Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = strobilurins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3023 KB  
Article
Environmental Drivers of Pesticide Toxicity: Temperature and pH Shift Azoxystrobin’s Effects on Zebrafish (Danio rerio) Early Development
by Zequn Li, Heinz-R. Köhler and Rita Triebskorn
Environments 2025, 12(9), 334; https://doi.org/10.3390/environments12090334 - 18 Sep 2025
Viewed by 293
Abstract
Azoxystrobin, a widely used strobilurin fungicide, poses a potential risk to aquatic ecosystems due to its frequent detection in surface waters. Although its toxicity to non-target organisms has been extensively studied under standardized conditions, few investigations have considered how environmental factors can modulate [...] Read more.
Azoxystrobin, a widely used strobilurin fungicide, poses a potential risk to aquatic ecosystems due to its frequent detection in surface waters. Although its toxicity to non-target organisms has been extensively studied under standardized conditions, few investigations have considered how environmental factors can modulate the adverse effects of this chemical. In this study, we examined the toxicity of azoxystrobin to zebrafish (Danio rerio) embryos under different pH (5, 7, 9) and temperature (21 °C, 26 °C, 31 °C) conditions. Embryos were exposed to azoxystrobin concentrations ranging from 0 to 1000 μg/L, and endpoints such as survival, hatching rate, heart rate, malformations, developmental delay, and Hsp70 expression were assessed over 96 h post-fertilization. Our results demonstrate that azoxystrobin induces significant malformations (including edema, eye, tail, and spinal defects) and developmental delays at 1000 μg/L across all environmental conditions. Furthermore, both pH and temperature were found to modulate azoxystrobin toxicity: elevated temperature and alkaline pH partly alleviated mortality at high concentrations. The hsp70 expression patterns revealed complex interactions between the effects of the chemical and environmental factors. These findings highlight the importance of incorporating environmental variables into ecotoxicological risk assessments of pesticides to better reflect realistic exposure scenarios and potential ecological impacts. Full article
Show Figures

Figure 1

11 pages, 1942 KB  
Article
Toxicity Assessment of Metyltetraprole, a Novel Fungicide Inhibitor, to Embryo/Larval Zebrafish (Danio rerio)
by Taylor Casine, Amany Sultan, Emma Ivantsova, Cole D. English, Lev Avidan and Christopher J. Martyniuk
Toxics 2025, 13(8), 634; https://doi.org/10.3390/toxics13080634 - 28 Jul 2025
Viewed by 515
Abstract
Strobilurins are a prominent class of fungicides capable of entering aquatic environments via runoff and leaching from the soil. Findings from previous studies suggest that strobilurins are highly toxic in aquatic environments, and evidence of acute developmental toxicity and altered behavioral responses have [...] Read more.
Strobilurins are a prominent class of fungicides capable of entering aquatic environments via runoff and leaching from the soil. Findings from previous studies suggest that strobilurins are highly toxic in aquatic environments, and evidence of acute developmental toxicity and altered behavioral responses have been emphasized. The objective here was to determine the effects of a new strobilurin, metyltetraprole (MTP), on zebrafish using developmental endpoints, gene expression, and behavioral locomotor assays. We hypothesized that MTP would cause developmental toxicity and induce hyperactivity in zebrafish (Danio rerio). To test this, developing zebrafish embryos/larvae were exposed to environmentally relevant levels of MTP (0.1, 1, 10, and 100 µg/L) until 7 days post-fertilization. Survival percentages did not differ among the treatment groups. No change in reactive oxygen species production was detected, but two genes involved in the mitochondrial electron transport chain (mt-nd3 and uqcrc2) were altered in abundance following MTP exposure. Moreover, the highest concentration (100 µg/L) of MTP caused notable hyperactivity in the zebrafish in the visual motor response test. Overall, results from this study increase our knowledge regarding sub-lethal effects of MTP, helping inform risk assessment for aquatic environments. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

24 pages, 4613 KB  
Article
Inhibition of Neural Crest Cell Migration by Strobilurin Fungicides and Other Mitochondrial Toxicants
by Viktoria Magel, Jonathan Blum, Xenia Dolde, Heidrun Leisner, Karin Grillberger, Hiba Khalidi, Iain Gardner, Gerhard F. Ecker, Giorgia Pallocca, Nadine Dreser and Marcel Leist
Cells 2024, 13(24), 2057; https://doi.org/10.3390/cells13242057 - 12 Dec 2024
Cited by 5 | Viewed by 1561
Abstract
Cell-based test methods with a phenotypic readout are frequently used for toxicity screening. However, guidance on how to validate the hits and how to integrate this information with other data for purposes of risk assessment is missing. We present here such a procedure [...] Read more.
Cell-based test methods with a phenotypic readout are frequently used for toxicity screening. However, guidance on how to validate the hits and how to integrate this information with other data for purposes of risk assessment is missing. We present here such a procedure and exemplify it with a case study on neural crest cell (NCC)-based developmental toxicity of picoxystrobin. A library of potential environmental toxicants was screened in the UKN2 assay, which simultaneously measures migration and cytotoxicity in NCC. Several strobilurin fungicides, known as inhibitors of the mitochondrial respiratory chain complex III, emerged as specific hits. From these, picoxystrobin was chosen to exemplify a roadmap leading from cell-based testing towards toxicological predictions. Following a stringent confirmatory testing, an adverse outcome pathway was developed to provide a testable toxicity hypothesis. Mechanistic studies showed that the oxygen consumption rate was inhibited at sub-µM picoxystrobin concentrations after a 24 h pre-exposure. Migration was inhibited in the 100 nM range, under assay conditions forcing cells to rely on mitochondria. Biokinetic modeling was used to predict intracellular concentrations. Assuming an oral intake of picoxystrobin, consistent with the acceptable daily intake level, physiologically based kinetic modeling suggested that brain concentrations of 0.1–1 µM may be reached. Using this broad array of hazard and toxicokinetics data, we calculated a margin of exposure ≥ 80 between the lowest in vitro point of departure and the highest predicted tissue concentration. Thus, our study exemplifies a hit follow-up strategy and contributes to paving the way to next-generation risk assessment. Full article
(This article belongs to the Collection Feature Papers in ‘Cellular Pathology’)
Show Figures

Graphical abstract

17 pages, 24651 KB  
Article
Morphological Alterations and Oxidative Stress Induction in Danio rerio Liver After Short-Term Exposure to the Strobilurin Fungicide Dimoxystrobin
by Rachele Macirella, Abdalmoiz I. M. Ahmed, Federica Talarico, Naouel Gharbi, Marcello Mezzasalma and Elvira Brunelli
Environments 2024, 11(12), 282; https://doi.org/10.3390/environments11120282 - 7 Dec 2024
Viewed by 1734
Abstract
Unlike many other fungicides, strobilurins are applied several times during the growing season for prophylactic purposes, thus heightening the risk of environmental contamination. In the EU, the dimoxystrobin approval period lasted for 17 years. It has been classified as moderately toxic to birds [...] Read more.
Unlike many other fungicides, strobilurins are applied several times during the growing season for prophylactic purposes, thus heightening the risk of environmental contamination. In the EU, the dimoxystrobin approval period lasted for 17 years. It has been classified as moderately toxic to birds and highly toxic to earthworms, and it is suspected to be carcinogenic to humans. However, it is still commercialized in several countries. The effects of dimoxystrobin are still largely underexplored, with only three studies reporting sublethal alterations in fish. Here, we evaluated for the first time the effects of dimoxystrobin on zebrafish liver after short-term exposure (96 h) to two sublethal and environmentally relevant concentrations (6.56 and 13.13 μg/L), providing evidence of morphological, functional, and ultrastructural modifications. We revealed severe alterations encompassing three reaction patterns: circulatory disturbance, regressive and progressive changes, which also showed a dose-dependent trend. Furthermore, we revealed that dimoxystrobin induced a significant increase in lipid content, a decrease in glycogen granules and affected the defensive response against oxidative stress through a significant downregulation of SOD and CAT. The information presented here demonstrates that the hazardous properties of dimoxystrobin may result from several pathological events involving multiple targets. Our results also emphasize the importance of the combined use of morphological, ultrastructural and functional investigation in ecotoxicological studies. Full article
Show Figures

Figure 1

16 pages, 1831 KB  
Article
Azoxystrobin Exposure Impacts on Development Status and Physiological Responses of Worker Bees (Apis mellifera L.) from Larval to Pupal Stages
by Xinle Duan, Huanjing Yao, Wenlong Tong, Manqiong Xiong, Shaokang Huang and Jianghong Li
Int. J. Mol. Sci. 2024, 25(21), 11806; https://doi.org/10.3390/ijms252111806 - 3 Nov 2024
Cited by 4 | Viewed by 1805
Abstract
Honeybee larvae and pupae form the cornerstone of colony survival, development, and reproduction. Azoxystrobin is an effective strobilurin fungicide that is applied during the flowering stage for controlling plant pathogens. The contaminated nectar and pollen resulting from its application are collected by forager [...] Read more.
Honeybee larvae and pupae form the cornerstone of colony survival, development, and reproduction. Azoxystrobin is an effective strobilurin fungicide that is applied during the flowering stage for controlling plant pathogens. The contaminated nectar and pollen resulting from its application are collected by forager bees and impact the health of honeybee larvae and pupae. The current study evaluated the survival, development, and physiological effects of azoxystrobin exposure on the larvae and pupae of Apis mellifera worker bees. The field-recommended concentrations of azoxystrobin were found to suppress the survival indices and lifespan in the larval as well as pupal stages; moreover, the rates of the survival and pupation of larvae as well as the body weights of the pupae and newly-emerged adult bees were significantly reduced upon long-term exposure to azoxystrobin. In addition, azoxystrobin ingestion induced changes in the expression of genes critical for the development, immunity, and nutrient metabolism of larvae and pupae, although the expression profile of these genes differed between the larval and pupal stages. Results indicated the chronic toxicity of azoxystrobin on the growth and development of honeybee larvae and pupae, which would affect their sensitivity to pathogens and other external stresses during the development stage and the study will provide vital information regarding the pollination safety and rational use of pesticides. Full article
(This article belongs to the Special Issue Pesticide Exposure and Toxicity: 2nd Edition)
Show Figures

Figure 1

17 pages, 5754 KB  
Article
Climatic Favorability to the Occurrence of Hemileia vastatrix in Apt Areas for the Cultivation of Coffea arabica L. in Brazil
by Taís Rizzo Moreira, Alexandre Rosa dos Santos, Aldemar Polonini Moreli, Willian dos Santos Gomes, José Eduardo Macedo Pezzopane, Rita de Cássia Freire Carvalho, Kaíse Barbosa de Souza, Clebson Pautz and Lucas Louzada Pereira
Climate 2024, 12(8), 123; https://doi.org/10.3390/cli12080123 - 16 Aug 2024
Cited by 2 | Viewed by 2523
Abstract
In Brazil, coffee leaf rust (CLR), caused by the fungus Hemileia vastatrix, was first detected in Coffea arabica in January of 1970 in southern Bahia. Now widespread across all cultivation areas, the disease poses a significant threat to coffee production, causing losses [...] Read more.
In Brazil, coffee leaf rust (CLR), caused by the fungus Hemileia vastatrix, was first detected in Coffea arabica in January of 1970 in southern Bahia. Now widespread across all cultivation areas, the disease poses a significant threat to coffee production, causing losses of 30–50%. In this context, the objective of this study was to identify and quantify the different classes of occurrence of CLR in areas apt and restricted to the cultivation of Arabica coffee in Brazil for a more informed decision regarding the cultivar to be implanted. The areas of climatic aptitude for Arabica coffee were defined, and then, the climatic favorability for the occurrence of CLR in these areas was evaluated based on climatic data from TerraClimate from 1992 to 2021. The apt areas, apt with some type of irrigation, restricted, and with some type of restriction for the cultivation of Arabica coffee add up to 16.34% of the Brazilian territory. Within this 16.34% of the area of the Brazilian territory, the class of climatic favorability for the occurrence of CLR with greater representation is the favorable one. Currently, the disease is controlled with the use of protective and systemic fungicides, including copper, triazoles, and strobilurins, which must be applied following decision rules that vary according to the risk scenario, and according to the use of resistant cultivars. This study provides a basis for choosing the most suitable cultivars for each region based on the degree of CLR resistance. Full article
Show Figures

Figure 1

15 pages, 647 KB  
Article
Protection of Oats against Puccinia and Drechslera Fungi in Various Meteorological Conditions
by Jakub Danielewicz, Ewa Jajor, Joanna Horoszkiewicz, Marek Korbas, Andrzej Blecharczyk, Robert Idziak, Łukasz Sobiech, Monika Grzanka and Tomasz Szymański
Appl. Sci. 2024, 14(16), 7121; https://doi.org/10.3390/app14167121 - 14 Aug 2024
Cited by 1 | Viewed by 1359
Abstract
Due to their multi-purpose use and, in many cases, lower requirements and financial outlays for cultivation, oats are an interesting crop. However, fungal diseases may contribute to significant declines in grain yields and quality. The aspects that may potentially influence this matter of [...] Read more.
Due to their multi-purpose use and, in many cases, lower requirements and financial outlays for cultivation, oats are an interesting crop. However, fungal diseases may contribute to significant declines in grain yields and quality. The aspects that may potentially influence this matter of fact include weather conditions. The aim of the study was to determine the severity of diseases caused by fungi in oat cultivation during the vegetation season. The next goal was to assess the efficacy of the selected active ingredients (a.i.) of fungicides from the chemical groups of triazoles and strobilurins in selected diseases’ control under various meteorological conditions. All of the fungicides were applied in the form of a spray treatment to reduce the severity of the diseases in the cultivation of different oat varieties. Husked and naked oat varieties were used. The health status of the oat plants was determined on the basis of a macroscopic evaluation of plants performed in accordance with the proper methodology. Field experiments were carried out under different weather conditions, which varied over the years during which the trials were conducted. Statistically significant differences were found in the reduction in infection for F and F1 leaves with D. avenae and P. coronata in comparison to the control treatment, regardless of the a.i. used. The use of a.i. tebuconazole (250 g/L), a.i. epoxiconazole (125 g/L), a.i. azoxystrobin (250 g/L) and a.i. picoxystrobin (250 g/L) enabled a reduction in the severity of oat helmintosporiosis in all years of the study for all the varieties analyzed. The efficacy was 72.4%, 74.2%, 71.5%, and 73.1%, respectively. Higher efficacy in reducing P. coronata was found in comparison with D. avenae. The obtained research results confirm the satisfactory efficacy of the above-mentioned active substances in reducing the fungi D. avenae and P. coronata. Full article
(This article belongs to the Special Issue Potential Impacts and Risks of Climate Change on Agriculture)
Show Figures

Figure 1

22 pages, 1395 KB  
Article
Exploring the Antifungal Activity of Moroccan Bacterial and Fungal Isolates and a Strobilurin Fungicide in the Control of Cladosporium fulvum, the Causal Agent of Tomato Leaf Mold Disease
by Zineb Belabess, Bilale Gajjout, Ikram Legrifi, Essaid Ait Barka and Rachid Lahlali
Plants 2024, 13(16), 2213; https://doi.org/10.3390/plants13162213 - 9 Aug 2024
Cited by 5 | Viewed by 1854
Abstract
The causal agent of tomato leaf mold, Cladosporium fulvum, is prevalent in greenhouses worldwide, especially under high humidity conditions. Despite its economic impact, studies on antifungal agents targeting C. fulvum remain limited. This study evaluates biocontrol agents (BCAs) as alternatives to chemical [...] Read more.
The causal agent of tomato leaf mold, Cladosporium fulvum, is prevalent in greenhouses worldwide, especially under high humidity conditions. Despite its economic impact, studies on antifungal agents targeting C. fulvum remain limited. This study evaluates biocontrol agents (BCAs) as alternatives to chemical controls for managing this disease, alongside the strobilurin fungicide azoxystrobin. From a Moroccan collection of potential BCAs, five bacterial isolates (Alcaligenes faecalis ACBC1, Pantoea agglomerans ACBC2, ACBP1, ACBP2, and Bacillus amyloliquefaciens SF14) and three fungal isolates (Trichoderma spp. OT1, AT2, and BT3) were selected and tested. The in vitro results demonstrated that P. agglomerans isolates reduced mycelial growth by over 60% at 12 days post-inoculation (dpi), while Trichoderma isolates achieved 100% inhibition in just 5 dpi. All bacterial isolates produced volatile organic compounds (VOCs) with mycelial inhibition rates ranging from 38.8% to 57.4%. Likewise, bacterial cell-free filtrates significantly inhibited the pathogen’s mycelial growth. Greenhouse tests validated these findings, showing that all the tested isolates were effective in reducing disease incidence and severity. Azoxystrobin effectively impeded C. fulvum growth, particularly in protective treatments. Fourier transform infrared spectroscopy (FTIR) analysis revealed significant biochemical changes in the treated plants, indicating fungal activity. This study provides valuable insights into the efficacy of these BCAs and azoxystrobin, contributing to integrated management strategies for tomato leaf mold disease. Full article
(This article belongs to the Special Issue Fungus and Plant Interactions, 2nd Edition)
Show Figures

Figure 1

16 pages, 2521 KB  
Article
Synergistic Effects of Oligochitosan and Pyraclostrobin in Controlling Leaf Spot Disease in Pseudostellaria heterophylla
by Cheng Zhang, Chenglin Tang, Qiuping Wang, Yue Su and Qinghai Zhang
Antibiotics 2024, 13(2), 128; https://doi.org/10.3390/antibiotics13020128 - 27 Jan 2024
Cited by 3 | Viewed by 1699
Abstract
Pseudostellaria heterophylla (or Taizishen in Chinese), a medicinal, edible, and ornamental Chinese herb, is seriously affected by leaf spot disease (LSD). Oligochitosan is a natural agricultural antibiotic that is produced via the degradation of chitosan, which is deacetylated from chitin; pyraclostrobin is a [...] Read more.
Pseudostellaria heterophylla (or Taizishen in Chinese), a medicinal, edible, and ornamental Chinese herb, is seriously affected by leaf spot disease (LSD). Oligochitosan is a natural agricultural antibiotic that is produced via the degradation of chitosan, which is deacetylated from chitin; pyraclostrobin is a broad-spectrum and efficient strobilurin fungicide. In this work, the ability of pyraclostrobin, oligochitosan, and their formula to manage P. heterophylla leaf spot disease and their role in its resistance, leaf photosynthesis, agronomic plant traits, root growth, and root quality were studied. The results show that the joint application of oligochitosan and low-dosage pyraclostrobin could control LSD more efficiently, with control effects of 85.75–87.49% compared to high-dosage pyraclostrobin or oligochitosan alone. Concurrently, the application of this formula could more effectively improve the resistance, leaf photosynthesis, agronomic plant traits, root yield, and medicinal quality of P. heterophylla, as well as reduce the application of pyraclostrobin. This finding suggests that 30% pyraclostrobin suspension concentrate (SC) 1500-time + 5% oligosaccharin aqueous solutions (AS) 500-time diluent can be recommended for use as a feasible formula to manage LSD and reduce the application of chemical pesticides. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

19 pages, 3560 KB  
Article
Detection of Strobilurin Fungicides in Trout Streams within an Agricultural Watershed
by Cole R. Weaver, Meghan Brockman, Neal D. Mundahl, William A. Arnold, Dylan Blumentritt, Will L. Varela and Jeanne L. Franz
Hydrology 2024, 11(2), 13; https://doi.org/10.3390/hydrology11020013 - 25 Jan 2024
Cited by 4 | Viewed by 3071
Abstract
The use of strobilurin fungicides in agriculture has increased steadily during the past 25 years, and although strobilurins have minimal water solubility, they regularly appear in surface waters, at times in concentrations approaching toxic levels for aquatic life. The present study examined concentrations [...] Read more.
The use of strobilurin fungicides in agriculture has increased steadily during the past 25 years, and although strobilurins have minimal water solubility, they regularly appear in surface waters, at times in concentrations approaching toxic levels for aquatic life. The present study examined concentrations of strobilurin fungicides in designated trout streams draining an agricultural watershed in southeastern Minnesota, USA, where fungicides may have contributed to a recent fish kill. Water samples (n = 131) were analyzed for the presence of five different strobilurin fungicides (azoxystrobin, fluoxastrobin, picoxystrobin, pyraclostrobin, trifloxystrobin). Samples were collected via grab and automated sampling during baseflow and stormflow events throughout an entire crop-growing season from sites on each of the three forks of the Whitewater River. Detection frequencies for the five strobilurins ranged from 44 to 82%. Fluoxastrobin and pyraclostrobin concentrations were above known toxic levels in 3% and 15% of total samples analyzed, respectively. The highest concentrations were detected in mid-summer (mid-June to mid-August) samples, coincident with likely strobilurin applications. Lower concentrations were present in water samples collected during the nonapplication periods in spring and fall, suggesting groundwater–stream interactions or steady leaching of fungicides from watershed soils or stream sediments. Further study is required to determine strobilurin concentrations in sediments, soils, and groundwater. Better tracking and guidance regarding strobilurin use is necessary to adequately protect aquatic life as fungicide use continues to increase. Full article
(This article belongs to the Special Issue Hydrological Processes in Agricultural Watersheds)
Show Figures

Figure 1

12 pages, 5299 KB  
Article
Ultrastructural Changes in the Midgut of Brazilian Native Stingless Bee Melipona scutellaris Exposed to Fungicide Pyraclostrobin
by Caio E. C. Domingues, Lais V. B. Inoue, Aleš Gregorc, Leticia S. Ansaloni, Osmar Malaspina and Elaine C. Mathias da Silva
Toxics 2023, 11(12), 1028; https://doi.org/10.3390/toxics11121028 - 18 Dec 2023
Cited by 2 | Viewed by 2358
Abstract
Melipona scutellaris is a Brazilian stingless bee that is important for pollinating wild flora and agriculture crops. Fungicides have been widely used in agriculture, and floral residues can affect forager bees. The goal of our study was to evaluate the effects of sublethal [...] Read more.
Melipona scutellaris is a Brazilian stingless bee that is important for pollinating wild flora and agriculture crops. Fungicides have been widely used in agriculture, and floral residues can affect forager bees. The goal of our study was to evaluate the effects of sublethal concentrations of pyraclostrobin on the midgut ultrastructure of M. scutellaris forager workers. The bees were collected from three non-parental colonies and kept under laboratory conditions. The bees were orally exposed continuously for five days to pyraclostrobin in syrup at concentrations of 0.125 ng a.i./µL (FG1) and 0.005 ng a.i./µL (FG2). The control bees (CTL) were fed a no-fungicide sucrose solution, and the acetone solvent control bees (CAC) received a sucrose solution containing acetone. At the end of the exposure, the midguts were sampled, fixed in Karnovsky solution, and routinely processed for transmission electron microscopy. Ultrastructural analysis demonstrated that both the fungicide concentrations altered the midgut, such as cytoplasmic vacuolization (more intense in FG1), the presence of an atypical nuclear morphology, and slightly dilated mitochondrial cristae in the bees from the FG1 and FG2 groups (both more intense in FG1). Additionally, there was an alteration in the ultrastructure of the spherocrystals (FG1), which could be the result of cellular metabolism impairment and the excretion of toxic metabolites in the digestive cells as a response to fungicide exposure. The results indicate that ingested pyraclostrobin induced cytotoxic effects in the midgut of native stingless bees. These cellular ultrastructural responses of the midgut are a prelude to a reduced survival rate, as observed in previous studies. Full article
Show Figures

Figure 1

12 pages, 1542 KB  
Article
Impact of Exposure to Pyraclostrobin and to a Pyraclostrobin/Boscalid Mixture on the Mitochondrial Function of Human Hepatocytes
by Mélina Carbone, Barbara Mathieu, Yasmine Vandensande and Bernard Gallez
Molecules 2023, 28(20), 7013; https://doi.org/10.3390/molecules28207013 - 10 Oct 2023
Cited by 10 | Viewed by 2526
Abstract
Fungicides are widely used in agriculture for crop protection. Succinate dehydrogenase inhibitors (SDHIs) and strobilurins inhibit mitochondria electron transport chain (ETC) in fungi, by blocking complex II and complex III, respectively. Questions regarding their selectivity of action for fungi have been raised in [...] Read more.
Fungicides are widely used in agriculture for crop protection. Succinate dehydrogenase inhibitors (SDHIs) and strobilurins inhibit mitochondria electron transport chain (ETC) in fungi, by blocking complex II and complex III, respectively. Questions regarding their selectivity of action for fungi have been raised in the literature, and we previously showed that boscalid and bixafen (SDHIs) alter the mitochondrial function of human hepatocytes. Here, we analyzed the impact of the exposure of human hepatocytes to pyraclostrobin, a fungicide belonging to the class of strobilurins. Using electron paramagnetic resonance (EPR), we observed a decrease in oxygen consumption rate (OCR) and an increase in mitochondrial superoxide levels after 24 h exposure to 0.5 µM concentration. As a consequence, the content in ATP amount in the cells was reduced, the ratio reduced/oxidized glutathione was decreased, and a decrease in cell viability was observed using three different assays (PrestoBlue, crystal violet, and annexin V assays). In addition, as SDHIs and strobilurins are commonly associated in commercial preparations, we evaluated a potential “cocktail” toxic effect. We selected low concentrations of boscalid (0.5 µM) and pyraclostrobin (0.25 µM) that did not induce a mitochondrial dysfunction in liver cells when used separately. In sharp contrast, when both compounds were used in combination at the same concentration, we observed a decrease in OCR, an increase in mitochondrial superoxide production, a decrease in the ratio reduced/oxidized glutathione, and a decrease in cell viability in three different assays. Full article
Show Figures

Graphical abstract

20 pages, 5011 KB  
Article
Genomic Based Analysis of the Biocontrol Species Trichoderma harzianum: A Model Resource of Structurally Diverse Pharmaceuticals and Biopesticides
by Suhad A. A. Al-Salihi and Fabrizio Alberti
J. Fungi 2023, 9(9), 895; https://doi.org/10.3390/jof9090895 - 31 Aug 2023
Cited by 6 | Viewed by 3106
Abstract
Fungi represents a rich repository of taxonomically restricted, yet chemically diverse, secondary metabolites that are synthesised via specific metabolic pathways. An enzyme’s specificity and biosynthetic gene clustering are the bottleneck of secondary metabolite evolution. Trichoderma harzianum M10 v1.0 produces many pharmaceutically important molecules; [...] Read more.
Fungi represents a rich repository of taxonomically restricted, yet chemically diverse, secondary metabolites that are synthesised via specific metabolic pathways. An enzyme’s specificity and biosynthetic gene clustering are the bottleneck of secondary metabolite evolution. Trichoderma harzianum M10 v1.0 produces many pharmaceutically important molecules; however, their specific biosynthetic pathways remain uncharacterised. Our genomic-based analysis of this species reveals the biosynthetic diversity of its specialised secondary metabolites, where over 50 BGCs were predicted, most of which were listed as polyketide-like compounds associated clusters. Gene annotation of the biosynthetic candidate genes predicted the production of many medically/industrially important compounds including enterobactin, gramicidin, lovastatin, HC-toxin, tyrocidine, equisetin, erythronolide, strobilurin, asperfuranone, cirtinine, protoilludene, germacrene, and epi-isozizaene. Revealing the biogenetic background of these natural molecules is a step forward towards the expansion of their chemical diversification via engineering their biosynthetic genes heterologously, and the identification of their role in the interaction between this fungus and its biotic/abiotic conditions as well as its role as bio-fungicide. Full article
(This article belongs to the Special Issue Genomics Analysis of Fungi)
Show Figures

Figure 1

10 pages, 923 KB  
Article
Fungicidal Protection as Part of the Integrated Cultivation of Sugar Beet: An Assessment of the Influence on Root Yield in a Long-Term Study
by Iwona Jaskulska, Jarosław Kamieniarz, Dariusz Jaskulski, Maja Radziemska and Martin Brtnický
Agriculture 2023, 13(7), 1449; https://doi.org/10.3390/agriculture13071449 - 22 Jul 2023
Cited by 1 | Viewed by 1636
Abstract
Despite the major role of non-chemical treatments in integrated plant protection, fungicides often need to be applied as a crop protection treatment in sugar beet farming. They should be used based on a good understanding of the requirements and effectiveness of the active [...] Read more.
Despite the major role of non-chemical treatments in integrated plant protection, fungicides often need to be applied as a crop protection treatment in sugar beet farming. They should be used based on a good understanding of the requirements and effectiveness of the active ingredients. In 11-year field experiments, the effect that one and three foliar applications of fungicides containing various active ingredients (triazoles, benzimidazoles, strobilurines) had on sugar beet root yields was assessed, depending on various thermal and rainfall conditions. It was found that in eight of the 11 years, foliar application of fungicides increased yields compared to unprotected plants, and three foliar treatments during the growing season were more effective than a single application. The negative correlation of the root yield of fungicidally protected plants with total June rainfall was weaker than the same relationship for unprotected plants. At the same time, the positive correlation between the yield of fungicidally protected sugar beets and average June air temperature was stronger than the same relationship for unprotected plants. The research results indicate the need to conduct long-term field experiments and to continuously improve integrated production principles for sugar beet, especially regarding the rational use of pesticides. Full article
(This article belongs to the Special Issue Sustainable and Ecological Agriculture in Crop Production)
Show Figures

Figure 1

15 pages, 3137 KB  
Article
Salicylic Acid and Pyraclostrobin Can Mitigate Salinity Stress and Improve Anti-Oxidative Enzyme Activities, Photosynthesis, and Soybean Production under Saline–Alkali Regions
by Honglei Ren, Xueyang Wang, Fengyi Zhang, Kezhen Zhao, Xiulin Liu, Rongqiang Yuan, Changjun Zhou, Jidong Yu, Jidao Du, Bixian Zhang and Jiajun Wang
Land 2023, 12(7), 1319; https://doi.org/10.3390/land12071319 - 30 Jun 2023
Cited by 3 | Viewed by 1716
Abstract
Soybean is a widespread crop in semi-arid regions of China, where soil salinity often increases and has a significant harmful impact on production, which will be a huge challenge in the coming years. Salicylic acid (SA) and pyraclostrobin are strobilurin-based bactericides (PBF). Under [...] Read more.
Soybean is a widespread crop in semi-arid regions of China, where soil salinity often increases and has a significant harmful impact on production, which will be a huge challenge in the coming years. Salicylic acid (SA) and pyraclostrobin are strobilurin-based bactericides (PBF). Under rainfall-harvesting conditions in covered ridges, the exogenous application of SA and PBF can improve the growth performance of soybeans, thereby reducing the adverse effects of soil salinity. The objectives of this research are to evaluate the potential effects of SA and PBF on soybean growth in two different regions, Harbin and Daqing. A two-year study was performed with the following four treatments: HCK: Harbin location with control; SA1+PBF1: salicylic acid (5 mL L−1) with pyraclostrobin (3 mL L−1); SA2+PBF2: salicylic acid (10 mL L−1) with pyraclostrobin (6 mL L−1); DCK: Daqing location with control. The results showed that in the Harbin region, SA2+PBF2 treatment reduced the evapotranspiration (ET) rate, increased soil water storage (SWS) during branching and flowering stages, and achieved a maximum photosynthesis rate. Moreover, this improvement is due to the reduction of MDA and oxidative damage in soybean at various growth stages. At different growth stages, the treatment of Harbin soybean with SA2+PBF2 significantly increased the activity of CAT, POD, SOD, and SP, while the content of MDA, H2O2, and O2 also decreased significantly. In the treatment of SA2+PBF2 in Harbin, the scavenging ability of free H2O2 and O2 was higher, and the activity of antioxidant enzymes was better. This was due to a worse level of lipid-peroxidation which successfully protected the photosynthesis mechanism and considerably increased water use efficiency (WUE) (46.3%) and grain yield (57.5%). Therefore, using plastic mulch with SA2+PBF2 treatment can be an effective water-saving management strategy, improving anti-oxidant enzyme activities, photosynthesis, and soybean production. Full article
(This article belongs to the Special Issue Plant-Soil Interactions in Agricultural Systems)
Show Figures

Figure 1

Back to TopTop