Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = strict coupled wave method

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 13464 KB  
Article
The Mooring Optimization and Hydrodynamic Characteristics of the Combined Concept of a 15 MW FOWT with WECs
by Yi Yang, Shi Liu, Xinran Guo, Wen Chen, Tao Tao, Hao Wu and Kai Wang
J. Mar. Sci. Eng. 2025, 13(3), 545; https://doi.org/10.3390/jmse13030545 - 12 Mar 2025
Cited by 2 | Viewed by 1225
Abstract
To reduce the cost of offshore wind and wave power, an innovative combined wind–wave energy generation system constituting of a 15 MW semi-submersible floating offshore wind turbine (FOWT) and four torus-type wave energy converters (WECs) is proposed. A wholly coupled numerical model of [...] Read more.
To reduce the cost of offshore wind and wave power, an innovative combined wind–wave energy generation system constituting of a 15 MW semi-submersible floating offshore wind turbine (FOWT) and four torus-type wave energy converters (WECs) is proposed. A wholly coupled numerical model of aero-hydro-elastic-servo-mooring was built to evaluate the mooring line and motion dynamics of this novel combined system. Additionally, a practical mooring optimization framework is proposed with the Latin Hypercube sampling method, Kriging model, and the combined optimization techniques of the Genetic Algorithm and Gradient Algorithm. The optimization results demonstrate that the optimized mooring scheme satisfies all the strict constraints, validating the effectiveness of the optimization method. Moreover, the hydrodynamic characteristics of the combined system and the effects of the WECs on the mooring system under both rated and extreme conditions are discussed, including changes in time-series mooring tension, power spectral density, and statistical characteristics. The research findings provide a reference for the further development and optimization of this novel combined system, contributing to the efficient utilization of offshore renewable energy. Full article
(This article belongs to the Special Issue Floating Wave–Wind Energy Converter Plants)
Show Figures

Figure 1

9 pages, 2616 KB  
Article
A Study on Length Traceability and Diffraction Efficiency of Chromium Gratings
by Lihua Lei, Lijie Liang, Liqin Liu, Yaoqiong Shen, Yuqing Guan, Yujie Zhang, Wenzhe Zou, Chuangwei Guo and Yunxia Fu
Photonics 2024, 11(3), 233; https://doi.org/10.3390/photonics11030233 - 4 Mar 2024
Cited by 2 | Viewed by 1635
Abstract
Measurement traceability is a prerequisite for achieving accurate and reliable results as well as technical standardization. The period of Chromium (Cr) gratings fabricated by atomic lithography can be directly traced back to natural constants. Applying the Cr grating to grating interferometry can achieve [...] Read more.
Measurement traceability is a prerequisite for achieving accurate and reliable results as well as technical standardization. The period of Chromium (Cr) gratings fabricated by atomic lithography can be directly traced back to natural constants. Applying the Cr grating to grating interferometry can achieve nanometer measurement traceability. This research aims to analyze the diffraction efficiency characteristics of self-traceable Cr gratings to provide a theoretical basis for the fabrication and application of Cr gratings. In this regard, we establish the theoretical model of the laser beam incident angle and grating diffraction efficiency using the rigorous coupled-wave method. Then, we analyze the influence of the laser beam incident angle on grating diffraction efficiency by simulation, verify the accuracy of the theoretical model, and finally build a measurement system for grating diffraction efficiency. Through experiments, we find that the diffraction efficiency of the grating shows a rapid increase to reach a stable maximum value followed by a decrease, when a laser beam with a wavelength of 405 nm is incident on the surface of a self-traceable grating in Transverse Magnetic (TM) polarization and the incident angle changes within an effective range. The experimental results are consistent with the trend of theoretical calculation results. Full article
(This article belongs to the Special Issue Optical Precision Manufacturing and Testing: Technologies and Trends)
Show Figures

Figure 1

12 pages, 1001 KB  
Article
Robust Four-Wave Mixing and Double Second-Order Optomechanically Induced Transparency Sideband in a Hybrid Optomechanical System
by Huajun Chen
Photonics 2021, 8(7), 234; https://doi.org/10.3390/photonics8070234 - 24 Jun 2021
Cited by 3 | Viewed by 2689
Abstract
We theoretically research the four-wave mixing (FWM) and second-order sideband generation (SSG) in a hybrid optomechanical system under the condition of pump on-resonance and pump off-resonance, where an optomechanical resonator is coupled to another nanomechanical resonator (NR) via Coulomb interaction. Using the standard [...] Read more.
We theoretically research the four-wave mixing (FWM) and second-order sideband generation (SSG) in a hybrid optomechanical system under the condition of pump on-resonance and pump off-resonance, where an optomechanical resonator is coupled to another nanomechanical resonator (NR) via Coulomb interaction. Using the standard quantum optics method and input–output theory, we obtain the analytical solution of the FWM and SSG with strict derivation. According to the numerical simulations, we find that the FWM can be controlled via regulating the coupling strength and the frequency difference of the two NRs under different detuning, which also gives a means to determine the coupling strength of the two NRs. Furthermore, the SSG is sensitive to the detuning, which shows double second-order optomechanically induced transparency (OMIT) sidebands via controlling the coupling strength and frequencies of the resonators. Our investigation may increase the comprehension of nonlinear phenomena in hybrid optomechanics systems. Full article
(This article belongs to the Special Issue Optomechanics: Science and Applications)
Show Figures

Figure 1

Back to TopTop