investigated the thermal adaptability and substrate selectivity of the cold-water sea anemone Metridium senile in the Yellow Sea, where rising temperatures and anthropogenic substrates may drive its proliferation. Behavioral experiments revealed diminished adhesion capacity under thermal stress (13 °C and 18 °C), with no substrate preference observed. Transcriptomic analysis identified 175 and 340 differentially expressed genes (DEGs) at 13 °C and 18 °C, respectively, compared with the control (8 °C). These DEGs were enriched in metabolic processes, oxidative stress, and cell homeostasis, with key pathways including dorso-ventral axis formation, ECM–receptor interaction, TGF-β, and Wnt signaling pathways. Notably, 7 regeneration-related, 20 adhesion-related, and 16 collagen-related DEGs were implicated in adaptive responses to heat stress. Our findings elucidate the molecular mechanisms underlying M. senile’s resilience and highlight its potential to exploit human-modified habitats under warming conditions, offering insights into ecological shifts in marine ecosystems. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 3862 KB  
Article
Genome-Wide Analysis and Expression Profiles of Auxin Response Factors in Ginger (Zingiber officinale Roscoe)
by Yuanyuan Tong, Sujuan Xu, Jiayu Shi, Yi He, Hong-Lei Li, Tian Yu, Sinian Zhang and Hai-Tao Xing
Int. J. Mol. Sci. 2025, 26(17), 8412; https://doi.org/10.3390/ijms26178412 - 29 Aug 2025
Viewed by 70
Abstract
Ginger, an economically important crop, fulfills multifunctional roles as a spice, vegetable, and raw material for medicinal and chemical products. The family of Auxin Response Factors (ARFs) plays an essential role in facilitating auxin signal transduction and regulating plant growth and development. However, [...] Read more.
Ginger, an economically important crop, fulfills multifunctional roles as a spice, vegetable, and raw material for medicinal and chemical products. The family of Auxin Response Factors (ARFs) plays an essential role in facilitating auxin signal transduction and regulating plant growth and development. However, the role of ARF genes in ginger, a crop of considerable economic importance, remains elucidated. In this study, a total of 26 ZoARF genes were identified in the ginger genome, which were further categorized into four subfamilies (I–IV) and displayed a non-uniform distribution across 11 chromosomes. The proteins are predominantly localized to the nucleus. Promoter regions contained numerous cis-elements linked to light signaling, phytohormones, growth, development, and stress responses. Collinearity analysis revealed 9 pairs of fragment duplication events in ZoARFs, all uniformly distributed across their related chromosomes. In addition, the expression profiles of ZoARFs in ginger were analyzed during development and under several stress conditions like ABA, cold, drought, heat, and salt, employing RNA-seq data and qRT-PCR analysis. Notably, expression profiling revealed tissue-specific functions, with ZoARF#04/05/12/22 associated with flower development and ZoARF#06/13/14/23 implicated in root growth. This work provides an in-depth insight into the ARF family and establishes a foundation for future investigations of ZoARF gene functions in ginger growth, development, and abiotic stress tolerance. Full article
(This article belongs to the Special Issue Plant Tolerance to Stress)
Show Figures

Figure 1

27 pages, 6302 KB  
Article
Identification of Key PANoptosis Regulators in Periodontitis and Chronic Obstructive Pulmonary Disease Using Gene Expression and Machine Learning Methods
by Suheyla Kaya, Nail Besli and Ilhan Onaran
Genes 2025, 16(9), 1027; https://doi.org/10.3390/genes16091027 - 29 Aug 2025
Viewed by 173
Abstract
Background: Periodontitis (PD) is a chronic inflammatory disease associated with systemic conditions such as chronic obstructive pulmonary disease (COPD). PANoptosis—a form of regulated cell death integrating pyroptosis, apoptosis, and necroptosis—has been implicated in inflammatory diseases, but its role in PD and its overlap [...] Read more.
Background: Periodontitis (PD) is a chronic inflammatory disease associated with systemic conditions such as chronic obstructive pulmonary disease (COPD). PANoptosis—a form of regulated cell death integrating pyroptosis, apoptosis, and necroptosis—has been implicated in inflammatory diseases, but its role in PD and its overlap with COPD is not well understood. Methods: Gene expression datasets for PD and COPD were retrieved from the Gene Expression Omnibus (GEO). Differentially expressed genes were intersected with 78 PANoptosis-related genes. Functional enrichment (GO, KEGG), protein–protein interaction (PPI) network analysis, and machine learning (XGBoost with ROC curves) identified key regulatory genes. Immune infiltration was evaluated, and drug–gene interactions were analyzed using DGIDB. Results: Seven PANoptosis-related core genes—ACO1, NLRC4, CASP8, HSPA4, IL1B, MEFV, and CYCS—were identified in both PD and COPD. These genes were enriched in pathways involving inflammasomes, apoptosis, and oxidative stress. Immune analysis showed significant differences in B cells, T cells, dendritic cells, and plasma cells. Potential drug targets, including IL1B and CASP8, were identified. Conclusions: This is the first study to link PANoptosis to both PD and COPD. The findings reveal shared molecular mechanisms and suggest PANoptosis-related genes as novel biomarkers and therapeutic targets in chronic inflammatory oral disease. Full article
(This article belongs to the Special Issue Advances in Bioinformatics of Human Diseases)
Show Figures

Figure 1

Back to TopTop