Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,828)

Search Parameters:
Keywords = structural concrete design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4279 KB  
Article
High-Titanium Slag Concrete with Multiscale Pores: Enhanced Explosive Stress Wave Dissipation for Underground Defense
by Weiting Gao, Meng Wang and Jinshan Sun
Materials 2025, 18(19), 4609; https://doi.org/10.3390/ma18194609 (registering DOI) - 5 Oct 2025
Abstract
Balancing stress wave attenuation with structural integrity is recognized as a critical challenge for protective materials in underground defense systems. A novel high-titanium slag (HTS) concrete featuring multiscale pores is proposed to address this dilemma. Large-particle porous HTS aggregates are embedded into cement [...] Read more.
Balancing stress wave attenuation with structural integrity is recognized as a critical challenge for protective materials in underground defense systems. A novel high-titanium slag (HTS) concrete featuring multiscale pores is proposed to address this dilemma. Large-particle porous HTS aggregates are embedded into cement mortar, enabling mechanical robustness comparable to conventional concrete alongside significant stress wave dissipation. Wave scattering and gas–solid interfacial reflections are induced by the multiscale pore architecture, effectively attenuating energy propagation. A dense interface transition zone between HTS aggregates and the cement mortar is confirmed through microscopic characterization, ensuring structural coherence. Wave attenuation is revealed by Split Hopkinson Pressure Bar tests to primarily originate from pore-driven reflections rather than impedance mismatch. A groundbreaking strategy is offered for designing blast-resistant materials that harmonize dynamic energy dissipation with structural durability, advancing the development of resilient underground infrastructure. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 837 KB  
Article
Physics-Informed Feature Engineering and R2-Based Signal-to-Noise Ratio Feature Selection to Predict Concrete Shear Strength
by Trevor J. Bihl, William A. Young II and Adam Moyer
Mathematics 2025, 13(19), 3182; https://doi.org/10.3390/math13193182 (registering DOI) - 4 Oct 2025
Abstract
Accurate prediction of reinforced concrete shear strength is essential for structural safety, yet datasets often contain a mix of raw geometric and material properties alongside physics-informed engineered features, making optimal feature selection challenging. This study introduces a statistically principled framework that advances feature [...] Read more.
Accurate prediction of reinforced concrete shear strength is essential for structural safety, yet datasets often contain a mix of raw geometric and material properties alongside physics-informed engineered features, making optimal feature selection challenging. This study introduces a statistically principled framework that advances feature reduction for neural networks in three novel ways. First, it extends the artificial neural network-based signal-to-noise ratio (ANN-SNR) method, previously limited to classification, into regression tasks for the first time. Second, it couples ANN-SNR with a confidence-interval (CI)-based stopping rule, using the lower bound of the baseline ANN’s R2 confidence interval as a rigorous statistical threshold for determining when feature elimination should cease. Third, it systematically evaluates both raw experimental variables and physics-informed engineered features, showing how their combination enhances both robustness and interpretability. Applied to experimental concrete shear strength data, the framework revealed that many low-SNR features in conventional formulations contribute little to predictive performance and can be safely removed. In contrast, hybrid models that combined key raw and engineered features consistently yielded the strongest performance. Overall, the proposed method reduced the input feature set by approximately 45% while maintaining results statistically indistinguishable from baseline and fully optimized models (R2 ≈ 0.85). These findings demonstrate that ANN-SNR with CI-based stopping provides a defensible and interpretable pathway for reducing model complexity in reinforced concrete shear strength prediction, offering practical benefits for design efficiency without compromising reliability. Full article
25 pages, 843 KB  
Article
Supply Chain Risk Management in the Hygiene and Personal Care Products Industry
by Ciro Rodrigues dos Santos, Ualison Rébula de Oliveira and Vicente Aprigliano
Systems 2025, 13(10), 871; https://doi.org/10.3390/systems13100871 (registering DOI) - 4 Oct 2025
Abstract
The Personal Care Products (PCP) industry, encompassing cosmetics, hygiene, and personal care items, serves millions of consumers daily and operates under constant pressure for innovation, agility, and sustainability. Within this context, supply chains are viewed as complex and integrated systems, composed of interrelated [...] Read more.
The Personal Care Products (PCP) industry, encompassing cosmetics, hygiene, and personal care items, serves millions of consumers daily and operates under constant pressure for innovation, agility, and sustainability. Within this context, supply chains are viewed as complex and integrated systems, composed of interrelated elements whose interactions determine overall performance and are influenced by external factors. Disruptions—particularly those involving indirect suppliers—can propagate throughout the network, affecting operations, reputation, and business outcomes. Despite the importance of the topic, empirical studies that systematically identify and prioritize these risks in the PCP sector remain scarce, which motivated the conduct of this study. Thus, the aim of this research is to identify, analyze, and evaluate the main supply risks faced by the PCP industry, considering severity, occurrence, and detection capability. Methodologically, the research employed an exploratory multi-case design, carried out in three steps: a literature review to identify key supply chain risks; structured interviews with industry experts to analyze and evaluate these risks; and the application of Gray Relational Analysis (GRA) to aggregate expert judgments and construct a prioritized risk ranking. This combination of qualitative and quantitative techniques provided a detailed foundation for analyzing and interpreting the main risks in the Brazilian PCP sector. The results indicate that indirect supplier failure is the most critical risk, prioritized by 70% of the companies studied. Other significant risks include the inability to meet changes in demand, import issues, lack of supply chain visibility, natural and social disasters, and sustainability or reputational concerns. Consequently, this study contributes to a systemic understanding of risk management in the PCP industry supply chain, providing managers with a practical mapping of critical points and highlighting concrete opportunities to strengthen integration, anticipate disruptions, and enhance operational resilience and performance across the sector. Full article
(This article belongs to the Special Issue Operation and Supply Chain Risk Management)
Show Figures

Figure 1

13 pages, 1556 KB  
Article
Prediction of Plate End Debonding of FRP-Strengthened RC Beams Based on Explainable Machine Learning
by Sheng Zheng and Woubishet Zewdu Taffese
Buildings 2025, 15(19), 3576; https://doi.org/10.3390/buildings15193576 (registering DOI) - 4 Oct 2025
Abstract
This research explores the phenomenon of plate-end (PE) debonding in reinforced concrete (RC) beams strengthened with fiber-reinforced polymer (FRP) composites. This type of failure represents a key mechanism that undermines the structural performance and efficiency of FRP reinforcement systems. Despite the widespread use [...] Read more.
This research explores the phenomenon of plate-end (PE) debonding in reinforced concrete (RC) beams strengthened with fiber-reinforced polymer (FRP) composites. This type of failure represents a key mechanism that undermines the structural performance and efficiency of FRP reinforcement systems. Despite the widespread use of FRP in structural repair due to its high strength and corrosion resistance, PE debonding—often triggered by shear or inclined cracks—remains a major challenge. Traditional computational models for predicting PE debonding suffer from low accuracy due to the nonlinear relationship between influencing parameters. To address this, the research employs machine learning techniques and SHapley Additive exPlanations (SHAP), to develop more accurate and explainable predictive models. A comprehensive database is constructed using key parameters affecting PE debonding. Machine learning algorithms are trained and evaluated, and their performance is compared with existing normative models. The study also includes parameter importance and sensitivity analyses to enhance model interpretability and guide future design practices in FRP-based structural reinforcement. Full article
(This article belongs to the Special Issue AI-Powered Structural Health Monitoring: Innovations and Applications)
Show Figures

Figure 1

23 pages, 2767 KB  
Article
Study on Chloride Diffusion Performance and Structural Durability Design of UHPC Under Chloride Salt Erosion
by Wenbo Kang, Kuihua Mei, Wei Liu and Shengjiang Sun
Buildings 2025, 15(19), 3569; https://doi.org/10.3390/buildings15193569 - 3 Oct 2025
Abstract
Normal concrete exhibits poor resistance to chloride penetration, often leading to reinforcement corrosion and premature structural failure. In contrast, ultra-high-performance concrete (UHPC) demonstrates superior resistance to corrosion caused by chloride salts. The chloride diffusion behaviour of UHPC was investigated via long-term immersion (LTI) [...] Read more.
Normal concrete exhibits poor resistance to chloride penetration, often leading to reinforcement corrosion and premature structural failure. In contrast, ultra-high-performance concrete (UHPC) demonstrates superior resistance to corrosion caused by chloride salts. The chloride diffusion behaviour of UHPC was investigated via long-term immersion (LTI) and rapid chloride migration (RCM) tests. Additionally, this study presents the first development of a time-dependent diffusion model for UHPC under chloride corrosion, as well as the proposal of a performance-based design method for calculating the protective layer thickness. Results show that the incorporation of steel fibers reduced the chloride diffusion coefficient (D) by 37.9%. The free chloride content (FCC) in UHPC increased by 92.0% at 2 mm after 300 d of the action of LTI. D decreased by up to 91.0%, whereas the surface chloride concentration (Cs) increased by up to 92.5% under the action of LTI. The time-dependent models of D and Cs followed power and logarithmic functions, respectively. An increase in UHPC surface temperature, relative humidity, and tensile stress ratio significantly diminishes the chloride resistance of UHPC. The minimum UHPC protective layer thicknesses required for UHPC-HPC composite beams with design service lives of 100 years, 150 years, and 200 years are 30 mm, 37 mm, and 43 mm, respectively. Full article
(This article belongs to the Section Building Structures)
38 pages, 3996 KB  
Article
Deformation and Energy-Based Comparison of Outrigger Locations in RC and BRB-Core Tall Buildings Under Repetitive Earthquakes
by İlhan Emre İnam and Ahmet Anıl Dindar
Buildings 2025, 15(19), 3563; https://doi.org/10.3390/buildings15193563 - 2 Oct 2025
Abstract
The aim of this study is to investigate how the positioning of outrigger systems affects the seismic performance of high-rise buildings with either reinforced concrete (RC) shear walls or buckling-restrained braces (BRBs) in the core. Two important questions emerge as the focus and [...] Read more.
The aim of this study is to investigate how the positioning of outrigger systems affects the seismic performance of high-rise buildings with either reinforced concrete (RC) shear walls or buckling-restrained braces (BRBs) in the core. Two important questions emerge as the focus and direction of the study: (1) How does the structural performance change when outriggers are placed at various positions? (2) How do outrigger systems affect structural behavior under sequential earthquake scenarios? Nonlinear time history analyses were employed as the primary methodology to evaluate the seismic response of the two reinforced concrete buildings with 24 and 48 stories, respectively. Each building type was developed for two different core configurations: one with a reinforced concrete shear wall core and the other with a BRB core system. Each analysis model also includes outrigger systems constructed with BRBs positioned at different floor levels. Five sequential ground motion records were used to assess the effects of main- and aftershocks. The analysis results were evaluated not only based on displacement and force demands but also using a damage measure called the Park-Ang Damage Index. In addition, displacement-based metrics, particularly the maximum inter-story drift ratio (MISD), were also utilized to quantify lateral displacement demands under consecutive seismic loading. With the results obtained from this study, it is aimed to provide design-oriented insights into the most effective use of outrigger systems formed with BRB in high-rise RC buildings and their functions in increasing seismic resistance, especially in areas likely to experience consecutive seismic events. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 5840 KB  
Article
Numerical Study of Blast Load Acting on Typical Precast Segmental Reinforced Concrete Piers in Near-Field Explosions
by Lu Liu, Zhouhong Zong, Yulin Shan, Yao Yao, Chenglin Li and Yihao Cheng
CivilEng 2025, 6(4), 53; https://doi.org/10.3390/civileng6040053 - 2 Oct 2025
Abstract
Explosions, including those from war weapons, terrorist attacks, etc., can lead to damage and overall collapse of bridges. However, there are no clear guidelines for anti-blast design and protective measures for bridges under blast loading in current bridge design specifications. With advancements in [...] Read more.
Explosions, including those from war weapons, terrorist attacks, etc., can lead to damage and overall collapse of bridges. However, there are no clear guidelines for anti-blast design and protective measures for bridges under blast loading in current bridge design specifications. With advancements in intelligent construction, precast segmental bridge piers have become a major trend in social development. There is a lack of full understanding of the anti-blast performance of precast segmental bridge piers. To study the engineering calculation method for blast load acting on a typical precast segmental reinforced concrete (RC) pier in near-field explosions, an air explosion test of the precast segmental RC pier is firstly carried out, then a fluid–structure coupling numerical model of the precast segmental RC pier is established and the interaction between the explosion shock wave and the precast segmental RC pier is discussed. A numerical simulation of the precast segmental RC pier in a near-field explosion is conducted based on a reliable numerical model, and the distribution of the blast load acting on the precast segmental RC pier in the near-field explosion is analyzed. The results show that the reflected overpressure on the pier and the incident overpressure in the free field are reliable. The simulation results are basically consistent with the experimental results (with a relative error of less than 8%), and the fluid–structure coupling model is reasonable and reliable. The explosion shock wave has effects of reflection and circulation on the precast segmental RC pier. In the near-field explosion, the back and side blast loads acting on the precast segmental RC bridge pier can be ignored in the blast-resistant design. The front blast loads can be simplified and equalized, and a blast-resistant design load coefficient (1, 0.2, 0.03, 0.02, and 0.01) and a calculation formula of maximum equivalent overpressure peak value (applicable scaled distance [0.175 m/kg1/3, 0.378 m/kg1/3]) are proposed, which can be used as a reference for the blast-resistant design of precast segmental RC piers. Full article
(This article belongs to the Section Mathematical Models for Civil Engineering)
Show Figures

Figure 1

28 pages, 3480 KB  
Article
Analysis on DDBD Method of Precast Frame with UHPC Composite Beams and HSC Columns
by Xiaolei Zhang, Kunyu Duan, Yanzhong Ju and Xinying Wang
Buildings 2025, 15(19), 3546; https://doi.org/10.3390/buildings15193546 - 2 Oct 2025
Abstract
Precast concrete frames integrating ultra-high-performance concrete (UHPC) beams and high-strength concrete (HSC) columns offer exceptional seismic resilience and construction efficiency. However, a performance-based seismic design methodology tailored for this hybrid structural system remains underdeveloped. This study aims to develop and validate a direct [...] Read more.
Precast concrete frames integrating ultra-high-performance concrete (UHPC) beams and high-strength concrete (HSC) columns offer exceptional seismic resilience and construction efficiency. However, a performance-based seismic design methodology tailored for this hybrid structural system remains underdeveloped. This study aims to develop and validate a direct displacement-based design (DDBD) procedure specifically for precast UHPC-HSC frames. A novel six-tier performance classification scheme (from no damage to severe damage) was established, with quantitative limit values of interstory drift ratio proposed based on experimental data and code calibration. The DDBD methodology incorporates determining the target displacement profile, converting the multi-degree-of-freedom system to an equivalent single-degree-of-freedom system, and utilizing a displacement response spectrum. A ten-story case study frame was designed using this procedure and rigorously evaluated through pushover analysis. The results demonstrate that the designed frame consistently met the predefined performance objectives under various seismic intensity levels, confirming the effectiveness and reliability of the proposed DDBD method. This work contributes a performance oriented seismic design framework that enhances the applicability and reliability of UHPC-HSC structures in earthquake regions, offering both theoretical insight and procedural guidance for engineering practice. Full article
Show Figures

Figure 1

18 pages, 1612 KB  
Article
Theoretical Method for Calculating the Second-Order Effect and Reinforcement of Reinforced Concrete Box Section Columns
by Lu Li, Gang Chen, Donghua Zhou and Xuefeng Guo
Buildings 2025, 15(19), 3528; https://doi.org/10.3390/buildings15193528 - 1 Oct 2025
Abstract
Calculating the second-order effect and reinforcement of reinforced concrete box section columns has geometric nonlinearity and material nonlinearity. It requires integration and iterative solutions and is inconvenient in practical applications; moreover, China’s “Code for Design of Concrete Structures” (GB 50010-2010) uses the same [...] Read more.
Calculating the second-order effect and reinforcement of reinforced concrete box section columns has geometric nonlinearity and material nonlinearity. It requires integration and iterative solutions and is inconvenient in practical applications; moreover, China’s “Code for Design of Concrete Structures” (GB 50010-2010) uses the same formula as that for rectangular sections when calculating geometric nonlinearity. To find out a calculation method by hand that is specific to box-shaped sections and does not require iterative procedures, the theoretical derivation is adopted and divided into two gradations: (1) in terms of cross-section: using strain as the known variable to solve the internal force, thus solving the calculation problem of the bearing capacity of the cross-section; (2) in terms of members, the model column method can be used to solve the calculation problem of second-order effects of members. Finally, nomograms that can calculate the second-order effect and reinforcement of columns without iterative calculation are drawn, which contain five parameters, namely first-order bending moment, axial force, curvature, slenderness ratio, and the mechanical ratio of reinforcement. One of the nomograms corresponds to the cross-section resistance, and the other corresponds to the balance of internal resistance and external effect. Compared with the GB 50010-2010, the differences in the total bending moment and reinforcement ratio are within 10% and 20%, respectively. Compared with the numerical calculation results, the remaining examples are within 10% under normal load conditions. Full article
(This article belongs to the Special Issue Trends and Prospects in Civil Engineering Structures)
Show Figures

Figure 1

15 pages, 694 KB  
Article
Mechanical Performance and Durability of Concretes with Partial Replacement of Natural Aggregates by Construction and Demolition Waste
by Thamires Alves da Silveira, Rafaella dos Passos Nörnberg, Marcelo Subtil Santi, Renata Rabassa Morales, Alessandra Buss Tessaro, Hebert Luis Rosseto, Rafael de Avila Delucis and Guilherme Hoehr Trindade
Waste 2025, 3(4), 32; https://doi.org/10.3390/waste3040032 - 30 Sep 2025
Abstract
This study investigated the mechanical performance and durability of concretes produced with varying proportions of recycled coarse aggregate from construction and demolition waste (CDW), ranging from 0% to 100% replacement of natural coarse aggregate, using recycled aggregates derived from crushed concrete and mortar [...] Read more.
This study investigated the mechanical performance and durability of concretes produced with varying proportions of recycled coarse aggregate from construction and demolition waste (CDW), ranging from 0% to 100% replacement of natural coarse aggregate, using recycled aggregates derived from crushed concrete and mortar debris, characterized by lower density and high water absorption (~9%) compared to natural aggregates. A key contribution of this research lies in the inclusion of intermediate replacement levels (20%, 25%, 45%, 50%, and 65%), which are less explored in the literature and allow a more refined identification of performance thresholds. Fresh-state parameters (slump), axial compressive strength (7 and 28 days), total immersion water absorption, sorptivity, and chloride ion penetration depth (after 90 days of immersion in a 3.5% NaCl solution) were evaluated. The results indicate that, up to 50% CDW content, the concrete maintains slump (≥94 mm), characteristic strength (≥37.2 MPa at 28 days), and chloride penetration (≤14.1 mm) within the limits for moderate exposure conditions, in accordance with ABNT: NBR 6118. Water absorption doubled from 4.5% (0% CDW) to 9.5% (100% CDW), reflecting the higher porosity and adhered mortar on the recycled aggregate, which necessitates adjustments to the water–cement ratio and SSD pre-conditioning to preserve workability and minimize sorptivity. Concretes with more than 65% CDW exhibited chloride penetration depths exceeding 15 mm, potentially compromising durability without additional mitigation. The judicious incorporation of CDW, combined with optimized mix design practices and the use of supplementary cementitious materials (SCMs), demonstrates technical viability for reducing environmental impacts without significantly impairing the structural performance or service life of the concrete. Full article
(This article belongs to the Special Issue Use of Waste Materials in Construction Industry)
Show Figures

Graphical abstract

22 pages, 4360 KB  
Article
An Experimental Study on the Thermal Insulation Properties of Concrete Containing Wood-Based Biochar
by Ji-Hun Park, Kwang-Mo Lim, Gum-Sung Ryu, Kyung-Taek Koh and Kyong-Chul Kim
Appl. Sci. 2025, 15(19), 10560; https://doi.org/10.3390/app151910560 - 29 Sep 2025
Abstract
The applicability of biochar as a coarse aggregate substitute in concrete to increase sustainability and multifunctionality was investigated. Biochar, a porous carbon-rich byproduct from biomass pyrolysis, was incorporated at various replacement ratios (5–20%) under four water-to-binder (w/b) conditions (0.25–0.40). [...] Read more.
The applicability of biochar as a coarse aggregate substitute in concrete to increase sustainability and multifunctionality was investigated. Biochar, a porous carbon-rich byproduct from biomass pyrolysis, was incorporated at various replacement ratios (5–20%) under four water-to-binder (w/b) conditions (0.25–0.40). The key physical, mechanical, thermal, and microstructural properties, including the unit weight, porosity, compressive strength, flexural strength, and thermal conductivity, were evaluated via SEM and EDS analyses. The results revealed that although increasing the biochar content reduced the mechanical strength, it significantly improved the thermal insulation performance because of the porous structure of the biochar. At low w/b ratios and 5–10% biochar content, sufficient mechanical properties were retained, indicating a viable design range. Higher replacement ratios (>15%) led to excessive porosity, reduced hydration, and impaired durability. This study quantitatively analyzed the interproperty correlations, confirming that the strength and thermal performance are closely linked to the internal matrix density and porosity. These findings suggest that biochar-based concrete has potential for use in thermal energy storage systems, high-temperature insulation, and low-carbon construction. The low-carbon effect is achieved both by sequestering stable carbon within the concrete matrix and by partially replacing cement, thereby reducing CO2 emissions from cement production. Moreover, the results highlight a strong correlation between increased porosity, enhanced thermal insulation, and reduced strength, thereby offering a solid foundation for sustainable material design. In particular, the term ‘high temperature’ in this context refers to exposure conditions above approximately 200~400 °C, as reported in previous studies. However, this should be considered as a potential application to be validated in future experiments rather than a confirmed outcome of this study. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

29 pages, 618 KB  
Review
End-of-Life Strategies for Wind Turbines: Blade Recycling, Second-Life Applications, and Circular Economy Integration
by Natalia Cieślewicz, Krzysztof Pilarski and Agnieszka A. Pilarska
Energies 2025, 18(19), 5182; https://doi.org/10.3390/en18195182 - 29 Sep 2025
Abstract
Wind power is integral to the transformation of energy systems towards sustainability. However, the increasing number of wind turbines approaching the end of their service life presents significant challenges in terms of waste management and environmental sustainability. Rotor blades, typically composed of thermoset [...] Read more.
Wind power is integral to the transformation of energy systems towards sustainability. However, the increasing number of wind turbines approaching the end of their service life presents significant challenges in terms of waste management and environmental sustainability. Rotor blades, typically composed of thermoset polymer composites reinforced with glass or carbon fibres, are particularly problematic due to their low recyclability and complex material structure. The aim of this article is to provide a system-level review of current end-of-life strategies for wind turbine components, with particular emphasis on blade recycling and decision-oriented comparison, and its integration into circular economy frameworks. The paper explores three main pathways: operational life extension through predictive maintenance and design optimisation; upcycling and second-life applications; and advanced recycling techniques, including mechanical, thermal, and chemical methods, and reports qualitative/quantitative indicators together with an indicative Technology Readiness Level (TRL). Recent innovations, such as solvolysis, microwave-assisted pyrolysis, and supercritical fluid treatment, offer promising recovery rates but face technological and economic as well as environmental compliance limitations. In parallel, the review considers deployment maturity and economics, including an indicative mapping of cost and deployment status to support decision-making. Simultaneously, reuse applications in the construction and infrastructure sectors—such as concrete additives or repurposed structural elements—demonstrate viable low-energy alternatives to full material recovery, although regulatory barriers remain. The study also highlights the importance of systemic approaches, including Extended Producer Responsibility (EPR), Digital Product Passports and EU-aligned policy/finance instruments, and cross-sectoral collaboration. These instruments are essential for enhancing material traceability and fostering industrial symbiosis. In conclusion, there is no universal solution for wind turbine blade recycling. Effective integration of circular principles will require tailored strategies, interdisciplinary research, and bankable policy support. Addressing these challenges is crucial for minimising the environmental footprint of the wind energy sector. Full article
(This article belongs to the Collection Feature Papers in Energy, Environment and Well-Being)
Show Figures

Figure 1

33 pages, 4314 KB  
Review
Shrinkage Characteristics of Geopolymer Concrete: A Comprehensive Review
by Rukayat Olayinka, Reza Jafari and Mathieu Fiset
Materials 2025, 18(19), 4528; https://doi.org/10.3390/ma18194528 - 29 Sep 2025
Abstract
Geopolymer concrete (GC) has become apparent as a promising and sustainable alternative to ordinary portland cement (OPC) concrete, presenting notable advantages in both environmental impact and mechanical performance. Despite these benefits, shrinkage remains a critical issue, influencing cracking susceptibility, long-term durability, and structural [...] Read more.
Geopolymer concrete (GC) has become apparent as a promising and sustainable alternative to ordinary portland cement (OPC) concrete, presenting notable advantages in both environmental impact and mechanical performance. Despite these benefits, shrinkage remains a critical issue, influencing cracking susceptibility, long-term durability, and structural reliability. While previous investigations have focused on isolated parameters, such as activator concentration or curing techniques, this review provides a comprehensive analysis of the shrinkage behaviour of geopolymer concrete by exploring a broader range of influential factors. Key contributors—including precursor composition, alkali activator concentration, sodium silicate-to-sodium hydroxide ratio, liquid-to-solid ratio, pore structure, and curing conditions—are evaluated and mitigation strategies are discussed. Comparative evaluation of experimental studies reveals key patterns and mechanisms: heat curing around 60 °C consistently limits shrinkage, low-calcium binders outperform high-calcium systems, and chemical additives can reduce shrinkage by as much as 80%. The analysis also highlights emerging, bio-based additives that show promise for simultaneously controlling shrinkage and preserving mechanical performance. By integrating these diverse insights into a single framework, this paper provides a comprehensive reference for designing low-shrinkage GC mixtures. Full article
Show Figures

Graphical abstract

18 pages, 5858 KB  
Article
Research on Deformation Behavior and Mechanisms of Concrete Under Hygrothermal Coupling Effects
by Mingyu Li, Chunxiao Zhang, Aiguo Dang, Xiang He, Jingbiao Liu and Xiaonan Liu
Buildings 2025, 15(19), 3514; https://doi.org/10.3390/buildings15193514 - 29 Sep 2025
Abstract
This study elucidated the evolution and catastrophic failure mechanisms of concrete’s mechanical properties under high-temperature and moisture-coupled environments. Specimens underwent hygrothermal shock simulation via constant-temperature drying (100 °C/200 °C, 4 h) followed by water quenching (20 °C, 30 min). Uniaxial compression tests were [...] Read more.
This study elucidated the evolution and catastrophic failure mechanisms of concrete’s mechanical properties under high-temperature and moisture-coupled environments. Specimens underwent hygrothermal shock simulation via constant-temperature drying (100 °C/200 °C, 4 h) followed by water quenching (20 °C, 30 min). Uniaxial compression tests were performed using a uniaxial compression test machine with synchronized multi-scale damage monitoring that integrated digital image correlation (DIC), acoustic emission (AE), and infrared thermography. The results demonstrated that hygrothermal coupling reduced concrete ductility significantly, in which the peak strain decreased from 0.36% (ambient) to 0.25% for both the 100 °C and 200 °C groups, while compressive strength declined to 42.8 MPa (−2.9%) and 40.3 MPa (−8.6%), respectively, with elevated elastic modulus. DIC analysis revealed the temperature-dependent failure mode reconstruction: progressive end cracking (max strain 0.48%) at ambient temperature transitioned to coordinated dual-end cracking with jump-type damage (abrupt principal strain to 0.1%) at 100 °C and degenerated to brittle fracture oriented along a singular path (principal strain band 0.015%) at 200 °C. AE monitoring indicated drastically reduced micro-damage energy barriers at 200 °C, where cumulative energy (4000 mV·ms) plummeted to merely 2% of the ambient group (200,000 mV·ms). Infrared thermography showed that energy aggregation shifted from “centralized” (ambient) to “edge-to-center migration” (200 °C), with intensified thermal shock effects in fracture zones (ΔT ≈ −7.2 °C). The study established that hygrothermal coupling weakens the aggregate-paste interfacial transition zone (ITZ) by concentrating the strain energy along singular weak paths and inducing brittle failure mode degeneration, which thereby provides theoretical foundations for fire-resistant design and catastrophic failure warning systems in concrete structures exposed to coupled environmental stressors. Full article
Show Figures

Figure 1

18 pages, 7503 KB  
Article
Characterization of Self-Compacting Concrete at the Age of 7 Years Using Industrial Computed Tomography
by Oana-Mihaela Banu, Sergiu-Mihai Alexa-Stratulat, Aliz-Eva Mathe, Giuseppe Brando and Ionut-Ovidiu Toma
Materials 2025, 18(19), 4524; https://doi.org/10.3390/ma18194524 - 29 Sep 2025
Abstract
The pore structure of SCC and of all cement-based materials plays a crucial role on the mechanical and durability characteristics of the material. The pore structure is affected by mix design, water–binder ratio and the incorporation of SCM and/or nanomaterials, all of which [...] Read more.
The pore structure of SCC and of all cement-based materials plays a crucial role on the mechanical and durability characteristics of the material. The pore structure is affected by mix design, water–binder ratio and the incorporation of SCM and/or nanomaterials, all of which can improve mechanical and durability characteristics by decreasing porosity. Computed tomography (CT) is a powerful, non-destructive imaging technique to investigate the internal pore structure of concrete. The main advantage compared to other investigation techniques used to assess the pore structure is in terms of sample size. More specifically, industrial CT can be used to scan large concrete samples and be able to assess the internal pore structure without damaging the specimen. CT provides accurate measurements of pore diameters, volumes and shapes and enables the assessment of the total porosity. The paper presents the results of an experimental program on the characterization of self-compacting concrete (SCC) at a very long age (7 years) in terms of static and dynamic elastic properties and compressive and splitting tensile strength, all of which are correlated with the internal pore structure assessed via the use of an industrial Nikon XTH 450 CT. The results highlight the influence of pore volume, maximum pore diameter and sphericity on the strength and elastic properties of SCC at the age of 7 years. Both the compressive strength and the static modulus of elasticity values tend to decrease with the increase in the internal total porosity, with stronger influence on the former. Full article
Show Figures

Figure 1

Back to TopTop