Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,782)

Search Parameters:
Keywords = subsidence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1332 KB  
Article
Anterior Column Reconstruction of the Thoracolumbar Spine with a Modular Carbon-PEEK Vertebral Body Replacement Device: Single-Center Retrospective Case Series of 28 Patients
by Samuel F. Schaible, Fabian C. Aregger, Christoph E. Albers, Lorin M. Benneker and Moritz C. Deml
Surg. Tech. Dev. 2025, 14(4), 35; https://doi.org/10.3390/std14040035 - 10 Oct 2025
Abstract
Background: Carbon-fiber-reinforced polyetheretherketone (CFR-PEEK) vertebral-body replacements (VBRs) aim to mitigate subsidence, minimize imaging artifacts, and facilitate radiation planning while preserving fusion potential. We assessed the safety and efficacy of a novel modular, titanium-coated CFR-PEEK VBR (Kong®) for anterior column reconstruction (ACR) [...] Read more.
Background: Carbon-fiber-reinforced polyetheretherketone (CFR-PEEK) vertebral-body replacements (VBRs) aim to mitigate subsidence, minimize imaging artifacts, and facilitate radiation planning while preserving fusion potential. We assessed the safety and efficacy of a novel modular, titanium-coated CFR-PEEK VBR (Kong®) for anterior column reconstruction (ACR) in the thoracolumbar spine. Primary question: Does the implant safely and effectively achieve and maintain kyphosis correction after ACR for trauma and neoplasms? Methods: A single-center retrospective case series was performed on 28 patients who underwent thoracolumbar ACR with the Kong® VBR for fractures or tumors (2020–2021). The primary outcome was the bi-segmental kyphotic angle (BKA). Secondary outcomes were screw loosening, cage height loss, fusion rate, subsidence, and tilting. Clinical status was recorded with Odom criteria, Karnofsky Performance Status (KPS), and AOSpine PROST. Results: Twenty-eight patients (mean age, 61 yr; 33% female; mean follow-up, 17.7 mts) were studied. Mean postoperative BKA correction was 16.5° (p = 0.006) and remained 14.5° at final follow-up (p = 0.008); loss of correction was 2.0° (p = 0.568). Subsidence, cage height, and sagittal tilt were unchanged. Fusion (Bridwell grade I/II) was observed in 95% on CT. One deep surgical-site infection occurred. At final follow-up, 91% of patients were graded “excellent” or “good” by Odom. KPS improved by 20 points (p = 0.031), and mean AOSpine PROST was 56.9. Conclusions: Single-center early results indicate that the modular titanium-coated CFR-PEEK VBR is a safe, effective adjunct for thoracolumbar ACR in trauma and neoplasm, providing durable kyphosis correction, mechanical stability and high fusion rates and grants for improved follow-up imaging quality. Full article
21 pages, 3114 KB  
Article
Event-Driven Shoreline Dynamics of the Nile, Indus, and Yellow River Deltas: A 50-Year Analysis of Trends and Responses
by Muhammad Risha and Paul Liu
Earth 2025, 6(4), 120; https://doi.org/10.3390/earth6040120 - 9 Oct 2025
Abstract
The Nile, Indus, and Yellow River deltas are historically significant and have experienced extensive shoreline changes over the past 50 years, yet the roles of human interventions and natural events remain unclear. In this study, the Net Shoreline Movement and End Point Rate [...] Read more.
The Nile, Indus, and Yellow River deltas are historically significant and have experienced extensive shoreline changes over the past 50 years, yet the roles of human interventions and natural events remain unclear. In this study, the Net Shoreline Movement and End Point Rate (EPR) were calculated to quantify the erosion and accretion of the shoreline, respectively. Subsequently, linear trend analysis was employed to identify potential directional shifts in shoreline behavior. These measures are combined with segment-scale cumulative area and the EPR trend to reveal where erosion or accretion intensifies, weakens, or reverses through time. Results show distinct, system-specific trajectories, the Nile lost ~27 km2 from 1972 to1997 as a result of the dam construction and sediment reduction, and lost only ~3 km2 more from 1997 to 2022, with local stabilization. The Indus switched from intermittent gains before 1990s to sustained loss after that, totaling ~300 km2 of cumulative land loss mainly due to upstream dam constructions and storm events. The Yellow River gained ~500 km2 from 1973 to 1996 then lost ~200 km2 after main-channel relocation and reduced sediment supply despite active-mouth management. These outcomes indicate that deltas are very vulnerable to system wide human activities and natural events. Combined, satellite-derived metrics can help prioritize locations, guide feasible interventions, establish annual monitoring and trigger action. A major caveat of this study is that yearly shoreline rates and 5–10-yearaverages can mask short-lived or very local shifts. Targeted field surveys and finer-scale modeling (hydrodynamics, subsidence monitoring, bathymetry) are therefore needed to refine the design and inform better policy choices. Full article
Show Figures

Figure 1

11 pages, 690 KB  
Systematic Review
Influence of Preoperative Depression on Pain, Function, and Complications After Total Ankle Arthroplasty: A Systematic Review
by Iosafat Pinto, Panagiotis Konstantinou, Lazaros Kostretzis, Tryfon Ditsios, Chrysanthos Chrysanthou, Anastasios P. Nikolaides, Stylianos Kapetanakis and Konstantinos Ditsios
J. Clin. Med. 2025, 14(19), 7080; https://doi.org/10.3390/jcm14197080 - 7 Oct 2025
Viewed by 121
Abstract
Background: Depression has been identified as an important determinant of outcomes in hip and knee arthroplasty, but its impact on total ankle arthroplasty (TAA) remains unclear. Given the growing use of TAA as a treatment for end-stage ankle arthritis, understanding psychosocial risk factors [...] Read more.
Background: Depression has been identified as an important determinant of outcomes in hip and knee arthroplasty, but its impact on total ankle arthroplasty (TAA) remains unclear. Given the growing use of TAA as a treatment for end-stage ankle arthritis, understanding psychosocial risk factors is critical for optimizing surgical outcomes. This study aims to assess the effect of preoperative depression on clinical and functional outcomes following total ankle arthroplasty. Methods: A systematic review was conducted in accordance with PRISMA guidelines and prospectively registered with the Open Science Framework. PubMed, Cochrane Library, and CINAHL were searched through August 2025 for studies reporting outcomes of TAA stratified by depression status. Eligible designs included randomized trials, cohort studies and case series. Risk of bias was assessed using the Newcastle–Ottawa Scale (NOS). Given heterogeneity in study designs, depression definitions, and outcome measures, findings were synthesized narratively and summarized using a revised effect-direction plot. Results: Six unique studies involving approximately 9000 patients met inclusion criteria. Five studies were rated as good quality on the Newcastle–Ottawa Scale, while one study was judged to be of moderate quality. Four studies assessing pain outcomes consistently demonstrated worse postoperative pain or less improvement in patients with depression. Three of five studies assessing functional or disability outcomes reported reduced improvement, while two studies found no independent association. Two studies evaluating complications showed higher risks of adverse events, including prolonged hospital stay, non-home discharge, osteophytosis, and implant subsidence, among depressed patients. Revised effect-direction synthesis confirmed a consistent trend toward poorer outcomes across pain, function, and complication domains. Conclusions: Depression is associated with worse pain and higher complication rates following TAA, while its influence on functional recovery was not demonstrated uniformly. These findings support the importance of routine preoperative screening and targeted management of depression. Further prospective, multicenter studies and interventional trials are needed to clarify causality and optimize perioperative care. Full article
(This article belongs to the Special Issue Foot and Ankle Surgery: Clinical Challenges and New Insights)
Show Figures

Figure 1

17 pages, 2801 KB  
Article
Glenoid Radiolucent Lines and Subsidence Show Limited Impact on Clinical and Functional Long-Term Outcomes After Anatomic Total Shoulder Arthroplasty: A Retrospective Analysis of Cemented Polyethylene Glenoid Components
by Felix Hochberger, Jonas Limmer, Justus Muhmann, Frank Gohlke, Laura Elisa Streck, Maximilian Rudert and Kilian List
J. Clin. Med. 2025, 14(19), 7058; https://doi.org/10.3390/jcm14197058 - 6 Oct 2025
Viewed by 240
Abstract
Background: Glenoid radiolucenct lines (gRLL) and glenoid component subsidence (gSC) after anatomic total shoulder arthroplasty (aTSA) have traditionally been linked to implant loosening and functional decline. However, their impact on long-term clinical outcomes remains unclear. This study aimed to evaluate whether gRLL [...] Read more.
Background: Glenoid radiolucenct lines (gRLL) and glenoid component subsidence (gSC) after anatomic total shoulder arthroplasty (aTSA) have traditionally been linked to implant loosening and functional decline. However, their impact on long-term clinical outcomes remains unclear. This study aimed to evaluate whether gRLL and gSC are associated with inferior clinical or functional results in patients without revision surgery. Methods: In this retrospective study, 52 aTSA cases (2008–2015) were analyzed with a minimum of five years of clinical and radiographic follow-up. Based on final imaging, patients were categorized according to the presence and extent of gRLL and gSC. Clinical outcomes included the Constant-Murley Score, DASH, VAS for pain, and range of motion (ROM). Radiographic parameters included the critical shoulder angle (CSA), acromiohumeral distance (AHD), lateral offset (LO), humeral head-stem index (HSI), and cranial humeral head decentration (DC). Group comparisons were conducted between: (1) ≤2 vs. 3 gRLL zones, (2) 0 vs. 1 zone, (3) 0 vs. 3 zones, (4) gSC vs. no gSC, and (5) DC vs. no DC. Results: Demographics and baseline characteristics were comparable across groups. Functional scores (Constant, DASH), pain (VAS), and ROM were largely similar. Patients with extensive gRLL showed reduced external rotation (p = 0.01), but the difference remained below the MCID. Similarly, gSC was associated with lower forward elevation (p = 0.04) and external rotation (p = 0.03), both below MCID thresholds. No significant differences were observed for DC. Conclusions: Neither extensive gRLL nor gSC significantly impaired long-term clinical or functional outcomes. As these radiographic changes can occur in the absence of symptoms, regular radiographic monitoring is essential, and revision decisions should be made individually in cases of progressive bone loss. Full article
(This article belongs to the Special Issue Clinical Updates on Shoulder Arthroplasty)
Show Figures

Figure 1

22 pages, 7528 KB  
Article
ADAImpact Tool: Toward a European Ground Motion Impact Map
by Nelson Mileu, Anna Barra, Pablo Ezquerro, Sérgio C. Oliveira, Ricardo A. C. Garcia, Raquel Melo, Pedro Pinto Santos, Marta Béjar-Pizarro, Oriol Monserrat and José Luís Zêzere
ISPRS Int. J. Geo-Inf. 2025, 14(10), 389; https://doi.org/10.3390/ijgi14100389 - 6 Oct 2025
Viewed by 257
Abstract
This article presents the ADAImpact tool, a QGIS plugin designed to assess the potential impacts of geohazards—such as landslides, subsidence, and sinkholes—using open-access surface displacement data from the European Ground Motion Service (EGMS), which is based on Sentinel-1 satellite observations. Created as part [...] Read more.
This article presents the ADAImpact tool, a QGIS plugin designed to assess the potential impacts of geohazards—such as landslides, subsidence, and sinkholes—using open-access surface displacement data from the European Ground Motion Service (EGMS), which is based on Sentinel-1 satellite observations. Created as part of the European RASTOOL project, ADAImpact integrates InSAR-derived ground movement data with exposure datasets (including population, infrastructure, and buildings) to support civil protection agencies in conducting risk assessments and planning emergency responses. The tool combines “Process Magnitude”, with “Exposure” metrics, quantifying the population and critical infrastructure affected, to generate potential impact maps for ground motion hazards. When applied to case studies along the Portugal–Spain border and the coastal region of Granada, Spain, ADAImpact successfully identified areas of high potential impact. These results underscore the tool’s utility in pre- and post-disaster assessment, highlighting its potential for scalability across Europe. Full article
Show Figures

Figure 1

21 pages, 9318 KB  
Article
Investigation on Ground Collapse Due to Exfiltration of Shallowly Buried Water-Supply Pipeline
by Fenghao Bai, Ye Lu and Xiuying Lu
Appl. Sci. 2025, 15(19), 10736; https://doi.org/10.3390/app151910736 - 5 Oct 2025
Viewed by 193
Abstract
Pipeline exfiltration from damaged water-supply systems frequently causes soil erosion and ground subsidence, which jeopardizes the safety of pedestrians and vehicles and even causes casualties. Despite the severe consequences, it is difficult for engineers to give reliable assessments of pipeline exfiltration hazards. In [...] Read more.
Pipeline exfiltration from damaged water-supply systems frequently causes soil erosion and ground subsidence, which jeopardizes the safety of pedestrians and vehicles and even causes casualties. Despite the severe consequences, it is difficult for engineers to give reliable assessments of pipeline exfiltration hazards. In this study, erosion processes were explored using model tests and coupled computational fluid dynamics–discrete element method (CFD-DEM) simulations. It was discovered that the erosion zone can be divided into two zones—the exfiltration zone and the seepage diffusion zone. When water pressure reached 2.412 × 10−2 MPa, local porosity approached 1.0, indicating there were no soil particles remaining. As pipeline pressure increased from 2.122 × 10−3 MPa to 2.412 × 10−2 MPa, ground failure transitioned from downward settlement to upward bulge, and the ground failure duration of the fractured prototype pipe was reduced by 22–28% (from 125 s to 98 s), with a standard deviation of less than 5. The established exponential decay model (v(t)=v0e(αt),R2>0.89) enabled prediction of erosion duration. Based on the erosion height curve, the erosion duration and erosion area in similar engineering environments can be estimated, providing a reference for evaluating the risk of ground collapse due to pipe exfiltration. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

34 pages, 1125 KB  
Systematic Review
A Systematic Review of Government-Led Free Caesarean Section Policies in Low- and Middle-Income Countries from 2009 to 2025
by Victor Abiola Adepoju, Abdulrakib Abdulrahim and Qorinah Estiningtyas Sakilah Adnani
Healthcare 2025, 13(19), 2522; https://doi.org/10.3390/healthcare13192522 - 4 Oct 2025
Viewed by 167
Abstract
Background: Caesarean section (CS) is a critical intervention, yet stark inequities in access persist across low- and middle-income countries (LMICs). Over the last decade, governments have introduced policies to eliminate or subsidize user fees; however, the collective impact of these initiatives on [...] Read more.
Background: Caesarean section (CS) is a critical intervention, yet stark inequities in access persist across low- and middle-income countries (LMICs). Over the last decade, governments have introduced policies to eliminate or subsidize user fees; however, the collective impact of these initiatives on utilization, equity, and financial protection has not been fully synthesized. Methods: We conducted a systematic review in line with PRISMA 2020 guidelines. Searches were conducted in PubMed, Dimensions, Google Scholar, Scopus, Web of Science, and government portals for studies published between 1 January 2009 and 30 May 2025. Eligible studies evaluated government-initiated financing reforms, including full user-fee exemptions, partial subsidies, vouchers, insurance schemes, and provider-payment restructuring. Two reviewers independently applied the PICOS criteria, extracted data using a 15-item template, and assessed the study quality. Given heterogeneity, results were synthesized narratively. Results: Thirty-seven studies from 28 LMICs were included. Most (70%) evaluated fee exemptions. Mixed-methods and cross-sectional designs predominated, while only six studies employed interrupted time series designs. Twenty-two evaluations (59%) reported increased CS uptake, ranging from a 1.4-fold rise in Senegal to a threefold increase in Kano State, Nigeria. Similar surges were also observed in non-African contexts such as Iran and Georgia, where reforms included incentives for vaginal delivery or punitive tariffs to curb overuse. Fourteen of 26 fee-exemption studies documented pro-rich or pro-urban drift, while catastrophic expenditure persisted for 12–43% of households, despite the implementation of “free” policies. Median out-of-pocket costs ranged from USD 14 in Burkina Faso to nearly USD 300 in Dakar’s slums. Only one study linked reforms to a reduction in neonatal mortality (a 30% decrease in Mali/Benin), while none demonstrated an impact on maternal mortality. Qualitative evidence highlighted hidden costs, delayed reimbursements, and weak accountability. At the same time, China and Bangladesh demonstrated how demographic reforms or voucher schemes could inadvertently lead to CS overuse or expose gaps in service readiness. Conclusions: Government-led financing reforms consistently increased CS volumes but fell short of ensuring equity, financial protection, or sustained quality. Effective initiatives combined fee removal with investments in surgical capacity, timely reimbursement, and transparent accountability. Future CS policies must integrate real-time monitoring of equity and quality and adopt robust quasi-experimental designs to enable mid-course correction. Full article
(This article belongs to the Special Issue Policy Interventions to Promote Health and Prevent Disease)
Show Figures

Figure 1

10 pages, 371 KB  
Article
Preliminary Quadriceps Muscle Contraction in the Early Rehabilitation of Hip and Knee Arthroplasty
by Assen Aleksiev, Daniela Kovacheva-Predovska and Sasho Assiov
J. Clin. Med. 2025, 14(19), 7021; https://doi.org/10.3390/jcm14197021 - 3 Oct 2025
Viewed by 293
Abstract
Background: Muscle latency is an often-overlooked factor contributing to increased implant wear and higher rates of hip and knee osteoarthritis. Latency reduces the protective role of muscles against external joint loads during movement initiation, leading to cumulative microtrauma. This study investigates whether [...] Read more.
Background: Muscle latency is an often-overlooked factor contributing to increased implant wear and higher rates of hip and knee osteoarthritis. Latency reduces the protective role of muscles against external joint loads during movement initiation, leading to cumulative microtrauma. This study investigates whether preliminary quadriceps contraction can mitigate these adverse effects during early rehabilitation after arthroplasty. Materials and methods: The study was conducted in two university hospitals in Sofia, Bulgaria, including 46 patients (mean age 63.76 ± 9.49 years): 25 with hip arthroplasty and 21 with knee arthroplasty. Participants were randomly assigned to a control group (n = 25; 13 hip, 12 knee: standard postoperative advice) or an experimental group (n = 21; 12 hip, 9 knee: standard advice plus preliminary quadriceps contraction). Primary outcome: pain intensity (VAS). Secondary outcomes: range of motion (ROM, %), manual muscle testing (MMT, %), thigh circumference difference (cm), and success rate of preliminary quadriceps contraction (%). Results: Both groups improved after one month (p < 0.05), but the experimental group showed significantly greater improvement (p < 0.05). Higher success rates of preliminary quadriceps contraction correlated with greater improvements in all outcomes (p < 0.05). Conclusions: Preliminary quadriceps contraction enhances standard postoperative advice by reducing pain, improving mobility and muscle strength, and reducing hypotrophy during early rehabilitation after hip and knee arthroplasty. Patients should be encouraged to perform it consistently, even when pain subsides. Full article
(This article belongs to the Special Issue Advanced Approaches in Hip and Knee Arthroplasty)
Show Figures

Figure 1

18 pages, 2770 KB  
Article
Distribution Characteristics and Enrichment Mechanisms of Fluoride in Alluvial–Lacustrine Facies Clayey Sediments in the Land Subsidence Area of Cangzhou Plain, China
by Juyan Zhu, Rui Liu, Haipeng Guo, Juan Chen, Di Ning and Xisheng Zang
Water 2025, 17(19), 2887; https://doi.org/10.3390/w17192887 - 3 Oct 2025
Viewed by 296
Abstract
Compression of clayey sediments not only causes land subsidence but also results in geogenic high fluoride groundwater. The distribution characteristics and enrichment mechanisms of fluoride in alluvial−lacustrine facies clayey sediments in the land subsidence area of Cangzhou Plain, China, were investigated using sample [...] Read more.
Compression of clayey sediments not only causes land subsidence but also results in geogenic high fluoride groundwater. The distribution characteristics and enrichment mechanisms of fluoride in alluvial−lacustrine facies clayey sediments in the land subsidence area of Cangzhou Plain, China, were investigated using sample collection, mineralogical research, and hydrogeochemical and isotopic analysis. The results show that F concentration of groundwater samples ranged from 0.31 to 5.54 mg/L in aquifers. The total fluoride content of clayey sediments ranged from 440 to 792 mg/kg and porewater F concentration ranged from 0.77 to 4.18 mg/L. Clay minerals containing fine particles, such as muscovite, facilitate the enrichment of fluoride in clayey sediments, resulting in higher total fluoride levels than those in sandy sediments. The clay porewater F predominantly originated from the dissolution of water-soluble F and the desorption of exchangeable F from sediments. The F concentration in porewater was further influenced by ionic interactions such as cation exchange. The stable sedimentary environment and intense compression promoted the dissolution of F–bearing minerals and the desorption of adsorbed F in deep clayey sediments. The similar composition feature of δ2H−δ18O in deep groundwater and clay porewater samples suggests a significant mixing effect. These findings highlight the joint effects of hydrogeochemical and mineralogical processes on F behavior in clayey sediments. Full article
Show Figures

Figure 1

21 pages, 5676 KB  
Article
Surface Deformation Monitoring and Spatiotemporal Evolution Analysis of Open-Pit Mines Using Small-Baseline Subset and Distributed-Scatterer InSAR to Support Sustainable Mine Operations
by Zhouai Zhang, Yongfeng Li and Sihua Gao
Sustainability 2025, 17(19), 8834; https://doi.org/10.3390/su17198834 - 2 Oct 2025
Viewed by 277
Abstract
Open-pit mining often induces geological hazards such as slope instability, surface subsidence, and ground fissures. To support sustainable mine operations and safety, high-resolution monitoring and mechanism-based interpretation are essential tools for early warning, risk management, and compliant reclamation. This study focuses on the [...] Read more.
Open-pit mining often induces geological hazards such as slope instability, surface subsidence, and ground fissures. To support sustainable mine operations and safety, high-resolution monitoring and mechanism-based interpretation are essential tools for early warning, risk management, and compliant reclamation. This study focuses on the Baorixile open-pit coal mine in Inner Mongolia, China, where 48 Sentinel-1 images acquired between 3 March 2017 and 23 April 2021 were processed using the Small-Baseline Subset and Distributed-Scatterer Interferometric Synthetic Aperture Radar (SBAS-DS-InSAR) technique to obtain dense and reliable time-series deformation. Furthermore, a Trend–Periodic–Residual Subspace-Constrained Regression (TPRSCR) method was developed to decompose the deformation signals into long-term trends, seasonal and annual components, and residual anomalies. By introducing Distributed-Scatterer (DS) phase optimization, the monitoring density in low-coherence regions increased from 1055 to 338,555 points (approximately 321-fold increase). Deformation measurements at common points showed high consistency (R2 = 0.97, regression slope = 0.88; mean rate difference = −0.093 mm/yr, standard deviation = 3.28 mm/yr), confirming the reliability of the results. Two major deformation zones were identified: one linked to ground compaction caused by transportation activities, and the other associated with minor subsidence from pre-mining site preparation. In addition, the deformation field exhibits a superimposed pattern of persistent subsidence and pronounced seasonality. TPRSCR results indicate that long-term trend rates range from −14.03 to 14.22 mm/yr, with a maximum periodic amplitude of 40 mm. Compared with the Seasonal-Trend decomposition using LOESS (STL), TPRSCR effectively suppressed “periodic leakage into trend” and reduced RMSEs of total, trend, and periodic components by 48.96%, 93.33%, and 89.71%, respectively. Correlation analysis with meteorological data revealed that periodic deformation is strongly controlled by precipitation and temperature, with an approximately 34-day lag relative to the temperature cycle. The proposed “monitoring–decomposition–interpretation” framework turns InSAR-derived deformation into sustainability indicators that enhance deformation characterization and guide early warning, targeted upkeep, climate-aware drainage, and reclamation. These metrics reduce downtime and resource-intensive repairs and inform integrated risk management in open-pit mining. Full article
(This article belongs to the Special Issue Application of Remote Sensing and GIS in Environmental Monitoring)
Show Figures

Figure 1

23 pages, 3374 KB  
Article
Simulation of Land Subsidence Caused by Coal Mining at the Lupeni Mining Exploitation Using COMSOL Multiphysics
by Andreea Cristina Tataru, Dorin Tataru, Florin Dumitru Popescu, Andrei Andras and Ildiko Brinas
Appl. Sci. 2025, 15(19), 10651; https://doi.org/10.3390/app151910651 - 1 Oct 2025
Viewed by 297
Abstract
Because of its specific nature, mining activity causes numerous negative impacts on the environment, both during the exploitation phase and after it has ended. An important source of income in the Jiu Valley is represented by the Lupeni Mining Exploitation. Like any mining [...] Read more.
Because of its specific nature, mining activity causes numerous negative impacts on the environment, both during the exploitation phase and after it has ended. An important source of income in the Jiu Valley is represented by the Lupeni Mining Exploitation. Like any mining activity, coal exploitation causes various negative effects on the environment. The subsidence phenomenon represents a significant issue associated with coal mining in the Jiu Valley. Underground extraction of mineral deposits induces displacement of the overburden strata. Such displacements result in ground subsidence and modifications of the surface topography. The larger the voids created following the exploitation of useful mineral deposits, the more they affect the surface of the land above the exploitation through sinking, displacement, deformation, and even cracks. Secondary deformations refer to post-mining surface movements induced by delayed rock mass adjustment, manifesting as ground collapse, localized subsoil failure, or uplift driven by groundwater rebound after drainage cessation. In this paper, we aim to study the subsidence phenomenon produced by coal mining at the Lupeni Mining Exploitation using the COMSOL simulation software and applying the Barcelona Basic Model (BBM) and Modified Cam-Clay (MCC) models. Following the simulation, the behavior of the rocks could be observed in order to improve prediction accuracy to support sustainable land management in post-mining areas. Full article
Show Figures

Figure 1

23 pages, 3989 KB  
Article
Sequence Stratigraphy of the Volhynian (Late Middle Miocene) Deposits from the North Sector of Eastern Carpathian Foredeep
by Crina Miclӑuș, Anca Seserman, Sergiu Loghin and Viorel Ionesi
Geosciences 2025, 15(10), 379; https://doi.org/10.3390/geosciences15100379 - 1 Oct 2025
Viewed by 332
Abstract
An exposed sedimentary succession, ca 115 m of a total of 1000 m, from the Eastern Carpathian foredeep was, for the first time, analyzed using facies analysis and scale- and time-independent sequence stratigraphy methods to reveal the depositional environment and its cyclic sedimentation. [...] Read more.
An exposed sedimentary succession, ca 115 m of a total of 1000 m, from the Eastern Carpathian foredeep was, for the first time, analyzed using facies analysis and scale- and time-independent sequence stratigraphy methods to reveal the depositional environment and its cyclic sedimentation. The outcropping deposits, belonging to the Șomuz Formation, dated on the basis of molluscs, foraminifera, and ostracods, are uppermost Volhynian (upper Serravalian). The three recurrent facies associations we have distinguished indicate a storm-dominated shoreface–offshore transition environment. Five-decametre-thick high-frequency sequences (HFS1–5), at most of 4th order, bounded by maximum regressive surfaces, were defined in the studied interval. The maximum thickness of the Volhynian deposits in the area, known both from well sites and outcrops, allowed us to estimate the sedimentation rate at ca 1.5 m/kyr. The fossil content shows that the entire sedimentary succession was deposited in very shallow to shallow water during the whole Volhynian (12.65 - ca 12.01 Ma). The time interval we studied was estimated at ca 75 kyr, so the average time of one HFS is ca 15 kyr. At this scale, considering that both high subsidence and Eastern Paratethys sea-level rise added to accommodation, the sediment supply must have been the main control of cyclic sedimentation, which, in turn, must have been controlled by precession climatic changes in the source area. The estimated time of an HFS is shorter than a precession cycle, but better dating might support or refute this hypothesis. This paper may awaken the interest of the owners of better data, especially from subsurface (seismic, well logs), to complete the data from natural exposures. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

31 pages, 35233 KB  
Article
Load–Deformation Behavior and Risk Zoning of Shallow-Buried Gas Pipelines in High-Intensity Longwall Mining-Induced Subsidence Zones
by Shun Liang, Yingnan Xu, Jinhang Shen, Qiang Wang, Xu Liang, Shaoyou Xu, Changheng Luo, Miao Yang and Yindou Ma
Appl. Sci. 2025, 15(19), 10618; https://doi.org/10.3390/app151910618 - 30 Sep 2025
Viewed by 170
Abstract
In recent years, controlling the integrity of shallow-buried natural gas pipelines within surface subsidence zones caused by high-intensity underground longwall mining in the Daniudi Gas Field of China’s Ordos Basin has emerged as a critical challenge impacting both mine planning and the safe, [...] Read more.
In recent years, controlling the integrity of shallow-buried natural gas pipelines within surface subsidence zones caused by high-intensity underground longwall mining in the Daniudi Gas Field of China’s Ordos Basin has emerged as a critical challenge impacting both mine planning and the safe, efficient co-exploitation of coal and deep natural gas resources. This study included field measurements and an analysis of surface subsidence data from high-intensity longwall mining operations at the Xiaobaodang No. 2 Coal Mine, revealing characteristic ground movement patterns under intensive extraction conditions. The subsidence basin was systematically divided into pipeline hazard zones using three key deformation indicators: horizontal strain, tilt, and curvature. Through ABAQUS-based 3D numerical modeling of coupled pipeline–coal seam mining systems, this research elucidated the spatiotemporal evolution of pipeline Von Mises stress under varying mining parameters, including working face advance rates, mining thicknesses, and pipeline orientation angles relative to the advance direction. The simulations further uncovered non-synchronous deformation behavior between the pipeline and its surrounding sand and soil, identifying two distinct evolutionary phases and three characteristic response patterns. Based on these findings, targeted pipeline integrity preservation measures were developed, with numerical validation demonstrating that maintaining advance rates below 10 m/d, restricting mining heights to under 2.5 m within the 260 m pre-mining influence zone, and where geotechnically feasible, the maximum stress of the pipeline laid perpendicular to the propulsion direction (90°) can be controlled below 480 MPa, and the separation amount between the pipe and the sand and soil can be controlled below 8.69 mm, which can effectively reduce the interference caused by mining. These results provide significant engineering guidance for optimizing longwall mining parameters while ensuring the structural integrity of shallow-buried pipelines in high-intensity extraction environments. Full article
Show Figures

Figure 1

17 pages, 1465 KB  
Article
Peer-to-Peer Energy Storage Capacity Sharing for Renewables: A Marginal Pricing-Based Flexibility Market for Distribution Networks
by Xiang Li, Tianqi Liu and Yikui Liu
Processes 2025, 13(10), 3143; https://doi.org/10.3390/pr13103143 - 30 Sep 2025
Viewed by 274
Abstract
The distributed renewable energy sources have been rapidly increasing in distribution networks, and some of them are configured with energy storage devices. Indeed, sharing surplus energy storage capacities for subsidizing the investment costs is economically attractive. Although such willingness is emerging, targeted trading [...] Read more.
The distributed renewable energy sources have been rapidly increasing in distribution networks, and some of them are configured with energy storage devices. Indeed, sharing surplus energy storage capacities for subsidizing the investment costs is economically attractive. Although such willingness is emerging, targeted trading mechanisms are less explored. Inspired by the electricity markets, this paper innovates a peer-to-peer energy storage flexibility market within distribution networks, which involves multiple vendors and customers, accompanied by a marginal pricing mechanism to enable the economic reallocation of surplus energy storage capacities in distribution systems. A small-scale market is first studied to show the proposed market mechanism and a larger-scale case is used to further demonstrate the scalability and effectiveness of the mechanism. Case studies set three distinct scenarios: markets with or without deficits and with carryover energy constraints. The numerical simulation validates its ability in reflecting the capacity supply–demand relationship, ensuring revenue adequacy and effectively improving economic efficiency. Full article
Show Figures

Figure 1

17 pages, 11223 KB  
Article
Hydrocarbon-Bearing Hydrothermal Fluid Migration Adjacent to the Top of the Overpressure Zone in the Qiongdongnan Basin, South China Sea
by Dongfeng Zhang, Ren Wang, Hongping Liu, Heting Huang, Xiangsheng Huang and Lei Zheng
Appl. Sci. 2025, 15(19), 10587; https://doi.org/10.3390/app151910587 - 30 Sep 2025
Viewed by 137
Abstract
The Qiongdongnan Basin constitutes a sedimentary basin characterized by elevated temperatures, significant overpressures, and abundant hydrocarbons. Investigations within this basin have identified hydrothermal fluid movements linked to overpressure conditions, comprising two vertically separated overpressured intervals. The shallow overpressure compartment is principally caused by [...] Read more.
The Qiongdongnan Basin constitutes a sedimentary basin characterized by elevated temperatures, significant overpressures, and abundant hydrocarbons. Investigations within this basin have identified hydrothermal fluid movements linked to overpressure conditions, comprising two vertically separated overpressured intervals. The shallow overpressure compartment is principally caused by a combination of undercompaction and clay diagenesis. In contrast, the deeper high-pressure compartment results from hydrocarbon gas generation. Numerical pressure modeling indicates late-stage (post-5 Ma) development of significant overpressure within the deep compartment. It is proposed that accelerated subsidence in the Pliocene-Quaternary initiated substantial gas generation, thereby promoting the formation of the deep overpressured system. Multiple organic maturation parameters, combined with fluid inclusion microthermometry, reveal a thermal anomaly adjacent to the upper boundary of the deep overpressured zone. This anomaly indicates vertical transport of hydrothermal fluids ascending from the underlying high-pressure zone. Laser Raman spectroscopy confirms the presence of both hydrocarbons and carbon dioxide within these migrating fluids. Integration of fluid inclusion thermometry with burial history modeling constrains the timing of hydrocarbon-carrying fluid charge to the interval from 4.2 Ma onward, synchronous with modeled peak gas generation and a phase of pronounced overpressure buildup. We propose that upon exceeding the fracture gradient threshold, fluid pressure triggered upward migration of deeply sourced, hydrocarbon-enriched fluids through hydrofracturing pathways. This process led to localized dissolution and fracturing near the top of the deep overpressured system, while simultaneously facilitating significant hydrocarbon accumulation and forming preferential accumulation zones. These findings provide critical insights into petroleum exploration in overpressured sedimentary basins. Full article
(This article belongs to the Special Issue Advances in Petroleum Exploration and Application)
Show Figures

Figure 1

Back to TopTop