Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (801)

Search Parameters:
Keywords = substrate enrichment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2038 KB  
Article
Improving the Yield and Quality of Morchella spp. Using Agricultural Waste
by Jiawen Wang, Weiming Cai, Qunli Jin, Lijun Fan, Zier Guo and Weilin Feng
J. Fungi 2025, 11(10), 703; https://doi.org/10.3390/jof11100703 (registering DOI) - 28 Sep 2025
Abstract
Morchella spp. is a type of valuable and rare edible fungi cultivated in soil. Optimization of the cultivation medium for Morchella spp. is key to obtaining high-efficiency production in an ecologically friendly manner. Recently, the sustainable resource utilization of agricultural waste has gathered [...] Read more.
Morchella spp. is a type of valuable and rare edible fungi cultivated in soil. Optimization of the cultivation medium for Morchella spp. is key to obtaining high-efficiency production in an ecologically friendly manner. Recently, the sustainable resource utilization of agricultural waste has gathered attention. Specifically, reusing tomato substrate, mushroom residues, and coconut shells can lower the production costs and reduce environmental pollution, demonstrating remarkable ecological and economic benefits. To determine the soil microbial communities of Morchella spp. using different culture medias and influencing factors, this study analysed the relative abundance of bacterial and fungal communities in natural soil, soil with 5% tomato substrate, soil with 5% mushroom residues, and soil with 5% coconut shells using Illumina NovaSeq high-throughput sequencing. In addition, intergroup differences, soil physiochemical properties, and product quality were also determined. Results demonstrated that agricultural waste consisting of mushroom residues, waste tomato substrate, and coconut shells can improve the efficiency of Morchella spp. cultivation. When considering yield and quality, mushroom residue achieved the highest yield (soil nutrient enrichment), followed by tomato substrate (water holding + grass carbon nutrient). All three types of agricultural waste promoted early fruiting, significantly increased polysaccharide, crude protein, and potassium content, and lowered crude fat and fibre. In regard to soil improvement, the addition of different materials optimized the soil’s physical structure (reducing volume weight and increasing water holding capacity) and chemical properties (enrichment of nitrogen, phosphorus, and potassium, regulating nitrogen and medium trace elements). For microbial regulation, the added materials significantly increased the abundance of beneficial bacteria (e.g., Actinomycetota, Gemmatimonadota and Devosia) and strengthened nitrogen’s fixation/nitration/decomposition functions. In the mushroom residue group, the abundance of Bacillaceae was positively related to yield. Moreover, it inhibited pathogenic fungi like Mortierella and Trichoderma, and lowered fungal diversity to decrease ecological competition. In summary, mushroom residues have nutrient releasing and microbial regulation advantages, while tomato substrate and coconut shells are new high-efficiency resources. These increase yield through the “physiochemical–microorganism” collaborative path. Future applications may include regulating the function of microorganisms and optimizing waste preprocessing technologies to achieve sustainability. Full article
Show Figures

Figure 1

19 pages, 8005 KB  
Article
Frictional Characteristics and Tribological Mechanisms of Ionic Liquid Lubricants in Ceramic Tribo-Systems
by Zehui Yang, Shujuan Li, Limu Cui and Congjun Cao
Materials 2025, 18(19), 4504; https://doi.org/10.3390/ma18194504 (registering DOI) - 27 Sep 2025
Abstract
Due to their excellent mechanical stability, chemical stability, and environmentally friendly properties, ceramic materials have received extensive attention for years. Meanwhile, ionic liquids (ILs) have been found to effectively enhance tribological properties when applied as lubricants, which has become a distinctive example of [...] Read more.
Due to their excellent mechanical stability, chemical stability, and environmentally friendly properties, ceramic materials have received extensive attention for years. Meanwhile, ionic liquids (ILs) have been found to effectively enhance tribological properties when applied as lubricants, which has become a distinctive example of their wide exploration. Here, three novel proton-type ionic liquids containing different polar groups were designed and synthesized as pure lubricants for use on different ceramic friction couples (silicon nitride–silicon nitride, silicon nitride–silicon carbide, and silicon nitride–zirconium oxide contacts), and their lubrication effect was evident. The results indicate that the adsorption behavior and frictional characteristics of different polar groups on a ceramic friction interface differ, largely depending on tribochemical reactions and the formation of a double electric layer on the interface between the ILs and ceramic substrates, without obvious corrosion during sliding. The friction coefficient is reduced by more than 80%, and this excellent anti-friction effect demonstrates that the constructed ionic liquid–ceramic interface tribological system shows good application potential. Based on the analyses of SEM, EDS, and XPS, the tribochemical reaction on the sliding asperity and the film-forming effect were identified as the dominant lubrication mechanisms. Here, the high lubricity and anti-wear performance of ILs containing phosphorus elements on different ceramic contacts is emphasized, enriching the promising application of high-performance ILs for macroscale, high-efficiency lubrication and low wear, which is of significance for engineering and practical applications. Full article
Show Figures

Figure 1

15 pages, 2564 KB  
Article
Optimizing Pleurotus ostreatus Mushroom Cultivation on Various Agro-Industrial By-Products—Development of a Process Analytical Technology Tool for Predicting Biological Efficiency
by Georgios Bekiaris, Christos S. Pappas, Athanasios Mastrogiannis, Lefteris Lachouvaris, Petros A. Tarantilis and Georgios I. Zervakis
Fermentation 2025, 11(10), 555; https://doi.org/10.3390/fermentation11100555 (registering DOI) - 27 Sep 2025
Abstract
Pleurotus ostreatus is among the most widely cultivated mushroom species on a global scale, valued for its relative ease of cultivation, excellent organoleptic qualities, and notable nutraceutical properties. P. ostreatus could use a wide range of by-products as growth substrates by excreting a [...] Read more.
Pleurotus ostreatus is among the most widely cultivated mushroom species on a global scale, valued for its relative ease of cultivation, excellent organoleptic qualities, and notable nutraceutical properties. P. ostreatus could use a wide range of by-products as growth substrates by excreting a potent array of hydrolytic and oxidative enzymes. In this study, a diverse range of agricultural residues and agro-industrial by-products, enriched (or not) with various supplements, was evaluated for the cultivation of five commercial P. ostreatus strains. Key cultivation parameters were assessed, including biological efficiency and productivity. A process analytical technology (PAT) approach, utilizing FTIR spectroscopy in combination with multivariate analysis, was employed to develop a predictive model for biological efficiency based solely on substrate’s spectral profile. Substrates based on wheat and barley straw supplemented with soybean demonstrated superior performance across most strains. The biological efficiency value reached 185% in some cases for a total cultivation period of only 35 days. The resulting model exhibited excellent predictive capability, with a coefficient of determination (R2) of 0.90 and low relative prediction error of just 6%. The developed innovative PAT tool will be beneficial for mushroom growers since it allows the fast and costless evaluation of agro-industrial by-products in respect to their potential exploitation as mushroom substrates. Full article
(This article belongs to the Special Issue Application of Fungi in Bioconversions and Mycoremediation)
Show Figures

Figure 1

23 pages, 2328 KB  
Article
Constructed Wetlands with Novel Substrate Exposed to Nano-Plastics: Mitigating the Effects of Substrate Enzyme and Ecological Processes
by Luming Wang, Juan Huang, Jing Tuo, Jin Xu and Xinwei Li
Toxics 2025, 13(9), 800; https://doi.org/10.3390/toxics13090800 - 20 Sep 2025
Viewed by 287
Abstract
The widespread occurrence of nano-plastics (NPs) in aquatic environments poses emerging challenges to the pollutant removal performance and ecological stability of constructed wetlands (CWs). This study investigates the performance of calcium-modified (Ca-MBF) and manganese-modified basalt fiber (Mn-MBF) bio-nests as novel substrates to mitigate [...] Read more.
The widespread occurrence of nano-plastics (NPs) in aquatic environments poses emerging challenges to the pollutant removal performance and ecological stability of constructed wetlands (CWs). This study investigates the performance of calcium-modified (Ca-MBF) and manganese-modified basalt fiber (Mn-MBF) bio-nests as novel substrates to mitigate NP-induced inhibition of CWs. Laboratory-scale CWs were operated for 180 days to evaluate substrate-associated enzyme activities, microbial community structure, and functional gene profiles. Results showed that Mn-MBF bio-nests enhanced the activities of dehydrogenase (DHA), urease (UR), ammonia monooxygenase (AMO), nitrite oxidoreductase (NOR), nitrate reductase (NAR), nitrite reductase (NIR), and phosphatase (PST) by 86.2%, 65.5%, 127.0%, 62.8%, 131.5%, 65.3%, and 107.0%, respectively, compared with the control. In contrast, Ca-MBF bio-nests increased these enzyme activities by 48.6%, 53.5%, 67.0%, 30.6%, 95.0%, 45.3%, and 54.6%, respectively. MBF bio-nests also enhanced microbial diversity, enriched denitrifying and phosphorus-removing bacteria (e.g., Thauera, Plasticicumulans), and promoted extracellular polymeric substance secretion. Functional gene prediction indicated elevated abundances of nitrogen cycle-related genes, thereby enhancing nitrification, denitrification, and phosphorus removal processes. These synergistic effects collectively improved nitrification, denitrification, and phosphorus removal efficiency, with Mn-MBF showing superior performance. This study highlights MBF bio-nests as a sustainable strategy to enhance the resilience and long-term operational stability of CWs in environments impacted by nano-plastic pollution. Full article
Show Figures

Graphical abstract

23 pages, 2077 KB  
Article
Long-Term Performance of Thermal Insulating Composite Systems Based on Water Resistance and Surface Multifunctionality
by Giovanni Borsoi, João L. Parracha, Jéssica D. Bersch, Ana R. Garcia, Amélia Dionísio, Paulina Faria, Rosário Veiga and Inês Flores-Colen
Energies 2025, 18(18), 5008; https://doi.org/10.3390/en18185008 - 20 Sep 2025
Viewed by 264
Abstract
External Thermal Insulation Composite Systems (ETICSs) are increasingly applied in both new construction and energy retrofitting, where long-term durability under environmental exposure is critical to preserving thermal efficiency. Moisture ingress represents a key degradation factor, reducing insulation performance and undermining energy savings promoted [...] Read more.
External Thermal Insulation Composite Systems (ETICSs) are increasingly applied in both new construction and energy retrofitting, where long-term durability under environmental exposure is critical to preserving thermal efficiency. Moisture ingress represents a key degradation factor, reducing insulation performance and undermining energy savings promoted by the ETICS. The effectiveness of these systems is strongly influenced by surface protection, which also reflects aesthetic and biological resistance. This study investigates the influence of three commercial protective surface coatings, characterized by hydrophobicity, photocatalytic activity, and resistance to biological growth, on ETICS finishes based on acrylic, natural hydraulic lime (NHL), and silicate binders. An artificial aging protocol was employed to evaluate coating stability and compatibility with the finishing layers. Results show that acrylic-based finishes provided superior durability and protection, while coatings on NHL and silicate substrates exhibited lower performance. Notably, a TiO2 enriched photocatalytic coating, despite improved self-cleaning potential, demonstrated the least durability. The findings highlight that optimal ETICS protection requires coatings that combine low water absorption, effective drying, and biological resistance, thereby ensuring sustained thermal and energy performance over time. Full article
Show Figures

Figure 1

16 pages, 5620 KB  
Article
Development and Properties of Starches in Vitreous and Floury Endosperm of Maize
by Yuzhi Han, Shuchang Wei, Ahui Xu and Cunxu Wei
Agriculture 2025, 15(18), 1978; https://doi.org/10.3390/agriculture15181978 - 19 Sep 2025
Viewed by 157
Abstract
Starches from vitreous and floury endosperm in mature maize kernels exhibit significantly different properties, yet the developmental basis for the differences remains unclear. In this research, inner endosperm (IE) and outer endosperm (OE) regions, which develop into floury and vitreous endosperm, respectively, were [...] Read more.
Starches from vitreous and floury endosperm in mature maize kernels exhibit significantly different properties, yet the developmental basis for the differences remains unclear. In this research, inner endosperm (IE) and outer endosperm (OE) regions, which develop into floury and vitreous endosperm, respectively, were separated from developing maize kernels. Their starch development and properties were investigated using morphological observation, physicochemical characterization, transcriptome analysis, and biochemical assays. The IE contained small, spherical starch granules with loose arrangement, ultimately forming floury endosperm, whereas the OE displayed large, polygonal starch granules packed tightly, contributing to vitreous endosperm formation. The OE exhibited a higher starch filling degree compared to the IE. Throughout endosperm development, amylose content progressively increased in both regions, but was consistently higher in OE starch than in IE starch. The relative crystallinity and lamellar peak intensity of starch decreased gradually during endosperm development; however, at later stages, both parameters were higher in IE starch than in OE starch. Transcriptome analysis revealed that processes such as anaerobic respiration, glycolysis, and response to hypoxia were more enriched in IE compared to OE. Nearly all genes associated with glycolysis and ethanol fermentation pathways were upregulated in IE. Although no significant difference was observed in the activity of granule-bound starch synthase I between IE and OE, the activity of pyruvate orthophosphate dikinase was higher in OE than in IE. These findings suggest that the insufficient nutrient supply and pronounced hypoxic conditions in the IE reduced the availability of carbon substrates for starch synthesis, thereby impairing starch development and accumulation. In contrast, the larger granule size of OE starch facilitates higher amylose accumulation, leading to distinct physicochemical properties between IE and OE starches. Full article
Show Figures

Figure 1

16 pages, 904 KB  
Article
Sardine Inclusion in a Food Waste-Based Substrate for Rearing Black Soldier Fly (Hermetia illucens) Larvae: Effects on Growth Performance, Body Composition, and Gut Microbiome
by Seong-Mok Jeong, Byung Hwa Min, Sang Woo Hur, Jinho Bae, Ki Hwan Park and Kang Woong Kim
Insects 2025, 16(9), 977; https://doi.org/10.3390/insects16090977 - 19 Sep 2025
Viewed by 316
Abstract
The drastic surge in Sardine landings in Korea underscores the urgent need for sustainable upcycling strategies. However, research on the feasibility of using sardine (SD) in food waste (FW)-based substrates during the cultivation of black soldier fly (Hermetia illucens) larvae (BSFL) [...] Read more.
The drastic surge in Sardine landings in Korea underscores the urgent need for sustainable upcycling strategies. However, research on the feasibility of using sardine (SD) in food waste (FW)-based substrates during the cultivation of black soldier fly (Hermetia illucens) larvae (BSFL) remains limited. Thus, we aimed to investigate the effect of incorporating varying SD contents (0, 25, 50, 75, and 100%), into which 4-day-old (third-instar) larvae weighing approximately 0.02 g were introduced and reared for 12 days in triplicate. SD inclusion in the substrate had a dose-dependent effect on BSFL growth; higher concentrations (≥50%) markedly inhibited key growth indices, including a significant reduction in total biomass (p < 0.05). Incorporating SD into the diet dose-dependently enriched the biomass with eicosapentaenoic acid and docosahexaenoic acid while reducing the relative proportions of saturated and monounsaturated fatty acids (p < 0.05). Proteobacteria and Firmicutes were the dominant phyla in the intestinal microbiota of BSFL. Further, SD inclusion altered the gut microbial community structure. Increased SD concentration in the diet led to a progressive reduction in unique genera, indicating decreased microbial diversity at higher inclusion levels. Overall, incorporating SD into FW for BSFL cultivation is feasible; however, optimizing substrate composition—particularly moisture and nutrient balance—is necessary to enhance larval growth and productivity. Full article
(This article belongs to the Special Issue Insects as the Nutrition Source in Animal Feed)
Show Figures

Figure 1

16 pages, 2436 KB  
Article
VIS-Light-Induced Degradation of Street Art Paints and Organic Pigments
by Nicolò Guarnieri, Claudia Conti, Matteo Passoni, Kevin Ambrogioni, Paulina Guzmán García Lascurain, Sara Goidanich and Lucia Toniolo
Appl. Sci. 2025, 15(18), 10188; https://doi.org/10.3390/app151810188 - 18 Sep 2025
Viewed by 229
Abstract
Contemporary murals are highly susceptible to rapid color fading due to outdoor urban exposure. This study investigates the photodegradation mechanisms affecting synthetic organic pigments (SOPs) and commercial acrylic–vinyl paints under simulated visible light exposure. Artificial aging experiments were conducted on two types of [...] Read more.
Contemporary murals are highly susceptible to rapid color fading due to outdoor urban exposure. This study investigates the photodegradation mechanisms affecting synthetic organic pigments (SOPs) and commercial acrylic–vinyl paints under simulated visible light exposure. Artificial aging experiments were conducted on two types of systems: (a) pigment pellets, composed of pre-fixed pigments on mineral bases, as supplied by the manufacturer, and (b) commercial paints applied on glass substrates. Both systems were aged under controlled and uncontrolled relative humidity (RH) conditions. Colorimetric analyses revealed significant color fading, particularly in pigments PR112, PO5, and PV23. Vibrational spectroscopies highlighted the reduction in pigment-related bands after aging, indicating SOPs’ vulnerability to photodegradation. In paint mock-ups, FTIR-ATR measurements indicated binder degradation and an increase in signals from inorganic fillers. A superficial layer enriched in inorganic components was investigated non-invasively by Micro Spatially Offset Raman spectroscopy (Micro-SORS) in the beamsteer modality. It highlighted a gradient of calcite to pigment with depth. These findings indicate that color fading in mural paints results from the combined degradation of both pigments and binders. Full article
Show Figures

Figure 1

20 pages, 3079 KB  
Article
Taguchi Optimization of Corrosion Resistance and Wettability of a-C Films on SS316L Deposited via Magnetron Sputtering Technique
by Xiaoxing Yang, Cunlong Zhou, Zhengyi Jiang, Jingwei Zhao, Tianxiang Wang and Haojie Duan
Coatings 2025, 15(9), 1084; https://doi.org/10.3390/coatings15091084 - 16 Sep 2025
Viewed by 381
Abstract
Due to the exceptional corrosion resistance, chemical stability, and dense microstructure, carbon-based thin films are extensively employed in hydrogen energy systems. This study employed magnetron sputtering to fabricate amorphous carbon (a-C) films on SS316L substrates, aiming to improve the corrosion resistance of bipolar [...] Read more.
Due to the exceptional corrosion resistance, chemical stability, and dense microstructure, carbon-based thin films are extensively employed in hydrogen energy systems. This study employed magnetron sputtering to fabricate amorphous carbon (a-C) films on SS316L substrates, aiming to improve the corrosion resistance of bipolar plates (BPs) in proton exchange membrane fuel cells (PEMFCs). Using a Taguchi design, the effects of working pressure, sputtering power, substrate bias, and deposition time on film properties were systematically examined and optimized. Films were examined via field emission scanning electron microscopy (FE-SEM), contact angle measurements, and electrochemical tests. Comprehensive evaluation by the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method identified optimal conditions of 1.5 Pa pressure, 150 W radio frequency (RF) power, −250 V bias voltage, and 60 min deposition, yielding dense, uniform films with a corrosion current density of 1.61 × 10−6 A·cm−2 and a contact angle of 106.36°, indicative of lotus leaf-like hydrophobicity. This work enriches the theoretical understanding of a-C film process optimization, offering a practical approach for modifying fuel cell bipolar plates to support hydrogen energy applications. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

19 pages, 7933 KB  
Article
Optimized Co-Fermentation of Seed Melon and Z. bungeanum Seed Meal with Saccharomyces cerevisiae L23: Valorization into Functional Feed with Enhanced Antioxidant Activity
by Liping Lu, Xue Zhang, Ziyi Yin, Rui Zhou, Yanli Zhu, Shanshan Liu and Dandan Gao
Fermentation 2025, 11(9), 533; https://doi.org/10.3390/fermentation11090533 - 12 Sep 2025
Viewed by 388
Abstract
This study aimed to enhance the value of agricultural by-products by developing seed melon compound fermented feed (SMFF) using Saccharomyces cerevisiae L23. A two-stage optimization strategy was implemented. First, seed melon juice seed culture medium (SMCM) composition and fermentation conditions were optimized to [...] Read more.
This study aimed to enhance the value of agricultural by-products by developing seed melon compound fermented feed (SMFF) using Saccharomyces cerevisiae L23. A two-stage optimization strategy was implemented. First, seed melon juice seed culture medium (SMCM) composition and fermentation conditions were optimized to maximize S. cerevisiae L23 biomass through single-factor and response surface methodology (RSM) approaches. The SMCM medium was optimized to contain 0.06% MgSO4·7H2O, 0.2% KH2PO4, 0.65% (NH4)2SO4, 0.1% pectinase, and 1.0% urea, and fermentation conditions with inoculation amount, fermentation time, fermentation temperature, and glucose addition were 6%, 28 h, 30 °C, and 0.5%, respectively. Furthermore, SMFF fermentation parameters were optimized via RSM, achieving S. cerevisiae L23 (10.35 lg CFU/g) and sensory evaluation score (83.1) at substrate ratio of 7:3 (seed melon juice: Zanthoxylum bungeanum seed meal), inoculation amount of 8%, and fermentation time of 36 h. Fermentation process significantly improved the nutritional profile of SMFF, increasing crude protein (13%) and vitamin C (VC) content (21%) while reducing neutral detergent fiber/acid detergent fiber (NDF/ADF) levels. SMFF also improved in vitro antioxidant capacity, with higher DPPH, ABTS, hydroxyl radical, and superoxide anion scavenging activities compared to SMFF control. This process efficiently valorized agricultural by-products into nutritionally enriched functional feed. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

16 pages, 1541 KB  
Article
Carbyne-Enriched Carbon Coatings on Silicon Chips as Biosensing Surfaces with Stable-over-Time Biomolecule Binding Capacity
by Dimitra Tsounidi, Panagiota Petrou, Mariya Aleksandrova, Tsvetozar Tsanev, Angeliki Tserepi, Evangelos Gogolides, Andrzej Bernasik, Kamil Awsiuk, Natalia Janiszewska, Andrzej Budkowski and Ioannis Raptis
Nanomaterials 2025, 15(18), 1384; https://doi.org/10.3390/nano15181384 - 9 Sep 2025
Viewed by 422
Abstract
Carbyne-containing materials offer significant potential for biosensor applications due to their unique chemical and mechanical properties. In this study, carbyne-enriched carbon coatings deposited on SiO2/Si chips using ion-assisted pulse-plasma deposition were evaluated for the first time as substrates for optical biosensing. [...] Read more.
Carbyne-containing materials offer significant potential for biosensor applications due to their unique chemical and mechanical properties. In this study, carbyne-enriched carbon coatings deposited on SiO2/Si chips using ion-assisted pulse-plasma deposition were evaluated for the first time as substrates for optical biosensing. At first, the carbyne-enriched coatings were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, Atomic Force Microscopy, and the sessile drop method to assess their composition, structure, and wettability. After that, chips with carbyne-enriched coatings were modified with biomolecules through physical absorption or covalent bonding, and the respective biomolecular interactions were monitored in real-time by White Light Reflectance Spectroscopy (WLRS). In both cases, SiO2/Si chips modified with an aminosilane were used as reference substrates. Physical adsorption was tested through immobilization of an antibody against C-reactive protein (CRP) to enable its immunochemical detection, whereas covalent bonding was tested through coupling of biotin and monitoring its reaction with streptavidin. It was found that the carbyne-enriched carbon-coated chips retained both their antibody adsorption capability and their covalent bonding ability for over 18 months, while the modified with aminosilane SiO2/Si chips lost 90% of their antibody adsorption capacity and covalent bonding ability after two months of storage. These findings highlight the strong potential of carbyne-enriched carbon-coated chips as robust biosensing substrates, with applications extending beyond WLRS. Full article
Show Figures

Graphical abstract

34 pages, 4505 KB  
Article
Partial Replacement of Peat: Effects on Substrate Physico-Hydrological Properties and Sage Growth
by Anna Elisa Sdao, Sonia Cacini, Danilo Loconsole, Giulia Conversa, Giuseppe Cristiano, Antonio Elia and Barbara De Lucia
Plants 2025, 14(17), 2801; https://doi.org/10.3390/plants14172801 - 7 Sep 2025
Viewed by 602
Abstract
The transformation of organic by-products derived from waste into value-added resources represents a promising strategy to advance circular economy principles and bolster environmental and agricultural sustainability, especially in soilless cultivation. This study evaluates the viability of three organic by-products—wood fiber (WF), coffee silverskin [...] Read more.
The transformation of organic by-products derived from waste into value-added resources represents a promising strategy to advance circular economy principles and bolster environmental and agricultural sustainability, especially in soilless cultivation. This study evaluates the viability of three organic by-products—wood fiber (WF), coffee silverskin (CS), and brewer’s spent grains (BSGs)—as partial peat replacements in horticultural substrates. Ten growing media formulations were assessed, incorporating increased doses (0–40% v/v as peat replacement-PR) of each alternative by-product. The effects on physical and hydraulic substrate properties, along with plant growth traits, were examined using two ornamental Salvia genotypes, ‘Victoria’ and ‘Amistad’. To synthesize the multivariate growth data into a single, biologically meaningful metric, based on the first principal component, a Growth Index (GI), a PC1-derived index, was calculated, providing a powerful, unified metric to rank substrate efficacy. WF-based substrates exhibited increased porosity and diminished water retention, whereas media enriched with CS and BSG enhanced moisture availability, particularly at 20–40 PR. The bulk density was highest at PR40 for both WF and BSG treatments, and at PR20 in CS-based substrates. Electrical conductivity increased in CS and BSG treatments with rising PR levels. The results on the vegetative growth of ornamental sages have highlighted that differential PR rates are required depending on the specific organic by-product and plant genotype. In ‘Victoria’, GI indicates that a 20% replacement of peat with BSG provided the optimal conditions for holistic plant development; the lowest GI for WF substrates across nearly all peat replacement levels indicated that it was the most detrimental alternative for this cultivar. In ‘Amistad’, the analysis of the GI scores revealed that the CS20 and BSG20 of peat replacement yielded the highest overall growth, with GI scores significantly greater than those of the peat control. CS10 and BSG40 also showed high GI scores in ‘Amistad’. WF10 had GI scores similar to those of the peat control. In general, the GI-based approach confirms that moderate inclusion of brewer’s spent grain (BSG20) is a highly effective peat replacement for both genotypes. At the same time, coffee silverskin (CS) is particularly effective for the ‘Amistad’ genotype. This analysis underscores that optimal substrate formulation is not only dependent on the amendment type and rate but also critically on the plant genotype. Full article
Show Figures

Figure 1

27 pages, 2402 KB  
Article
Sea Grape (Caulerpa racemosa) Kombucha: A Comprehensive Study of Metagenomic and Metabolomic Profiling, Its Molecular Mechanism of Action as an Antioxidative Agent, and the Impact of Fermentation Time
by Dian Aruni Kumalawati, Reza Sukma Dewi, Noor Rezky Fitriani, Scheirana Zahira Muchtar, Juan Leonardo, Nurpudji Astuti Taslim, Raffaele Romano, Antonello Santini and Fahrul Nurkolis
Beverages 2025, 11(5), 134; https://doi.org/10.3390/beverages11050134 - 5 Sep 2025
Cited by 1 | Viewed by 610
Abstract
Sea grape kombucha has been known to exhibit high antioxidant activity due to its elevated total polyphenol content. This study aims to identify and characterize the active microbial community involved in the fermentation of kombucha using sea grapes (C. racemosa) as [...] Read more.
Sea grape kombucha has been known to exhibit high antioxidant activity due to its elevated total polyphenol content. This study aims to identify and characterize the active microbial community involved in the fermentation of kombucha using sea grapes (C. racemosa) as the primary substrate. Furthermore, it evaluates the effects of different Symbiotic Culture of Bacteria and Yeast (SCOBY) starter concentrations on the physicochemical properties and antioxidant activity of sea grape kombucha. Our results showed that the pH of the kombucha was higher after 7 days of fermentation compared to later time points. The microbial community was composed of 97.08% bacteria and 2.92% eukaryotes, divided into 10 phyla and 69 genera. The dominant genus in all samples was Komagataeibacter. Functional profiling based on 16S rRNA data revealed that metabolic functions accounted for 77.04% of predicted microbial activities during fermentation. The most enriched functional categories were carbohydrate metabolism (15.70%), cofactor and vitamin metabolism (15.54%), and amino acid metabolism (14.24%). At KEGG Level 3, amino acid-associated pathways, particularly alanine, aspartate, and glutamate metabolism (4.24%), were predominant. The fermentation process in sea grape kombucha is primarily driven by carbohydrate and amino acid metabolism, supported by energy-generating and cofactor biosynthesis pathways. Our findings indicate that different metabolic pathways lead to variations in kombucha components, and distinct fermentation stages result in different metabolic reactions. For instance, early fermentation stages (Day 7) are dominated by amino acid metabolism, whereas the late stages (Day 21) show increased activity in carbohydrate and sulfur metabolism. Metabolomic analysis revealed that increasing the SCOBY starter concentration significantly influenced pH, soluble solid content, vitamin C, tannin, and flavonoid content. These variations suggest that fermentation duration and microbial composition significantly influence the spectrum of bioactive metabolites, which synergistically provide functional benefits such as antimicrobial, antioxidant, and metabolic health-promoting activities. For example, sample K1 produced more fatty acids and simple sugar alcohols, sample K2 enriched complex lipid compounds and phytosterols, while sample K3 dominated the production of polyols and terpenoid compounds. Full article
Show Figures

Graphical abstract

29 pages, 1132 KB  
Review
Unconventional Yeast in the Bakery Industry: A Review
by Cristian Mititiuc, Adriana Dabija and Ionut Avramia
Appl. Sci. 2025, 15(17), 9732; https://doi.org/10.3390/app15179732 - 4 Sep 2025
Viewed by 706
Abstract
The shift toward future-forward foods begins with subtle yet innovative alternatives—yeast among them, playing a surprising role in this transformation. Traditionally, Saccharomyces cerevisiae has dominated the bakery industry due to its reliable fermentation and predictable performance. However, rising demand for artisanal, nutritious, and [...] Read more.
The shift toward future-forward foods begins with subtle yet innovative alternatives—yeast among them, playing a surprising role in this transformation. Traditionally, Saccharomyces cerevisiae has dominated the bakery industry due to its reliable fermentation and predictable performance. However, rising demand for artisanal, nutritious, and eco-friendly baked goods has sparked interest in unconventional yeast species. This review highlights the potential of alternative yeasts such as Torulaspora delbrueckii, Candida milleri, Pichia anomala, and Yarrowia lipolytica to enhance bakery processes. These species possess distinctive metabolic traits, enabling the formation of complex aroma and flavour compounds—like esters, higher alcohols, and organic acids—that enrich bread’s taste and texture. Moreover, some strains offer nutritional benefits by synthesizing essential micronutrients, breaking down anti-nutritional phytates, and improving mineral and vitamin bioavailability. Their robustness under stress conditions, such as high sugar, salt, or temperature, and their ability to ferment diverse substrates further support their industrial appeal. Still, challenges persist: unconventional yeasts often exhibit weaker leavening capacity, greater sensitivity to processing, and loss of volatiles during baking. Even so, hybrid fermentations that blend conventional and unconventional yeasts show promise in enhancing both dough performance and end-product quality. Overall, the integration of these alternative yeasts represents a forward-looking approach in bakery, aligning with consumer preferences for health-conscious and sustainable options while offering opportunities for innovation and product differentiation. Full article
Show Figures

Figure 1

15 pages, 5595 KB  
Article
Enhanced Methane Production in the Anaerobic Digestion of Swine Manure: Effects of Substrate-to-Inoculum Ratio and Magnetite-Mediated Direct Interspecies Electron Transfer
by Jung-Sup Lee, Tae-Hoon Kim, Byung-Kyu Ahn, Yun-Ju Jeon, Ji-Hye Ahn, Waris Khan, Seoktae Kang, Junho Kim and Yeo-Myeong Yun
Energies 2025, 18(17), 4692; https://doi.org/10.3390/en18174692 - 4 Sep 2025
Viewed by 717
Abstract
Improving the anaerobic digestion (AD) of swine manure is crucial for sustainable waste-to-energy systems, given its high organic load and process instability risks. This study examined the combined effects of substrate-to-inoculum ratio (SIR, 0.1–3.2) and magnetite-mediated direct interspecies electron transfer on biogas production, [...] Read more.
Improving the anaerobic digestion (AD) of swine manure is crucial for sustainable waste-to-energy systems, given its high organic load and process instability risks. This study examined the combined effects of substrate-to-inoculum ratio (SIR, 0.1–3.2) and magnetite-mediated direct interspecies electron transfer on biogas production, effluent quality, and microbial community dynamics. The highest methane yield (262 ± 10 mL CH4/g COD) was obtained at SIR 0.1, while efficiency declined at higher SIRs due to acid and ammonia accumulation. Magnetite supplementation significantly improved methane yield (up to a 54.1% increase at SIR 0.2) and reduced the lag phase, particularly under moderate SIRs. Effluent characterization revealed that low SIRs induced elevated soluble COD (SCOD) levels, attributed to microbial autolysis and extracellular polymeric substance release. Furthermore, magnetite addition mitigated SCOD accumulation and shifted molecular weight distributions toward higher fractions (>15 kDa), indicating enhanced microbial activity and structural polymer formation. Microbial analysis revealed that magnetite-enriched Syntrophobacterium and Methanothrix promoted syntrophic cooperation and acetoclastic methanogenesis. Diversity indices and PCoA further showed that both SIR and magnetite significantly shaped microbial structure and function. Overall, an optimal SIR range of 0.2–0.4 under magnetite addition provided a balanced strategy for enhancing methane recovery, effluent quality, and microbial stability in swine manure AD. Full article
Show Figures

Graphical abstract

Back to TopTop