Unconventional Yeast in the Bakery Industry: A Review
Abstract
1. Introduction
2. The Main Advantages of Using Unconventional Yeasts in the Bakery Industry
3. Comparative Study Between Conventional and Unconventional Yeasts Used in the Bakery Industry
3.1. Flavour Components
3.2. Nutritional Benefits
3.3. Stress Resistance Mechanisms
3.4. Improvement of Fermentation Processes
4. Types of Unconventional Yeast Used in the Bakery Industry
4.1. Candida milleri
4.2. Candida humilis
4.3. Candida krusei
4.4. Pichia anomala
4.5. Pichia norvegensis
4.6. Torulaspora delbrueckii
4.7. Kazachstania exigua
4.8. Rhodosporidium mucilaginosa
4.9. Zygosaccharomyces rouxii
4.10. Hanseniaspora uvarum
4.11. Brettanomyces bruxellensis
4.12. Debaryomyces hansenii
5. Perspectives, Limits, Challenges
5.1. Perspectives
5.2. Limits in the Use of Unconventional Yeast
5.3. Challenges
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sycheva, I.N.; Ovchinnicov, Y.L.; Voronkova, O.Y.U.; Akhmetshin, E.M.; Kolmakov, V.V.; Vasilieva, A.G. Economic Potential and Development Prospects of Small Businesses in Rural Areas. Eur. Res. Stud. J. 2018, 21, 292–303. [Google Scholar] [CrossRef]
- Kapyrin, P.A.; Kozhinov, D.V.; Khoruzhy, V.I.; Gerasimova, L.N.; Grishin, E.V.; Goloshchapova, L.V. Analysis of the Prospects of a Small Enterprise for the Production of Bakery Products in Russia, Considering Current Market Problems and Chemical Health Risk. J. Med. Chem. Sci. 2021, 4, 199–206. [Google Scholar] [CrossRef]
- Young, A.; Stallings, B. Success Sweeter than Sugar: New Product Development Strategies of Successful Independent Bakeries in South Korea. J. Student Res. 2023, 12, 1–12. [Google Scholar] [CrossRef]
- Alpers, T.; Becker, T.; Jekle, M. Strain-Dependent Assessment of Dough’s Polymer Structure and Functionality during the Baking Process. PLoS ONE 2023, 18, e0282670. [Google Scholar] [CrossRef]
- Madden, A.A.; Lahue, C.; Gordy, C.L.; Little, J.L.; Nichols, L.M.; Calvert, M.D.; Dunn, R.R.; Heil, C.S. Sugar-Seeking Insects as a Source of Diverse Bread-Making Yeasts with Enhanced Attributes. Yeast 2021, 39, 108–127. [Google Scholar] [CrossRef]
- Gao, S.; Hong, J.; Liu, C.; Zheng, X.; Li, L.; Tian, X. Comparative Study of Different Fermentation and Cooking Methods on Dough Rheology and the Quality of Chinese Steamed/Baked Bread. J. Food Process. Preserv. 2021, 46, e16221. [Google Scholar] [CrossRef]
- Srivastava, S.; Kollemparembil, A.M.; Zettel, V.; Claßen, T.; Mobarak, M.; Gatternig, B.; Delgado, A.; Jekle, M.; Hitzmann, B. An Innovative Approach in the Baking of Bread with CO2 Gas Hydrates as Leavening Agents. Foods 2022, 11, 3570. [Google Scholar] [CrossRef] [PubMed]
- Meerts, M.; Ramirez Cervera, A.; Struyf, N.; Cardinaels, R.; Courtin, C.M.; Moldenaers, P. The Effects of Yeast Metabolites on the Rheological Behaviour of the Dough Matrix in Fermented Wheat Flour Dough. J. Cereal Sci. 2018, 82, 183–189. [Google Scholar] [CrossRef]
- Vurro, F.; Summo, C.; Squeo, G.; Caponio, F.; Pasqualone, A. The Use of Durum Wheat Oil in the Preparation of Focaccia: Effects on the Oxidative Stability and Physical and Sensorial Properties. Foods 2022, 11, 2679. [Google Scholar] [CrossRef]
- Nagai, T.; Nakagawa, T.; Kai, N.; Tanoue, Y.; Suzuki, N. Isolation and Partial Characterization of 2-Deoxy-D-Glucose Resistant Saccharomyces Cerevisiae Strain from Fruits Harvested in Yamagata, Japan. Asian Food Sci. J. 2019, 12, 1–13. [Google Scholar] [CrossRef]
- Lahue, C.; Madden, A.A.; Dunn, R.R.; Smukowski Heil, C. History and Domestication of Saccharomyces Cerevisiae in Bread Baking. Front. Genet. 2020, 11, 584718. [Google Scholar] [CrossRef]
- Potokiri, A.; Omeiza, N.A.; Ajayi, A.M.; Adeleke, P.A.; Alagbonsi, A.I.; Iwalewa, E.O. Yeast Supplementation Potentiates Fluoxetine’s Anti-Depressant Effect in Mice via Modulation of Oxido-Inflammatory, CREB, and MAPK Signaling Pathways. Curr. Res. Physiol. 2024, 7, 100132. [Google Scholar] [CrossRef]
- Aslankoohi, E.; Herrera-Malaver, B.; Rezaei, M.N.; Steensels, J.; Courtin, C.M.; Verstrepen, K.J. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread. PLoS ONE 2016, 11, 0165126. [Google Scholar] [CrossRef]
- Lhomme, E.; Urien, C.; Legrand, J.; Dousset, X.; Onno, B.; Sicard, D. Sourdough Microbial Community Dynamics: An Analysis during French Organic Bread-Making Processes. Food Microbiol. 2016, 53, 41–50. [Google Scholar] [CrossRef]
- Musatti, A.; Mapelli, C.; Rollini, M.; Foschino, R.; Picozzi, C. Can Zymomonas Mobilis Substitute Saccharomyces Cerevisiae in Cereal Dough Leavening? Foods 2018, 7, 61. [Google Scholar] [CrossRef]
- Zotta, T.; Di Renzo, T.; Sorrentino, A.; Reale, A.; Boscaino, F. Selection of Non-Saccharomyces Wine Yeasts for the Production of Leavened Doughs. Microorganisms 2022, 10, 1849. [Google Scholar] [CrossRef] [PubMed]
- Taccari, M.; Aquilanti, L.; Polverigiani, S.; Osimani, A.; Garofalo, C.; Milanović, V.; Clementi, F. Microbial Diversity of Type I Sourdoughs Prepared and Back-Slopped with Wholemeal and Refined Soft (Triticum aestivum) Wheat Flours. J. Food Sci. 2016, 81, M1996–M2005. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Torrado, R.; Querol, A. Opportunistic Strains of Saccharomyces Cerevisiae: A Potential Risk Sold in Food Products. Front. Microbiol. 2016, 6, 1522. [Google Scholar] [CrossRef]
- Akyüz, G.; Mazı, B.G. Physicochemical and Sensory Characterization of Bread Produced from Different Dough Formulations by Kluyveromyces lactis. J. Food Process. Preserv. 2020, 44, e14498. [Google Scholar] [CrossRef]
- Drężek, K.; Sobczyk, M.K.; Kállai, Z.; Detman, A.; Bardadyn, P.; Mierzejewska, J. Valorisation of Whey Permeate in Sequential Bioprocesses towards Value-Added Products–Optimisation of Biphasic and Classical Batch Cultures of Kluyveromyces marxianus. Int. J. Mol. Sci. 2023, 24, 7560. [Google Scholar] [CrossRef] [PubMed]
- Madzak, C. Yarrowia Lipolytica: Recent Achievements in Heterologous Protein Expression and Pathway Engineering. Appl. Microbiol. Biotechnol. 2015, 99, 4559–4577. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.; Lopes, M.; Mota, M.; Belo, I. Oxygen Mass Transfer Impact on Citric Acid Production by Yarrowia Lipolytica from Crude Glycerol. Biochem. Eng. J. 2016, 110, 35–42. [Google Scholar] [CrossRef]
- Wilson, A.; Johnson, J.B.; Batley, R.; Lal, P.; Wakeling, L.; Naiker, M. Authentication Using Volatile Composition: A Proof-of-Concept Study on the Volatile Profiles of Fourteen Queensland Ciders. Beverages 2021, 7, 28. [Google Scholar] [CrossRef]
- Steensels, J.; Snoek, T.; Meersman, E.; Nicolino, M.P.; Voordeckers, K.; Verstrepen, K.J. Improving Industrial Yeast Strains: Exploiting Natural and Artificial Diversity. FEMS Microbiol. Rev. 2014, 38, 947–995. [Google Scholar] [CrossRef]
- Podgórska-Kryszczuk, I.; Pankiewicz, U.; Sas-Paszt, L. Biological Control of Aspergillus Parasiticus and Aspergillus Ochraceus and Reductions in the Amount of Ochratoxin A and Aflatoxins in Bread by Selected Non-Conventional Yeast. Foods 2023, 12, 3871. [Google Scholar] [CrossRef]
- Chen, B.C.; Lin, H.Y. Deletion of NTH1 and HSP12 Increases the Freeze–Thaw Resistance of Baker’s Yeast in Bread Dough. Microb. Cell Fact. 2022, 21, 149. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Y.; Tang, K.; Hu, Y.; Xu, X.; Gänzle, M.G. Effect of Mixed Cultures of Yeast and Lactobacilli on the Quality of Wheat Sourdough Bread. Front. Microbiol. 2019, 10, 2113. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.X.T.; Nguyen, T.K.C.; Le, C.T.; Nguyen, V.P. Isolation and Identification of Yeasts from Local Fruits in Thua Thien Hue Province, Vietnam. Hue Univ. J. Sci. Nat. Sci. 2023, 132, 43–53. [Google Scholar] [CrossRef]
- Oyinloye, P.O.; Ajala, A.S.; Asogwa, N.T.; Galani, Y.J.H. Fortification of Dough with Moringa, Coriander, and Amaranth Improves the Nutritional Composition, Health-Benefiting Properties, and Sensory Attributes of Nigerian Wheat Bread. Food Sci. Nutr. 2024, 12, 615–626. [Google Scholar] [CrossRef]
- Paleo-López, R.; Quintero-Galvis, J.F.; Solano-Iguaran, J.J.; Sanchez-Salazar, A.M.; Gaitan-Espitia, J.D.; Nespolo, R.F. A Phylogenetic Analysis of Macroevolutionary Patterns in Fermentative Yeasts. Ecol. Evol. 2016, 6, 3851–3861. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, L.; Savkina, O.; Burykina, M.; Lokachuk, M.; Parakhina, O.; Pavlovskaya, E.; Lavrenteva, N. Study of Factors Affecting the Pathogenic Microbiota Growth on the Surface of Thermophilic Sourdough and Development of Methods for Its Inhibition. BIO Web Conf. 2023, 64, 01021. [Google Scholar] [CrossRef]
- Jewison, T.; Knox, C.; Neveu, V.; Djoumbou, Y.; Guo, A.C.; Lee, J.; Liu, P.; Mandal, R.; Krishnamurthy, R.; Sinelnikov, I.; et al. YMDB: The Yeast Metabolome Database. Nucleic Acids Res. 2012, 40, 815–820. [Google Scholar] [CrossRef] [PubMed]
- Gumustop, İ.; Ortakci, F. Evaluating the Microbial Growth Kinetics and Artificial Gastric Digestion Survival of a Novel Pichia Kudriavzevii FOL-04. Biotech Stud. 2022, 31, 28–35. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, J. Buckling of Yeast Modeled as Viscoelastic Shells with Transverse Shearing. Arch. Appl. Mech. 2012, 82, 69–77. [Google Scholar] [CrossRef]
- Darpossolo, F.P.B.; Eto, S.F.; Venancio, E.J.; Castro-Goméz, R.J.H. Saccharomyces Uvarum Mannoproteins Stimulate a Humoral Immune Response in Mice. Brazilian Arch. Biol. Technol. 2012, 55, 597–602. [Google Scholar] [CrossRef]
- Ribet, L.; Dessalles, R.; Lesens, C.; Brusselaers, N.; Durand-Dubief, M. Nutritional Benefits of Sourdoughs: A Systematic Review. Adv. Nutr. 2023, 14, 22–29. [Google Scholar] [CrossRef]
- Palla, M.; Blandino, M.; Grassi, A.; Giordano, D.; Sgherri, C.; Quartacci, M.F.; Reyneri, A.; Agnolucci, M.; Giovannetti, M. Characterization and Selection of Functional Yeast Strains during Sourdough Fermentation of Different Cereal Wholegrain Flours. Sci. Rep. 2020, 10, 12856. [Google Scholar] [CrossRef]
- Szczepańczyk, M.; Rzechonek, D.A.; Neuvéglise, C.; Mirończuk, A.M. In-Depth Analysis of Erythrose Reductase Homologs in Yarrowia Lipolytica. Sci. Rep. 2023, 13, 9129. [Google Scholar] [CrossRef] [PubMed]
- Koistinen, V.M.; Mattila, O.; Katina, K.; Poutanen, K.; Aura, A.M.; Hanhineva, K. Metabolic Profiling of Sourdough Fermented Wheat and Rye Bread. Sci. Rep. 2018, 8, 5684. [Google Scholar] [CrossRef]
- Jeanne, J.F.; Malaab, J.; Vanhove, A.; Mourey, F.; Talmatkadi, M.; Schück, S. Natural Language Processing and Machine Learning Techniques for Analyzing Conversations About Nutritional Yeasts in the United States and France: Retrospective Social Media Listening Study. JMIR Infodemiology 2025, 5, e60528. [Google Scholar] [CrossRef]
- Al-Suod, H.; Ratiu, I.A.; Górecki, R.; Buszewski, B. Pressurized Liquid Extraction of Cyclitols and Sugars: Optimization of Extraction Parameters and Selective Separation. J. Sep. Sci. 2019, 42, 1265–1272. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, D.; Yang, H.; Ren, H. Production of Ethanol from Jerusalem Artichoke by Mycelial Pellets. Sci. Rep. 2019, 9, 18510. [Google Scholar] [CrossRef]
- Lai, Y.T.; Cheng, K.C.; Lai, C.N.; Lai, Y.J. Isolation and Identification of Aroma Producing Strain with Esterification Capacity from Yellow Water. PLoS ONE 2019, 14, e0211356. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Jiao, X.; Qin, S. Differences between Flocculating Yeast and Regular Industrial Yeast in Transcription and Metabolite Profiling during Ethanol Fermentation. Saudi J. Biol. Sci. 2017, 24, 459–465. [Google Scholar] [CrossRef]
- Galli, V.; Venturi, M.; Guerrini, S.; Mangani, S.; Barbato, D.; Vallesi, G.; Granchi, L. Exploitation of Selected Sourdough Saccharomyces Cerevisiae Strains for the Production of a Craft Raspberry Fruit Beer. Foods 2023, 12, 3354. [Google Scholar] [CrossRef]
- Samarasinghe, H.; Lu, Y.; Aljohani, R.; Al-Amad, A.; Yoell, H.; Xu, J. Global Patterns in Culturable Soil Yeast Diversity. iScience 2021, 24, 103098. [Google Scholar] [CrossRef] [PubMed]
- Seixas, N.L.; Paula, V.B.; Dias, T.; Dias, L.G.; Estevinho, L.M. The Effect of Incorporating Fermented Elderberries (Sambucus nigra) into Bread: Quality, Shelf Life, and Biological Enhancement. Foods 2025, 14, 724. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.; Barbosa, J.; Teixeira, P. The Inhibitory Concentration of Natural Food Preservatives May Be Biased by the Determination Methods. Foods 2021, 10, 1009. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, A.; Boekhout, T.; Gojkovic, Z.; Katz, M. Evaluation of Non-Saccharomyces Yeasts in the Fermentation of Wine, Beer and Cider for the Development of New Beverages. J. Inst. Brew. 2018, 124, 389–402. [Google Scholar] [CrossRef]
- Kamzolova, S.V.; Vinokurova, N.G.; Shemshura, O.N.; Bekmakhanova, N.E.; Lunina, J.N.; Samoilenko, V.A.; Morgunov, I.G. The Production of Succinic Acid by Yeast Yarrowia Lipolytica through a Two-Step Process. Appl. Microbiol. Biotechnol. 2014, 98, 7959–7969. [Google Scholar] [CrossRef]
- Zhao, X.R.; Chen, X.L.; Yang, J.L.; Gao, Q.; Shi, J.T.; Hua, Q.; Wei, L.J. De Novo Synthesis of Nervonic Acid and Optimization of Metabolic Regulation by Yarrowia Lipolytica. Bioresour. Bioprocess. 2023, 10, 70. [Google Scholar] [CrossRef]
- Kancelista, A.; Chmielewska, J.; Korzeniowski, P.; Łaba, W. Bioconversion of Sweet Sorghum Residues by Trichoderma Citrinoviride C1 Enzymes Cocktail for Effective Bioethanol Production. Catalysts 2020, 10, 1292. [Google Scholar] [CrossRef]
- Ferremi Leali, N.; Salvetti, E.; Luzzini, G.; Salini, A.; Slaghenaufi, D.; Fusco, S.; Ugliano, M.; Torriani, S.; Binati, R.L. Differences in the Volatile Profile of Apple Cider Fermented with Schizosaccharomyces Pombe and Schizosaccharomyces Japonicus. Fermentation 2024, 10, 128. [Google Scholar] [CrossRef]
- García-Ramón, F.; Sotelo-Méndez, A.; Alvarez-Chancasanampa, H.; Norabuena, E.; Sumarriva, L.; Yachi, K.; Gonzales Huamán, T.; Naupay Vega, M.; Cornelio-Santiago, H.P. Influence of Peruvian Andean Grain Flours on the Nutritional, Rheological, Physical, and Sensory Properties of Sliced Bread. Front. Sustain. Food Syst. 2023, 7, 1202322. [Google Scholar] [CrossRef]
- Franco-Duarte, R.; Černáková, L.; Kadam, S.; Kaushik, K.S.; Salehi, B.; Bevilacqua, A.; Corbo, M.R.; Antolak, H.; Dybka-Stępień, K.; Leszczewicz, M.; et al. Advances in Chemical and Biological Methods to Identify Microorganisms—From Past to Present. Microorganisms 2019, 7, 130. [Google Scholar] [CrossRef] [PubMed]
- Minervini, F.; Di Cagno, R.; Lattanzi, A.; De Angelis, M.; Antonielli, L.; Cardinali, G.; Cappelle, S.; Gobbetti, M. Lactic Acid Bacterium and Yeast Microbiotas of 19 Sourdoughs Used for Traditional/Typical Italian Breads: Interactions between Ingredients and Microbial Species Diversity. Appl. Environ. Microbiol. 2012, 78, 1251–1264. [Google Scholar] [CrossRef] [PubMed]
- Vernocchi, P.; Valmorri, S.; Dalai, I.; Torriani, S.; Gianotti, A.; Suzzi, G.; Guerzoni, M.E.; Mastrocola, D.; Gardini, F. Characterization of the Yeast Population Involved in the Production of a Typical Italian Bread. J. Food Sci. 2004, 69, 182–186. [Google Scholar] [CrossRef]
- Harrison, M.-C.; Ubbelohde, E.J.; LaBella, A.L.; Opulente, D.A.; Wolters, J.F.; Zhou, X.; Shen, X.-X.; Groenewald, M.; Hittinger, C.T.; Rokas, A. Machine Learning Illuminates How Diet Influences the Evolution of Yeast Galactose Metabolism. bioRxiv 2023. [Google Scholar] [CrossRef]
- Tadesse, B.T.; Abera, A.B.; Tefera, A.T.; Muleta, D.; Alemu, Z.T.; Wessel, G. Molecular Characterization of Fermenting Yeast Species from Fermented Teff Dough during Preparation of Injera Using ITS DNA Sequence. Int. J. Food Sci. 2019, 2019, 1291863. [Google Scholar] [CrossRef]
- Amann, L.S.; Frank, O.; Dawid, C.; Hofmann, T.F. The Sensory-Directed Elucidation of the Key Tastants and Odorants in Sourdough Bread Crumb. Foods 2022, 11, 2325. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Wang, S.; Liu, Y.; Li, L.; Gao, M. Lactic Acid Bacteria Synergistic Fermentation Affects the Flavor and Texture of Bread. J. Food Sci. 2022, 87, 1823–1836. [Google Scholar] [CrossRef]
- Wang, H.E.; Hwang, C.F.; Tzeng, Y.M.; Hwang, W.Z.; Mau, J.L. Quality of White Bread Made from Lactic Acid Bacteria-Enriched Dough. J. Food Process. Preserv. 2012, 36, 553–559. [Google Scholar] [CrossRef]
- Buitimea-Cantúa, N.E.; Serna-Saldívar, S.O. Effect of Processing on the Hydroxycinnamic Acids, Flavones, and Cellular Antioxidant Activity of Tortillas Supplemented with Sorghum Bran. Cereal Chem. 2020, 97, 382–393. [Google Scholar] [CrossRef]
- Wang, H.; Miao, Y.; Xu, X.; Ye, P.; Wu, H.; Wang, B.; Shi, X. Effects of Blending on Phenolic, Colour, Antioxidant and Aroma Components of Cabernet Sauvignon Wine from Xinjiang (China). Foods 2022, 11, 3332. [Google Scholar] [CrossRef]
- Velma, A.; Tolonen, T.; Haverinen, J.; Jaakkola, M.; Paulín, L.; Auvinen, P.; Laine, M.M. Survey of Microbes in Industrial-Scale Second-Generation Bioethanol Production for Better Process Knowledge and Operation. Appl. Microbiol. Biotechnol. 2020, 104, 8049–8064. [Google Scholar]
- Urien, C.; Legrand, J.; Montalent, P.; Casaregola, S.; Sicard, D. Fungal Species Diversity in French Bread Sourdoughs Made of Organic Wheat Flour. Front. Microbiol. 2019, 10, 201. [Google Scholar] [CrossRef]
- Arena, M.P.; Russo, P.; Spano, G.; Capozzi, V. Exploration of the Microbial Biodiversity Associated with North Apulian Sourdoughs and the Effect of the Increasing Number of Inoculated Lactic Acid Bacteria Strains on the Biocontrol against Fungal Spoilage. Fermentation 2019, 5, 97. [Google Scholar] [CrossRef]
- Chiva, R.; Celador-Lera, L.; Uña, J.A.; Jiménez-López, A.; Espinosa-Alcantud, M.; Mateos-Horganero, E.; Vega, S.; Santos, M.Á.; Velázquez, E.; Tamame, M. Yeast Biodiversity in Fermented Doughs and Raw Cereal Matrices and the Study of Technological Traits of Selected Strains Isolated in Spain. Microorganisms 2020, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Hale, A.R.; Ruegger, P.M.; Rolshausen, P.; Borneman, J.; Yang, J. in Fungi Associated with the Potato Taste Defect in Coffee Beans from Rwanda. Bot. Stud. 2022, 63, 17. [Google Scholar] [CrossRef]
- Koricha, A.D.; Han, D.Y.; Bacha, K.; Bai, F.Y. Diversity and Distribution of Yeasts in Indigenous Fermented Foods and Beverages of Ethiopia. J. Sci. Food Agric. 2020, 100, 3630–3638. [Google Scholar] [CrossRef]
- Park, E.H.; Kwun, S.Y.; Han, S.A.; Lee, J.S.; Kim, M.D. Cloning and Functional Verification of the Candida Milleri HIS3 Gene Encoding Imidazoleglycerol Phosphate Dehydratase. J. Microbiol. Biotechnol. 2012, 22, 1441–1445. [Google Scholar] [CrossRef]
- Adamo, G.M.; Brocca, S.; Passolunghi, S.; Salvato, B.; Lotti, M. Laboratory Evolution of Copper Tolerant Yeast Strains. FEMS Microbiol. Lett. 2012, 100, 197–203. [Google Scholar] [CrossRef]
- Lorenzo-Gutiérrez, D.; Gómez-Gil, L.; Guarro, J.; Roncero, M.I.G.; Capilla, J.; López-Fernández, L. Cu Transporter Protein CrpF Protects against Cu-Induced Toxicity in Fusarium oxysporum. Virulence 2020, 11, 1108–1121. [Google Scholar] [CrossRef]
- Douglass, A.P.; Offei, B.; Braun-Galleani, S.; Coughlan, A.Y.; Martos, A.A.R.; Ortiz-Merino, R.A.; Byrne, K.P.; Wolfe, K.H. Population Genomics Shows No Distinction between Pathogenic Candida Krusei and Environmental Pichia Kudriavzevii: One Species, Four Names. PLoS Pathog. 2018, 14, e1007138. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, X.; Zhou, P. In Vitro Antifungal Effects of Berberine Against Candida spp. in Planktonic and Biofilm Conditions. Drug Des. Devel. Ther. 2020, 14, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Sardi, J.C.O.; Scorzoni, L.; Bernardi, T.; Fusco-Almeida, A.M.; Mendes Giannini, M.J.S. Candida Species: Current Epidemiology, Pathogenicity, Biofilm Formation, Natural Antifungal Products and New Therapeutic Options. J. Med. Microbiol. 2013, 62, 10–24. [Google Scholar] [CrossRef]
- Shujat, U. Spectrum of Superficial and Deep Fungal Isolates in Northern Pakistan. Virol. Mycol. 2014, 3, 2–5. [Google Scholar] [CrossRef]
- Gómez-Gaviria, M.; Mora-Montes, H.M. Current Aspects in the Biology, Pathogeny, and Treatment of Candida Krusei, a Neglected Fungal Pathogen. Infect. Drug Resist. 2020, 13, 1673–1689. [Google Scholar] [CrossRef]
- Méndez, P.X.; Uña, J.A.; Vega-Fernández, S.; Santos, M.Á. The Ability of the Yeast Wickerhamomyces Anomalus to Hydrolyze Immunogenic Wheat Gliadin Proteins. Foods 2022, 12, 4105. [Google Scholar] [CrossRef] [PubMed]
- Capece, A.; Romaniello, R.; Siesto, G.; Romano, P. Conventional and Non-Conventional Yeasts in Beer Production. Fermentation 2018, 4, 38. [Google Scholar] [CrossRef]
- Ul Haq, I.; Tahir, A.; Nawaz, A.; Mustafa, Z.; Mukhtar, H.; Rehman, A.U. Sustainable Bioconversion of Saccharified Agro Residues into Bioethanol by Wickerhamomyces Anomalus. Rev. Mex. Ing. Química 2020, 8, 97–104. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, G.; Long, H.; Liao, Y.; Wu, L.; Huang, W.; Liu, X. Contribution of Trehalose to Ethanol Stress Tolerance of Wickerhamomyces Anomalus. BMC Microbiol. 2023, 23, 239. [Google Scholar] [CrossRef] [PubMed]
- Agarussi, M.C.N.; Pereira, O.G.; Pimentel, F.E.; Azevedo, C.F.; da Silva, V.P.; e Silva, F.F. Microbiome of Rehydrated Corn and Sorghum Grain Silages Treated with Microbial Inoculants in Different Fermentation Periods. Sci. Rep. 2022, 12, 16864. [Google Scholar] [CrossRef]
- Haile, M.; Kang, W.H. Isolation, Identification, and Characterization of Pectinolytic Yeasts for Starter Culture in Coffee Fermentation. Microorganisms 2019, 7, 401. [Google Scholar] [CrossRef]
- Chen, Y.; Wan, Y.; Cai, W.; Che, X.; Peng, H.; Fu, G. Study on the Mechanism on Synthesis of Higher Alcohols in Wickerhamomyces Anomalus under Ethanol Stress. Flavour Fragr. J. 2024, 39, 10–22. [Google Scholar] [CrossRef]
- Meeampun, Y.; Panyachanakul, T.; Samosorn, S.; Dolsophon, K.; Jiamjariyatam, R.; Lorliam, W.; Arnthong, J.; Suwannarangsee, S.; Tantayotai, P.; Krajangsang, S. Characterization of Yeast Mutant Strains for Starter Culture in Arabica Coffee Fermentation. Sci. Rep. 2024, 14, 6069. [Google Scholar] [CrossRef]
- Freitas, L.F.D.; Batista, T.M.; Santos, A.R.O.; Hilário, H.O.; Moreira, R.G.; Franco, G.R.; Morais, P.B.; Lachance, M.A.; Rosa, C.A. Yeast Communities Associated with Cacti in Brazil and the Description of Kluyveromyces starmeri sp. Nov. Based on Phylogenomic Analyses. Yeast 2020, 37, 625–637. [Google Scholar] [CrossRef]
- Hoang, M.T.V.; Irinyi, L.; Chen, S.C.A.; Sorrell, T.C.; Meyer, W.; Arabatzis, M.; Arthur, I.; Cano-Lira, J.F.; Cardinali, G.; Castañón, L.R.; et al. Dual DNA Barcoding for the Molecular Identification of the Agents of Invasive Fungal Infections. Front. Microbiol. 2019, 10, 1647. [Google Scholar] [CrossRef]
- Mixão, V.; Hansen, A.P.; Saus, E.; Boekhout, T.; Lass-Florl, C.; Gabaldón, T. Whole-Genome Sequencing of the Opportunistic Yeast Pathogen Candida Inconspicua Uncovers Its Hybrid Origin. Front. Genet. 2019, 10, 383. [Google Scholar] [CrossRef]
- Guan, Q.; Zheng, W.; Mo, J.; Huang, T.; Xiao, Y.; Liu, Z.; Peng, Z.; Xie, M.; Xiong, T. Evaluation and Comparison of the Microbial Communities and Volatile Profiles in Homemade Suansun from Guangdong and Yunnan Provinces in China. J. Sci. Food Agric. 2020, 100, 5197–5206. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.; Xie, Y.; Zhang, H.; Jin, J.; Xiong, Y.; Pang, X.; Vriesekoop, F. Correlation between Microorganisms and Volatile Compounds during Spontaneous Fermentation of Sour Bamboo Shoots. Fermentation 2024, 10, 333. [Google Scholar] [CrossRef]
- Groenewald, M.; Hittinger, C.T.; Bensch, K.; Opulente, D.A.; Shen, X.X.; Li, Y.; Liu, C.; LaBella, A.L.; Zhou, X.; Limtong, S.; et al. A Genome-Informed Higher Rank Classification of the Biotechnologically Important Fungal Subphylum Saccharomycotina. Stud. Mycol. 2023, 105, 1–22. [Google Scholar] [CrossRef]
- Kajadpai, N.; Angchuan, J.; Khunnamwong, P.; Srisuk, N. Diversity of Duckweed (Lemnaceae) Associated Yeasts and Their Plant Growth Promoting Characteristics. AIMS Microbiol. 2023, 9, 486–517. [Google Scholar] [CrossRef]
- Ataç, F.; Ertekin Filiz, B.; Guzel-Seydim, Z.B. The Use of Yeast-Rich Kefir Grain as a Starter Culture in Bread Making. J. Food Process. Preserv. 2022, 46, e15242. [Google Scholar] [CrossRef]
- Utama, G.L.; Suraloka, M.P.A.; Rialita, T.; Balia, R.L. Antifungal and Aflatoxin-Reducing Activity of β-Glucan Isolated from Pichia Norvegensis Grown on Tofu Wastewater. Foods 2021, 10, 2619. [Google Scholar] [CrossRef]
- Mailhol, D.; Castillo, J.C.; Mohanan, K.; Abonia, R.; Coquerel, Y.; Rodriguez, J. Practical and Efficient Organocatalytic Enantioselective α-Hydroxyamination Reactions of β-Ketoamides. ChemCatChem 2013, 5, 1192–1199. [Google Scholar] [CrossRef]
- Santiago, C.; Rito, T.; Vieira, D.; Fernandes, T.; Pais, C.; Sousa, M.J.; Soares, P.; Franco-Duarte, R. Improvement of Torulaspora Delbrueckii Genome Annotation: Towards the Exploitation of Genomic Features of a Biotechnologically Relevant Yeast. J. Fungi 2021, 7, 287. [Google Scholar] [CrossRef]
- Štulíková, K.; Novák, J.; Vlček, J.; Šavel, J.; Košin, P.; Dostálek, P. Bottle Conditioning: Technology and Mechanisms Applied in Refermented Beers. Beverages 2020, 6, 56. [Google Scholar] [CrossRef]
- Berbegal, C.; Khomenko, I.; Russo, P.; Spano, G.; Fragasso, M.; Biasioli, F.; Capozzi, V. PTR-ToF-MS for the Online Monitoring of Alcoholic Fermentation in Wine: Assessment of VOCs Variability Associated with Different Combinations of Saccharomyces/Non-Saccharomyces as a Case-Study. Fermentation 2020, 6, 55. [Google Scholar] [CrossRef]
- García-Béjar, B.; Fernández-Pacheco, P.; Carreño-Domínguez, J.; Briones, A.; Arévalo-Villena, M. Identification and Biotechnological Characterisation of Yeast Microbiota Involved in Spontaneous Fermented Wholegrain Sourdoughs. J. Sci. Food Agric. 2023, 103, 7683–7693. [Google Scholar] [CrossRef]
- Morata, A. Enological Repercussions of Non-Saccharomyces Species 2.0. Fermentation 2020, 6, 110. [Google Scholar] [CrossRef]
- Hussain, S.; Alamri, M.S.; Mohamed, A.A.; Ibraheem, M.A.; Qasem, A.A.A.; Shamlan, G.; Ababtain, I.A. Dough Performance and Quality Evaluation of Cookies Prepared from Flour Blends Containing Cactus (Opuntia Ficus-Indica) and Acacia (Acacia Seyal) Gums. Molecules 2022, 27, 7217. [Google Scholar] [CrossRef]
- Boscaino, F.; Ionata, E.; De Caro, S.; Sorrentino, A. Non-Conventional Yeasts from Mozzarella Cheese Whey and Artisanal Sourdoughs: Leavening Capacity and Impact on Bread Sensory Profile. Fermentation 2024, 10, 68. [Google Scholar] [CrossRef]
- Xu, P.; Duong, D.M.; Seyfried, N.T.; Cheng, D.; Xie, Y.; Robert, J.; Rush, J.; Hochstrasser, M.; Finley, D.; Peng, J. Quantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation. Cell 2009, 137, 133–145. [Google Scholar] [CrossRef]
- Sergeeva, A.; Novichenko, A.; Ivanova, V.; Gurev, S.; Korovyansky, V. Evaluation of Breadmaking Potential of the Yeasts Wickerhamomyces Anomalus (CBS S605T) and Torulaspora Delbrueckii (YIT3). E3S Web Conf. 2024, 539, 02037. [Google Scholar] [CrossRef]
- Fu, W.; Xue, W.; Liu, C.; Tian, Y.; Zhang, K.; Zhu, Z. Screening of Lactic Acid Bacteria and Yeasts from Sourdough as Starter Cultures for Reduced Allergenicity Wheat Products. Foods 2020, 9, 751. [Google Scholar] [CrossRef]
- Cagno, R.D.; Angelis, M.D.; Gallo, G.; Settanni, L.; Berloco, M.G.; Siragusa, S.; Parente, E.; Corsetti, A.; Gobbetti, M. Genotypic and Phenotypic Diversity of Lactobacillus Rossiae Strains Isolated from Sourdough. J. Appl. Microbiol. 2007, 103, 821–835. [Google Scholar] [CrossRef]
- Li, Z.; Song, K.; Li, H.; Ma, R.; Cui, M. Effect of Mixed Saccharomyces Cerevisiae Y10 and Torulaspora Delbrueckii Y22 on Dough Fermentation for Steamed Bread Making. Int. J. Food Microbiol. 2019, 303, 58–64. [Google Scholar] [CrossRef]
- Wei, J.; Niu, C.; Liu, B.; Yuan, Y.; Yue, T. Identification and Characterization of Epiphytic Yeasts on Apples in China. RSC Adv. 2017, 7, 44766–44772. [Google Scholar] [CrossRef]
- Zhou, M.M.; Li, Z.J. Characteristics of Scalded Dough Fermented by Co-Cultures of Saccharomyces Cerevisiae Y10, Wickerhamomyces Anomalus Y13 and Torulaspora Delbrueckii Y22. Int. J. Food Sci. Technol. 2021, 56, 5923–5930. [Google Scholar] [CrossRef]
- Li, J.; Hong, M.; Qi, B. Impact of Torulaspora Delbrueckii During Fermentation on Aromatic Profile of Vidal Blanc Icewine. Front. Microbiol. 2022, 13, 860128. [Google Scholar] [CrossRef]
- Tronchoni, J.; Curiel, J.A.; Morales, P.; Torres-Pérez, R.; Gonzalez, R. Early Transcriptional Response to Biotic Stress in Mixed Starter Fermentations Involving Saccharomyces Cerevisiae and Torulaspora Delbrueckii. Int. J. Food Microbiol. 2017, 241, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Yaǧmur, G.; Tanguler, H.; Leventdurur, S.; Elmaci, S.B.; Turhan, E.Ü.; Francesca, N.; Settanni, L.; Moschetti, G.; Erten, H. Identification of Predominant Lactic Acid Bacteria and Yeasts of Turkish Sourdoughs and Selection of Starter Cultures for Liquid Sourdough Production Using Different Flours and Dough Yields. Polish J. Food Nutr. Sci. 2016, 66, 99–107. [Google Scholar] [CrossRef]
- Blasche, S.; Kim, Y.; Mars, R.A.T.; Machado, D.; Maansson, M.; Kafkia, E.; Milanese, A.; Zeller, G.; Teusink, B.; Nielsen, J.; et al. Metabolic Cooperation and Spatiotemporal Niche Partitioning in a Kefir Microbial Community. Nat. Microbiol. 2021, 6, 196–208. [Google Scholar] [CrossRef]
- Katsi, P.; Kosma, I.S.; Michailidou, S.; Argiriou, A.; Badeka, A.V.; Kontominas, M.G. Characterization of Artisanal Spontaneous Sourdough Wheat Bread from Central Greece: Evaluation of Physico-Chemical, Microbiological, and Sensory Properties in Relation to Conventional Yeast Leavened Wheat Bread. Foods 2021, 10, 635. [Google Scholar] [CrossRef]
- Carbonetto, B.; Nidelet, T.; Guezenec, S.; Perez, M.; Segond, D.; Sicard, D. Interactions between Kazachstania Humilis Yeast Species and Lactic Acid Bacteria in Sourdough. Microorganisms 2020, 8, 240. [Google Scholar] [CrossRef]
- Clark, E.A.; Aramouni, F.M. Evaluation of Quality Parameters in Gluten-Free Bread Formulated with Breadfruit (Artocarpus altilis) Flour. J. Food Qual. 2018, 2018, 1063502. [Google Scholar] [CrossRef]
- Keller, M. Development of a Multi-Week Laboratory Module Investigating the Brewing Potential of Wild-Yeast and the Biochemical Characterization of Hop-Derived Starch-Degrading Enzymes. Master’s Thesis, Iowa State University, Ames, IA, USA, 2022; pp. 1–23. [Google Scholar]
- Bortoleto, G.G.; Claro Gomes, W.P. Monitoring of Organic Volatile Compounds in Craft Beers During Fermentative Process. J. Microbiol. Biotechnol. Food Sci. 2022, 11, e4761. [Google Scholar]
- Dartora, B.; Sant’Anna, V.; Hickert, L.R.; Fensterseifer, M.; Ayub Zachia, A.M.; Flôres, S.H.; Perez, K.J. Factores Que Influyen En La Producción de Kombucha: Efectos de La Composición Del Té, El Azúcar y El SCOBY. Food Sci. Tecnol. 2023, 2061, 2–7. [Google Scholar] [CrossRef]
- Ter Schure, E.G.; Flikweert, M.T.; Van Dijken, J.P.; Pronk, J.T.; Theo Verrips, C. Pyruvate Decarboxylase Catalyzes Decarboxylation of Branched-Chain 2- Oxo Acids but Is Not Essential for Fusel Alcohol Production by Saccharomyces Cerevisiae. Appl. Environ. Microbiol. 1998, 64, 1303–1307. [Google Scholar] [CrossRef]
- Ferrari, G.; Lablanquie, O.; Cantagrel, R.; Ledauphin, J.; Payot, T.; Fournier, N.; Guichard, E. Determination of Key Odorant Compounds in Freshly Distilled Cognac Using GC-O, GC-MS, and Sensory Evaluation. J. Agric. Food Chem. 2004, 52, 5670–5676. [Google Scholar] [CrossRef] [PubMed]
- Alkay, Z.; Dertli, E.; Durak, M.Z. Investigation of Probiotic Potential of Yeasts Isolated from Sourdoughs from Different Regions of Turkey. Acta Aliment. 2021, 50, 610–619. [Google Scholar] [CrossRef]
- Lama, S.; Tamang, J.P. Isolation of Yeasts from Some Homemade Fermented Cow-Milk Products of Sikkim and Their Probiotic Characteristics. Fermentation 2022, 8, 664. [Google Scholar] [CrossRef]
- Minervini, F.; Dinardo, F.R.; Celano, G.; De Angelis, M.; Gobbetti, M. Lactic Acid Bacterium Population Dynamics in Artisan Sourdoughs over One Year of Daily Propagations Is Mainly Driven by Flour Microbiota and Nutrients. Front. Microbiol. 2018, 9, 1984. [Google Scholar] [CrossRef]
- Jiru, T.M.; Steyn, L.; Pohl, C.; Abate, D. Production of Single Cell Oil from Cane Molasses by Rhodotorula Kratochvilovae (Syn, Rhodosporidium Kratochvilovae) SY89 as a Biodiesel Feedstock. Chem. Cent. J. 2018, 12, 91. [Google Scholar] [CrossRef]
- Osman, M.E.; Abdel-Razik, A.B.; Zaki, K.I.; Mamdouh, N.; El-Sayed, H. Isolation, Molecular Identification of Lipid-Producing Rhodotorula Diobovata: Optimization of Lipid Accumulation for Biodiesel Production. J. Genet. Eng. Biotechnol. 2022, 20, 32. [Google Scholar] [CrossRef] [PubMed]
- Qvirist, L.; Mierke, F.; Vazquez Juarez, R.; Andlid, T. Screening of Xylose Utilizing and High Lipid Producing Yeast Strains as a Potential Candidate for Industrial Application. BMC Microbiol. 2022, 22, 173. [Google Scholar] [CrossRef]
- Khot, M.; Ghosh, D. Lipids of Rhodotorula Mucilaginosa IIPL32 with Biodiesel Potential: Oil Yield, Fatty Acid Profile, Fuel Properties. J. Basic Microbiol. 2017, 57, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Shaigani, P.; Awad, D.; Redai, V.; Fuchs, M.; Haack, M.; Mehlmer, N.; Brueck, T. Oleaginous Yeasts- Substrate Preference and Lipid Productivity: A View on the Performance of Microbial Lipid Producers. Microb. Cell Fact. 2021, 20, 220. [Google Scholar] [CrossRef]
- Aswiny, N.; Aiyanathan, K.E.A.; Yesuraja, I.; Chandramani, P.; Subhashini, R. Growth Promoting Trait of Yeasts Isolated from Tomato in Relation to IAA Production. Int. J. Environ. Clim. Change 2023, 13, 2186–2196. [Google Scholar] [CrossRef]
- Solieri, L.; Dakal, T.C.; Bicciato, S. Quantitative Phenotypic Analysis of Multistress Response in Zygosaccharomyces Rouxii Complex. FEMS Yeast Res. 2014, 14, 586–600. [Google Scholar] [CrossRef]
- Watanabe, J.; Uehara, K.; Mogi, Y. Adaptation of the Osmotolerant Yeast Zygosaccharomyces Rouxii to an Osmotic Environment through Copy Number Amplification of FLO11D. Genetics 2013, 195, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhou, Y.; Yang, H.; Zhang, D.; Wang, C.; Liu, H.; Li, X.; Zhao, J.; Wei, C. A Novel Strategy and Kinetics Analysis of Half-Fractional High Cell Density Fed-Batch Cultivation of Zygosaccharomyces Rouxii. Food Sci. Nutr. 2018, 6, 1162–1169. [Google Scholar] [CrossRef]
- Hegi, G.; Cordero-bueso, G.; Vigentini, I.; Foschino, R.; Maghradze, D.; Ruiz-muñoz, M.; Benitez-trujillo, F.; Cantoral, M. Culturable Yeast Diversity of Grape Berries from Vitis vinifera ssp. sylvestris (Gmelin) Hegi. J. Fungi 2022, 8, 410. [Google Scholar] [CrossRef]
- Badura, J.; van Wyk, N.; Brezina, S.; Pretorius, I.S.; Rauhut, D.; Wendland, J.; von Wallbrunn, C. Development of Genetic Modification Tools for Hanseniaspora Uvarum. Int. J. Mol. Sci. 2021, 22, 1943. [Google Scholar] [CrossRef]
- Uthurry, C.A.; Caponi, A.M.; Hough, G.E. Quantitative Sensory Characterisation of, and Distinction between, Argentine Ciders. J. Inst. Brew. 2021, 127, 273–285. [Google Scholar] [CrossRef]
- Heinisch, J.J.; Murra, A.; Jürgens, K.; Schmitz, H.P. A Versatile Toolset for Genetic Manipulation of the Wine Yeast Hanseniaspora Uvarum. Int. J. Mol. Sci. 2023, 24, 1859. [Google Scholar] [CrossRef] [PubMed]
- Spitaels, F.; Wieme, A.D.; Janssens, M.; Aerts, M.; Daniel, H.M.; Van Landschoot, A.; De Vuyst, L.; Vandamme, P. The Microbial Diversity of Traditional Spontaneously Fermented Lambic Beer. PLoS ONE 2014, 9, e95384. [Google Scholar] [CrossRef]
- van Rijswijck, I.M.H.; Wolkers-Rooijackers, J.C.M.; Abee, T.; Smid, E.J. Performance of Non-Conventional Yeasts in Co-Culture with Brewers’ Yeast for Steering Ethanol and Aroma Production. Microb. Biotechnol. 2017, 10, 1591–1602. [Google Scholar] [CrossRef]
- Childs, B.C.; Bohlscheid, J.C.; Edwards, C.G. Impact of Available Nitrogen and Sugar Concentration in Musts on Alcoholic Fermentation and Subsequent Wine Spoilage by Brettanomyces bruxellensis. Food Microbiol. 2015, 46, 604–609. [Google Scholar] [CrossRef]
- Aguiar-Macedo, M.; Pereira, M.T.; Redondo, L.M.; Silva, C. Controlling B. bruxellensis with Pulsed Electric Fields: Optimization of Industrial Protocols and Impact on the Wine Profile. BIO Web Conf. 2023, 68, 02041. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.P.; Taillandier, P. Understanding Kombucha Tea Fermentation: A Review. J. Food Sci. 2018, 83, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Tarhan Kuzu, K.; Aykut, G.; Tek, S.; Yatmaz, E.; Germec, M.; Yavuz, I.; Turhan, I. Production and Characterization of Kombucha Tea from Different Sources of Tea and Its Kinetic Modeling. Processes 2023, 11, 2100. [Google Scholar] [CrossRef]
- Costantini, A.; Vaudano, E.; Pulcini, L.; Carafa, T.; Garcia-Moruno, E. An Overview on Biogenic Amines in Wine. Beverages 2019, 5, 19. [Google Scholar] [CrossRef]
- Puyo, M.; Mas, P.; Roullier-Gall, C.; Romanet, R.; Lebleux, M.; Klein, G.; Alexandre, H.; Tourdot-Maréchal, R. Bioprotection Efficiency of Metschnikowia Strains in Synthetic Must: Comparative Study and Metabolomic Investigation of the Mechanisms Involved. Foods 2023, 12, 3927. [Google Scholar] [CrossRef]
- Lv, Q.-B.; Meng, J.-X.; Ma, H.; Liu, R.; Qin, Y.; Qin, Y.-F.; Geng, H.-L.; Ni, H.-B.; Zhang, X.-X. Description of Gut Mycobiota Composition and Diversity of Caprinae Animals. Microbiol. Spectr. 2023, 11, e0242422. [Google Scholar] [CrossRef]
- Yang, X.; Xiao, S.; Wang, J. Debaryomyces Hansenii Strains from Traditional Chinese Dry-Cured Ham as Good Aroma Enhancers in Fermented Sausage. Fermentation 2024, 10, 152. [Google Scholar] [CrossRef]
- Banjara, N.; Nickerson, K.W.; Suhr, M.J.; Hallen-Adams, H.E. Killer Toxin from Several Food-Derived Debaryomyces Hansenii Strains Effective against Pathogenic Candida Yeasts. Int. J. Food Microbiol. 2016, 222, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Wickramarachchi, K.S.; Sissons, M.J.; Cauvain, S.P. Puff Pastry and Trends in Fat Reduction: An Update. Int. J. Food Sci. Technol. 2015, 50, 1065–1075. [Google Scholar] [CrossRef]
- Steensels, J.; Verstrepen, K.J. Taming Wild Yeast: Potential of Conventional and Nonconventional Yeasts in Industrial Fermentations. Annu. Rev. Microbiol. 2014, 68, 61–80. [Google Scholar] [CrossRef]
- Chen, H.Y.; Hsieh, C.W.; Chen, P.C.; Lin, S.P.; Lin, Y.F.; Cheng, K.C. Development and Optimization of Djulis Sourdough Bread Fermented by Lactic Acid Bacteria for Antioxidant Capacity. Molecules 2021, 26, 5658. [Google Scholar] [CrossRef]
- De Luca, L.; Aiello, A.; Pizzolongo, F.; Blaiotta, G.; Aponte, M.; Romano, R. Volatile Organic Compounds in Breads Prepared with Different Sourdoughs. Appl. Sci. 2021, 11, 1330. [Google Scholar] [CrossRef]
- Methner, Y.; Hutzler, M.; Matoulková, D.; Jacob, F.; Michel, M. Screening for the Brewing Ability of Different Non-Saccharomyces Yeasts. Fermentation 2019, 5, 101. [Google Scholar] [CrossRef]
- De Vuyst, L.; Comasio, A.; Kerrebroeck, S. Van Sourdough Production: Fermentation Strategies, Microbial Ecology, and Use of Non-Flour Ingredients. Crit. Rev. Food Sci. Nutr. 2021, 63, 2447–2479. [Google Scholar] [CrossRef]
- Groenewald, M.; Boekhout, T.; Neuvéglise, C.; Gaillardin, C.; Van Dijck, P.W.M.; Wyss, M. Yarrowia Lipolytica: Safety Assessment of an Oleaginous Yeast with a Great Industrial Potential. Crit. Rev. Microbiol. 2014, 40, 187–206. [Google Scholar] [CrossRef]
- Luthra, I.; Jensen, C.; Chen, X.E.; Salaudeen, A.L.; Rafi, A.M.; de Boer, C.G. Regulatory Activity Is the Default DNA State in Eukaryotes. Nat. Struct. Mol. Biol. 2024, 31, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Laatikainen, R.; Koskenpato, J.; Hongisto, S.M.; Loponen, J.; Poussa, T.; Huang, X.; Sontag-Strohm, T.; Salmenkari, H.; Korpela, R. Pilot Study: Comparison of Sourdough Wheat Bread and Yeast-Fermented Wheat Bread in Individuals with Wheat Sensitivity and Irritable Bowel Syndrome. Nutrients 2017, 9, 1215. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, K.; Gan, S.; Cameron, C. Analysis of Energy Saving Potentials in Intelligent Manufacturing: A Case Study of Bakery Plants. Energy 2019, 172, 477–486. [Google Scholar] [CrossRef]
- Hadidi, M.; Majidiyan, N.; Jelyani, A.Z.; Moreno, A.; Hadian, Z.; Khanegah, A.M. Alginate/Fish Gelatin-Encapsulated Lactobacillus Acidophilus: A Study on Viability and Technological Quality of Bread during Baking and Storage. Foods 2021, 10, 2215. [Google Scholar] [CrossRef]
Flavour Type | Unconventional Yeast | Production Mechanism | Reference |
---|---|---|---|
Floral | Debaryomyces hansenii | Produces aromatic volatiles such as 2-phenylethanol and phenolic compounds during fermentation. | [11] |
Candida tropicalis | This yeast produces sulfur-containing compounds, which contribute to savoury flavour profiles. | [29] | |
Earthy | Cryptococcus species | Generates earthy flavours through the production of volatile phenols and terpenes. | [30] |
Wickerhamomyces anomalus | Creates herbal scents through the generation of terpenes during fermentation. | [13] | |
Butter-like | Yarrowia lipolytica | Produces diacetyl via the metabolism of fatty acids during fermentation. | [28] |
Fruity | Hanseniaspora uvarum | Produces esters such as ethyl hexanoate and 2-phenyl ethyl acetate. | [31] |
Torulaspora delbrueckii | Produces esters like isoamyl acetate, resulting in a banana aroma. | [13] | |
Pichia kudriavzevii | Generates aromatic compounds that yield a sweet and fruity note. | [32] | |
Nutty | Candida milleri | Characterized by the production of pyrazines, developed through Maillard reactions during baking. | [33] |
Hanseniaspora guilliermondii | Synthesizes pyrazines, which contribute to nutty flavours through reactions during baking. | [16] | |
Spicy | Zygosaccharomyces bailii | Develops spicy notes via the synthesis of volatile aromatic compounds and organic acids. | [34] |
Kazachstania slooffiae | Produces various volatile organic compounds (VOCs) that bring out spicy notes during fermentation. | [16] | |
Sweet | Pichia pastoris | Produces sweet aromatic volatiles, including ethyl esters, through fermentation processes. | [35] |
Debaryomyces hansenii | Generates caramel-like aromas primarily through sugar metabolism and Maillard reaction products | [13] |
Unconventional Yeast | Nutritional Benefit | Production Mechanism | Reference |
---|---|---|---|
Kazachstania gamospora | Increased bioavailability of minerals | Produces phytase, degrading phytic acid and increasing the absorption of minerals like iron and zinc. | [36] |
Wickerhamomyces subpelliculosus | Enhanced protein content | Exhibits high proteolytic activity during fermentation, increasing amino acid availability in the final bakery products. | [37] |
Yarrowia lipolytica | Production of essential fatty acids | Biosynthesizes polyunsaturated fatty acids from various substrates during fermentation. | [38] |
Brettanomyces | Enhanced antioxidant properties | Produces phenolic and flavonoid compounds that contribute to the antioxidant capacity of bakery products. | [39] |
Candida milleri | Higher dietary fiber content | Ferments non-digestible oligosaccharides, increasing soluble fiber content beneficial for gastrointestinal health. | [40] |
Type of Stress | Unconventional Yeast | Production Mechanism | References |
---|---|---|---|
Osmotolerance | Yarrowia lipolytica | Synthesizing compatible solutes, like glycerol, stabilizes cell structures. | [41] |
Hanseniaspora uvarum | Similarly, utilizes glycerol accumulation as an osmoprotectant. | [16] | |
Zygosaccharomyces bailii | Accumulating trehalose and other protective sugars that stabilize cellular structures. | [16] | |
Temperature stress tolerance | Ogataea polymorpha | Heat shock proteins that stabilize other proteins and membranes during thermal stress allow it to maintain cellular function. | [42] |
Candida krusei | Enzyme stability and increasing chaperone protein production. | [43] | |
Debaryomyces hansenii | Ensures membrane fluidity adaptability to temperature changes. | [43] | |
Alcohol tolerance | Candida tropicalis | Enhanced membrane composition that integrates unique lipids, reducing fluidity and improving integrity, helps to prevent leakage of essential metabolites. | [44] |
Kluyveromyces marxianus | Increasing expression of alcohol dehydrogenases that facilitate ethanol metabolism, thus reducing toxicity. | [45] | |
Oxidative stress resistance | Yarrowia lipolytica | Produce more glutathione and reactive oxygen species (ROS)-scavenging enzymes. | [41] |
Wickerhamomyces anomalus, Pichia pastoris | Production of antioxidant compounds like superoxide dismutase (SOD) and catalase, which mitigate oxidative damage. | [46] | |
Salt tolerance | Yarrowia lipolytica | Up regulation of specific regulatory pathways that enhance sodium expulsion, coupled with adaptive osmotic adjustment mechanisms using compatible solutes that safeguard intracellular processes. | [47] |
Torulaspora delbrueckii, Hanseniaspora vineae | Employing sodium ion expulsion mechanisms and osmotic adjustment strategies allows them to maintain cellular homeostasis and metabolic functions. | [43] | |
Acid tolerance | Yarrowia lipolytica, Candida tropicalis | Promote proton efflux and synthesis of pH-responsive proteins to maintain enzymatic activity and cellular stability. | [48] |
Candida utilis, Hanseniaspora vineae | Similarly, possesses effective proton pumps that extrude excess protons from the cell. | [16] |
Improved Dough Characteristic | Unconventional Yeast | Production Mechanism | Reference |
---|---|---|---|
Gas retention capacity | Yarrowia lipolytica | Produces glycerol, enhancing the formation of a more stable gluten network that significantly contributes to gas retention during fermentation. | [49] |
Rheological properties | Kluyveromyces marxianus | Modifies protein interactions through enzymatic activities, improving the dough’s cohesiveness and viscoelastic properties, contributing positively to rheology. | [50] |
Elasticity | Debaryomyces hansenii | Produces glycoproteins that enhance the gluten network’s resilience, improving the dough’s ability to stretch without breaking during fermentation. | [51] |
Gas formation | Torulaspora delbrueckii | Utilizes alternative fermentation pathways, notably enhancing CO2 production and thus increasing dough volume and lightness. | [52] |
Plasticity | Pichia pastoris | Improves dough plasticity through the secretion of specific enzymes that promote better hydration interactions between gluten and starch. | [53] |
Genus | Species | Key Characteristics | Reference |
---|---|---|---|
Candida | Candida milleri | Commonly associated with sourdough fermentation, known for its ability to enhance flavour and aroma | [55] |
Candida humilis | Another important sourdough yeast, recognized for its contributions to the fermentation process and flavour development | [55] | |
Candida krusei | Exhibits good fermentation properties and is often found in sourdough ecosystems | [56] | |
Pichia | Pichia anomala (formerly Wickerhamomyces anomalus) | Known for its ability to ferment a variety of sugars and enhance bread texture and flavour profiles | [56] |
Pichia norvegensis | Explored in sourdough production for its unique sensory contributions and fermentation capabilities | [56] | |
Torulaspora | Torulaspora delbrueckii | Valued for its potential to improve the sensory aspects of breads, including aroma and texture | [57] |
Kazachstania | Kazachstania exigua | Found in a variety of sourdoughs, contributing to the complex microbial interactions within the dough | [56] |
Rhodosporidium | Rhodosporidium mucilaginosa | Occasionally found in fermented products, this yeast shows promise for flavour enhancement | [55] |
Zygosaccharomyces | Zygosaccharomyces rouxii | Known for thriving in high-sugar environments and used in specific fermentation processes | [56] |
Hanseniaspora | Hanseniaspora uvarum | Commonly encountered in wine and beer production, it exhibits interesting fermentation properties that could be applied in specialized baking contexts | [58] |
Brettanomyces | Brettanomyces bruxellensis | while primarily associated with barrel-aged beverages, it has been recognized for introducing unique flavours and aromas that may benefit artisan bakers | [58] |
Debaryomyces | Debaryomyces hansenii | Known for its osmotolerance, it is used in specialty breads that require fermentation in high sugar concentrations | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mititiuc, C.; Dabija, A.; Avramia, I. Unconventional Yeast in the Bakery Industry: A Review. Appl. Sci. 2025, 15, 9732. https://doi.org/10.3390/app15179732
Mititiuc C, Dabija A, Avramia I. Unconventional Yeast in the Bakery Industry: A Review. Applied Sciences. 2025; 15(17):9732. https://doi.org/10.3390/app15179732
Chicago/Turabian StyleMititiuc, Cristian, Adriana Dabija, and Ionut Avramia. 2025. "Unconventional Yeast in the Bakery Industry: A Review" Applied Sciences 15, no. 17: 9732. https://doi.org/10.3390/app15179732
APA StyleMititiuc, C., Dabija, A., & Avramia, I. (2025). Unconventional Yeast in the Bakery Industry: A Review. Applied Sciences, 15(17), 9732. https://doi.org/10.3390/app15179732