Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (654)

Search Parameters:
Keywords = sugar hydrolysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 708 KB  
Communication
Strain-Dependent Lactic Acid Fermentation of Capsosiphon fulvescens Hydrolysate by Lactobacillus spp.
by Hyeongjin Hwang
Microorganisms 2025, 13(10), 2295; https://doi.org/10.3390/microorganisms13102295 - 2 Oct 2025
Abstract
Seaweeds are promising third-generation biomass for biobased chemicals, yet their use for lactic acid (LA) production remains underexplored. We evaluated LA production from the dilute-acid hydrolysate of the aquacultured green alga Capsosiphon fulvescens (C.Agardh) Setchell & N.L. Gardner. The dried biomass contained 53.4% [...] Read more.
Seaweeds are promising third-generation biomass for biobased chemicals, yet their use for lactic acid (LA) production remains underexplored. We evaluated LA production from the dilute-acid hydrolysate of the aquacultured green alga Capsosiphon fulvescens (C.Agardh) Setchell & N.L. Gardner. The dried biomass contained 53.4% carbohydrate (dry-weight basis). HPLC showed a monosaccharide profile enriched in L-rhamnose and D-xylose, with lower levels of D-mannose, D-glucose, D-glucuronolactone, and D-glucuronic acid. Batch fermentations with three Lactobacillus strains revealed clear strain-dependent kinetics and carbon partitioning. Maximum LA titers/yields (time at maximum) were 2.0 g L−1/0.49 g g−1 at 9 h for L. rhamnosus, 2.3 g L−1/0.30 g g−1 at 36 h for L. casei, and 2.8 g L−1/0.23 g g−1 at 48 h for L. brevis; L. rhamnosus achieved the highest yield on sugars consumed, whereas L. brevis reached the highest titer by utilizing a broader sugar spectrum, notably xylose; L. casei showed intermediate performance with limited xylose use. Co-products included acetic and succinic acids (major) and trace 1,2-propanediol and acetaldehyde, consistent with flux through Embden–Meyerhof–Parnas versus phosphoketolase pathways. These results demonstrate that C. fulvescens hydrolysate is a viable marine feedstock for LA production and highlight practical levers—expanding pentose/uronic-acid catabolism in high-yield strains and tuning pretreatment severity—to further improve both yield and titer. Full article
(This article belongs to the Topic Applications of Biotechnology in Food and Agriculture)
16 pages, 1477 KB  
Article
Valorization of Oat Husk for the Production of Fermentable Sugars, Xylooligosaccharides, and Inulinase via Deep Eutectic Solvent and Microwave-Assisted Pretreatment
by Hatice Gözde Hosta Yavuz, Ibrahim Yavuz and Irfan Turhan
Fermentation 2025, 11(10), 561; https://doi.org/10.3390/fermentation11100561 - 28 Sep 2025
Abstract
This study presents an integrated valorization strategy for oat husks through microwave-assisted pretreatment using a deep eutectic solvent (DES) composed of choline chloride and glycerol (1:2). The process was designed to enhance the release of fermentable sugars, enable xylooligosaccharide (XOS) production, and support [...] Read more.
This study presents an integrated valorization strategy for oat husks through microwave-assisted pretreatment using a deep eutectic solvent (DES) composed of choline chloride and glycerol (1:2). The process was designed to enhance the release of fermentable sugars, enable xylooligosaccharide (XOS) production, and support inulinase production by Aspergillus niger A42 via submerged fermentation of the hydrolysate and solid-state fermentation of the residual biomass. Response surface methodology (RSM) was applied to evaluate the effects of microwave power, treatment time, and liquid-to-solid ratio (LSR) on fermentable sugar content (FSC) and total phenolic compounds (TPCs). Following pretreatment, the biomass was hydrolyzed using 1.99% sulfuric acid for 1 min. Optimal pretreatment conditions (350 W, 30 s, LSR 4 w/w) yielded an FSC of 51.14 g/L. Additionally, 230.78 mg/L xylohexaose and 6.47 mg/L xylotetraose were detected. Submerged fermentation of the liquid fraction with A. niger A42 resulted in inulinase and invertase activities of 60.45 U/mL and 21.83 U/mL, respectively. Solid-state fermentation of the pretreated solids produced 37.03 U/mL inulinase and 17.64 U/mL invertase. The integration of microwave-assisted DES pretreatment, dilute acid hydrolysis, and fungal fermentation established a robust strategy for the sequential production of XOS, fermentable sugars, and inulinase from oat husks, supporting their comprehensive utilization within a sustainable biorefinery framework. Full article
Show Figures

Figure 1

21 pages, 2296 KB  
Article
Integrated Transcriptomic and Metabolomic Analyses of Seed-Filling Disorders in Soybeans Under Different Ecological Conditions
by Junxia Huang, Wei Zheng, Zicong Liang, Zhenghao Zhang, Jiayi Li, Huijun Zhang, Haiying Wang, Xue Ao, Xingdong Yao and Futi Xie
Agronomy 2025, 15(10), 2266; https://doi.org/10.3390/agronomy15102266 - 24 Sep 2025
Viewed by 17
Abstract
Disorders in soybean seed-filling can lead to wrinkled seeds, affecting yield and quality. Previous studies have demonstrated that some soybean cultivars from Jiamusi, Heilongjiang Province (cold-temperate continental monsoon, ~3.5 °C mean annual temperature, ~530 mm precipitation) exhibit seed-filling disorders when cultivated in Shenyang, [...] Read more.
Disorders in soybean seed-filling can lead to wrinkled seeds, affecting yield and quality. Previous studies have demonstrated that some soybean cultivars from Jiamusi, Heilongjiang Province (cold-temperate continental monsoon, ~3.5 °C mean annual temperature, ~530 mm precipitation) exhibit seed-filling disorders when cultivated in Shenyang, Liaoning Province (mid-temperate semi-humid continental monsoon, ~8.3 °C, ~610 mm). However, the causes and regulatory mechanisms remain unclear. In this study, Henong 76 (a soybean cultivar with seeds less prone to wrinkling) and Heihe 43 (a soybean cultivar with seeds prone to wrinkling) were used as experimental materials. They were sown simultaneously in Jiamusi and Shenyang, respectively, to explore the causes of seed-filling disorders in Heihe 43. The results indicated that there were significant differences in the contents of soluble sugars and starch, as well as in the activities of sucrose synthase and invertase, between the seeds of Henong 76 and Heihe 43 grown in Shenyang. However, no significant differences were found between them in Jiamusi. Transcriptomic and metabolomic analyses suggested that genes related to controlling starch hydrolysis (isoamylase, α-amylase, and glycogen phosphorylase) and sucrose synthesis and decomposition (sucrose synthase, invertase, glucose-6-phosphate isomerase, and phosphoglucomutase) in Heihe 43 were upregulated in Shenyang. In contrast, genes regulating plant hormone signal transduction (auxin, gibberellin, abscisic acid, and cytokinin) were generally downregulated. These changes led to differences in metabolites, resulting in the occurrence of seed-filling disorders. Furthermore, we analyzed the climatic conditions of the two cultivars during the soybean seed-filling period. The results indicated that high temperature might be the primary meteorological factor contributing to the occurrence of seed-filling disorders. All results indicated that the insufficient accumulation of sugars in seeds due to exposure to high temperatures during the seed-filling period is the primary cause of the prone-to-wrinkling phenomenon of the Heihe 43 cultivar under the ecological conditions of Shenyang. Full article
Show Figures

Figure 1

13 pages, 1441 KB  
Article
Organosolv and Hydrothermal Pretreatments of Sugarcane Bagasse and Straw and Enzymatic Hydrolysis of Hemicellulosic Liquor
by Marlon da Silva Alves, Patrísia de Oliveira Rodrigues, Milla Alves Baffi and Daniel Pasquini
Fermentation 2025, 11(10), 550; https://doi.org/10.3390/fermentation11100550 - 23 Sep 2025
Viewed by 133
Abstract
The global demand for sustainable energy has accelerated the development of biofuels, aiming to reduce fossil fuel reliance and environmental impact. Second-generation ethanol (2G), produced from lignocellulosic biomass such as sugarcane bagasse and straw, is a promising alternative aligned with the circular economy. [...] Read more.
The global demand for sustainable energy has accelerated the development of biofuels, aiming to reduce fossil fuel reliance and environmental impact. Second-generation ethanol (2G), produced from lignocellulosic biomass such as sugarcane bagasse and straw, is a promising alternative aligned with the circular economy. Its production relies on pretreatments to improve the enzymatic access to polysaccharides. Among the available methods, the organosolv (O) and hydrothermal (H) pretreatments are effective in separating the biomass into cellulose-rich pulps and hemicellulosic liquors. In this study, these pretreatments were applied to sugarcane bagasse (SCB) and straw (SS), aiming to obtain hemicellulosic fractions for bioconversion. The characterization of pretreated biomasses showed increased cellulose content, indicating successful delignification. After the lignin precipitation, the hemicellulosic liquors were submitted to enzymatic hydrolysis, with increases in the total reducing sugar (TRS) concentrations, from 11.144 to 13.440 g·L−1 (SBO), 16.507 to 22.492 g·L−1 (SBH), 8.560 to 9.478 g·L−1 (SSO), and 14.164 to 22.830 g·L−1 (SSH), with highlights for the hydrothermal pretreated hydrolysates in the improvement of sugar release. HPLC confirmed these gains, notably in the xylose content. The results indicated the potential of hemicellulosic liquors for the fermentation of pentoses, supporting integrated bioethanol production. This approach promotes the efficient use of agro-residues and strengthens the role of biofuels in low-carbon and sustainable energy systems. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass in Biorefinery Processes)
Show Figures

Figure 1

15 pages, 1838 KB  
Article
Evaluation of the Addition of Polyethylene Glycol in the Enzymatic Hydrolysis of Rice Husk
by Humberto Ayala Armijos and María C. Veiga
Fermentation 2025, 11(9), 544; https://doi.org/10.3390/fermentation11090544 - 19 Sep 2025
Viewed by 254
Abstract
This study evaluated the effect of polyethylene glycol (PEG 1500 and 4000) addition on the enzymatic hydrolysis (EH) of ground rice husk (≤250 μm). To reduce the amount of enzyme adsorbed on silicon dioxide and lignin and to evaluate the enzymatic hydrolysis, PEG [...] Read more.
This study evaluated the effect of polyethylene glycol (PEG 1500 and 4000) addition on the enzymatic hydrolysis (EH) of ground rice husk (≤250 μm). To reduce the amount of enzyme adsorbed on silicon dioxide and lignin and to evaluate the enzymatic hydrolysis, PEG 1500 and 4000 g/mol were added at three concentrations (0.3, 0.4 and 0.5 g PEG/g SiO2). When PEG 1500 was added at 0.5 g/g SiO2, the conversion of cellulose to cellobiose was not significantly increased (p ≥ 0.05); the conversion to glucose was 41.76%, and the conversion of hemicellulose to xylose was 93.45%, all with respect to the control assay. Addition of PEG 4000 at 0.5 g/g SiO2 showed an increase of 14.78% in the hydrolysis of cellulose to cellobiose, 56.59% in that of cellulose to glucose, and 93.24% in that of hemicellulose to xylose. The addition of PEG shows that at a higher molecular weight and higher concentration, there are significant differences in the percentage of conversion of cellulose and hemicellulose into fermentable sugars, achieving efficiencies of ≈75%. Full article
Show Figures

Figure 1

21 pages, 3446 KB  
Article
Optimizing the Enzymatic Hydrolysis of Microchloropsis salina Biomass for Single-Cell Oil Production
by Felix Melcher, Max Schneider, Michael Paper, Marion Ringel, Daniel Garbe and Thomas Brück
Biomass 2025, 5(3), 56; https://doi.org/10.3390/biomass5030056 - 17 Sep 2025
Viewed by 269
Abstract
There is an increasing industrial demand for sustainable resources for lipid-based biofuels and platform chemical production. A promising, CO2-efficient resource is autotrophically cultivated microalgae, either for direct single-cell oil (SCO) production or as a biomass substrate for fermentative SCO production via [...] Read more.
There is an increasing industrial demand for sustainable resources for lipid-based biofuels and platform chemical production. A promising, CO2-efficient resource is autotrophically cultivated microalgae, either for direct single-cell oil (SCO) production or as a biomass substrate for fermentative SCO production via organisms like yeasts. Regarding the latter, chemical biomass hydrolysis typically results in high sugar yield and high salt concentrations due to the required neutralization prior to fermentation. In contrast, enzymatic hydrolysis is often lacking in mass efficiency. In this study, the enzymatic hydrolysis of both nutrient-replete and lipid-rich autotrophic Microchloropsis salina biomass was optimized, testing different pre-treatments and enzyme activities. Hereby, the protease treatment to weaken the cell wall integrity and the dosing of the Cellic CTec3 was identified to have the highest effect on hydrolysis efficiency. Sugar yields of 63% (nutrient-replete) and almost 100% (lipid-rich) could be achieved. The process was successfully scaled-up in mini bioreactors at a 250 mL scale. The resulting hydrolysate of the lipid-rich biomass was tested as a substrate of the oleaginous yeast Cutaneotrichosporon oleaginosus in a consumption-based acetic acid fed-batch setup. It outperformed both the model substrate and the glucose control, demonstrating the high potential of the hydrolysate as feedstock for yeast oil production. The presented sequential and circular SCO-producing value chain highlights the potential for mass- and space–time-efficient biofuel production, combining the autotrophic cultivation of oleaginous algae with decoupled yeast oil fermentation for the first time. Full article
Show Figures

Graphical abstract

19 pages, 560 KB  
Article
Protein Hydrolysates Modulate Quality Traits of Tomato Fruit Under Salt Stress by Regulating the Expression Patterns of Genes Related to Sugar Metabolism
by Antonio El Chami, Angela Valentina Ceccarelli, Sonia Monterisi, Giuseppe Colla, Christophe El-Nakhel, Youssef Rouphael, Youry Pii and Mariateresa Cardarelli
Horticulturae 2025, 11(9), 1108; https://doi.org/10.3390/horticulturae11091108 - 13 Sep 2025
Viewed by 280
Abstract
Salinity is a major stress factor that limits tomato yield and fruit quality. The aim of this study was to evaluate whether vegetal-derived protein hydrolysates (PHs) can alleviate salt stress in tomato plants and how they affect sugar metabolism at the molecular level. [...] Read more.
Salinity is a major stress factor that limits tomato yield and fruit quality. The aim of this study was to evaluate whether vegetal-derived protein hydrolysates (PHs) can alleviate salt stress in tomato plants and how they affect sugar metabolism at the molecular level. A greenhouse experiment was carried out to test three PHs, containing mainly peptides and aminoacids and derived from the enzymatic hydrolysis of protein sources belonging to Leguminosae (PH1), Malvaceae (PH2), and Solanaceae (PH3) plants under non-saline (1 mM NaCl) and saline (50 mM NaCl) conditions. PH1 and PH3 increased marketable yield under non-saline conditions, while no yield improvement was observed under salinity. Nevertheless, all PHs reduced leaf Cl accumulation and improved fruit nutritional quality by increasing antioxidant activity and total phenol content. Under salt stress, PH1 and PH2 raised the content of total soluble solids, whereas PH3 enhanced titratable acidity. Gene expression analysis revealed that PHs modulated sugar metabolism, shifting it towards starch synthesis and accumulation in fruits, consistent with the observed increase in soluble solids. These results demonstrate that PHs exert family-specific effects on tomato fruit quality and provide molecular evidence of their role in metabolic adjustment under salinity. Practically, vegetal-derived PHs can represent a sustainable agronomic strategy to enhance fruit quality traits and improve tomato marketability in salt-affected cultivation systems. Full article
Show Figures

Figure 1

16 pages, 1770 KB  
Article
Optimization of Hemicellulosic Carbohydrate Extraction from Corncobs via Hydrothermal Treatment: A Response Surface Methodology Approach
by Muhammad Husnain Manzoor, Islam Elsayed and El Barbary Hassan
Sustain. Chem. 2025, 6(3), 27; https://doi.org/10.3390/suschem6030027 - 10 Sep 2025
Viewed by 324
Abstract
With increasing concerns about climate change and the depletion of fossil fuels, hemicellulose sugars from lignocellulosic biomass are gaining attention as sustainable feedstocks for producing biofuels and valuable chemicals. In this study, the extraction of hemicellulose sugars from corncob biomass was performed using [...] Read more.
With increasing concerns about climate change and the depletion of fossil fuels, hemicellulose sugars from lignocellulosic biomass are gaining attention as sustainable feedstocks for producing biofuels and valuable chemicals. In this study, the extraction of hemicellulose sugars from corncob biomass was performed using hydrothermal pretreatment. Response Surface Methodology (RSM) with the Box–Behnken Design (BBD) was employed to optimize different parameters. The tested parameters included the corncob-to-water ratio (0.5:10, 1.5:10), time (30 to 90 min), and temperature (150 to 170 °C), to achieve the highest sugar yields (xylose, arabinose, and total sugars). The ANOVA results for the full quadratic polynomial model, which evaluates the effects of the three variables on xylose yield, indicate that the model is highly significant and provides a good fit to the data. This was evidenced by the minimal difference (0.003) between the predicted R2 and the adjusted R2. This study reports one of the highest recoveries of hemicellulosic sugars from corncobs and also evaluates degradation byproducts, offering a more efficient and comprehensive pretreatment approach that employs a lower temperature and a mild acid concentration (1%) compared with earlier research. The highest yields of xylose (103.49 mg/g), arabinose (26.75 mg/g), and total sugars (163.21 mg/g) were obtained at 160 °C and a corncob-to-water ratio of 0.5:10, after 90 min. Degradation products such as HMF and furfural in the hydrolysate were also analyzed by HPLC. The hydrolysate obtained from hydrothermal pretreatment contained oligomers that were converted into monomers through 1% H2SO4 hydrolysis. The highest yields after the acidic hydrolysis were 301.93 mg/g xylose, 46.96 mg/g arabinose, and 433.79 mg/g total sugars hydrolysis. Full article
Show Figures

Figure 1

21 pages, 1615 KB  
Article
Coproduction of Biodiesel and Bioethanol from Ricinus communis Seed Through an Integrated Process
by Alejandra G. Oliva-Rodríguez, Fernando Salinas De León, Thelma K. Morales-Martínez, José Antonio Rodríguez-De la Garza, Miguel A. Medina-Morales, Marisol Cruz-Requena, Gustavo A. Neyra-Escobedo and Leopoldo J. Ríos-González
Processes 2025, 13(9), 2877; https://doi.org/10.3390/pr13092877 - 9 Sep 2025
Viewed by 509
Abstract
The growing demand for renewable energy has spurred an interest in non-edible feedstocks for biofuel production. Ricinus communis (castor) seeds are a promising resource due to their high oil and starch content, as well as their adaptability to marginal lands. This study evaluated [...] Read more.
The growing demand for renewable energy has spurred an interest in non-edible feedstocks for biofuel production. Ricinus communis (castor) seeds are a promising resource due to their high oil and starch content, as well as their adaptability to marginal lands. This study evaluated the integrated use of R. communis seeds for the production of biodiesel and bioethanol using eco-efficient technologies. Ultrasound-assisted extraction enhanced oil recovery reached a maximum yield of 34%, surpassing the conventional Soxhlet method. Transesterification was optimized through factorial design, achieving a predicted biodiesel yield of 97% (Qualitek 4.0, 90% confidence interval), with an experimental maximum yield of 90.8% under optimal conditions (24:1 methanol-to-oil ratio, 0.4% catalyst, 90% sonication amplitude, 60 min). The biodiesel met international standards for engine applications. Starch from the residual seed cake was hydrolyzed with enzymatic complexes, yielding 6.8 g/L of reducing sugars, equivalent to 91.4% hydrolysis yield. Fermentation of the hydrolysates with Zymomonas mobilis produced 3.1 g/L ethanol, corresponding to 90.8% of the theoretical yield. This integrated approach exemplifies a circular bioeconomy model by combining biodiesel and bioethanol production, maximizing resource utilization, and minimizing waste. The results highlight the potential of R. communis as a sustainable, scalable feedstock for renewable energy, contributing to energy security and environmental sustainability. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Graphical abstract

14 pages, 3172 KB  
Article
Transforming Tilapia into Indoleacetic Acid-Containing Biostimulants: Synergistic Effect of Enzymolysis and Multi-Strain Fermentation
by Hanyi Xie, Bin Zhong, Qimin Zhang, Xi Hu, Xuesen Xia, Hong Xie and Zhenqiang Wu
Fermentation 2025, 11(9), 525; https://doi.org/10.3390/fermentation11090525 - 8 Sep 2025
Viewed by 500
Abstract
Following new trends in green development, many studies have focused on the high-value utilization of fish resources through green biological processes. This study innovatively introduced a one-step process of mixed strain–enzyme synergy (MES) with which to prepare tilapia hydrolysates and explored the synergistic [...] Read more.
Following new trends in green development, many studies have focused on the high-value utilization of fish resources through green biological processes. This study innovatively introduced a one-step process of mixed strain–enzyme synergy (MES) with which to prepare tilapia hydrolysates and explored the synergistic effects of strains and enzymes on both the protein hydrolysis process and its products’ characteristics via comparative experiments. Further, soybean was used as a model crop to verify the agronomic effects of the hydrolysates. The addition of exogenous papain increased hydrolysis by 31.94% compared to the fermentation-only group. Peptides and amino acids contents in the mixed strains were higher than those in the single fermentation process (p < 0.05), while 8.46 mg/L of indoleacetic acid was produced through fermentation. Hydrolysates promoted the growth of lateral roots in soybean seedlings (p < 0.05) via the use of a 2500-fold dilution of the biostimulant, increasing the root area and stem length and reducing the sugar content of soybean seedlings by 1.59-, 1.44- and 1.69-fold compared to those in Hoagland’s nutrient solution. These results lay a foundation for the biological preparation of biostimulants for hydroponic vegetables through the utilization of fish waste resources, aligning with green development goals. Full article
Show Figures

Figure 1

16 pages, 1271 KB  
Article
Conversion of Komagataella phaffii Biomass Waste to Yeast Extract Supplement
by Laura Murphy and David J. O’Connell
Appl. Microbiol. 2025, 5(3), 95; https://doi.org/10.3390/applmicrobiol5030095 - 4 Sep 2025
Viewed by 420
Abstract
Valorisation of spent yeast biomass post-fermentation requires energy-intensive autolysis or enzymatic hydrolysis that reduces the net benefit. Here, we present a simple and reproducible method for generating functional yeast extract recycled from Komagataella phaffii biomass without a requirement of a pre-treatment process. Spent [...] Read more.
Valorisation of spent yeast biomass post-fermentation requires energy-intensive autolysis or enzymatic hydrolysis that reduces the net benefit. Here, we present a simple and reproducible method for generating functional yeast extract recycled from Komagataella phaffii biomass without a requirement of a pre-treatment process. Spent yeast pellets from fermentations were freeze-dried to produce a fine powder that can be used directly at low concentrations, 0.0015% (w/v), together with 2% peptone (w/v), to formulate complete media ready for secondary fermentations. This media formulation supported growth rates of yeast culture that were statistically indistinguishable (p-value > 0.05) from cultures grown in standard YPD media containing commercial yeast extract, and these cultures produced equivalent titres of recombinant β-glucosidase (0.998 Abs405nm commercial extract vs. 0.899 Abs405nm recycled extract). Additionally, nutrient analyses highlight equivalent levels of sugars (~23 g/L), total proteins, and cell yield per carbon source (~2.17 g) with this recycled yeast extract media formulation when compared to commercial media. This method reduces process complexity and cost and enables the circular reuse of yeast biomass. The protocol is technically straightforward to implement, using freeze drying that is commonly available in research laboratories, representing a broadly applicable and sustainable alternative to conventional media supplementation that achieves a circular approach within the same fermentation system. Full article
Show Figures

Figure 1

13 pages, 1843 KB  
Article
Ethanol Fermentation by Saccharomyces cerevisiae and Scheffersomyces stipitis Using Sugarcane Bagasse Selectively Delignified via Alkaline Sulfite Pretreatment
by João Tavares, Abdelwahab Rai, Teresa de Paiva and Flávio da Silva
ChemEngineering 2025, 9(5), 93; https://doi.org/10.3390/chemengineering9050093 - 27 Aug 2025
Viewed by 674
Abstract
Bioethanol from sugarcane bagasse is a promising second-generation biofuel due to its abundance as a sugar industry by-product. Herein, enzymatic hydrolysate obtained from sugarcane bagasse pretreated with optimized hydrothermal alkaline sulfite (HAS) was evaluated for its fermentability using Saccharomyces cerevisiae PE-2 and Scheffersomyces [...] Read more.
Bioethanol from sugarcane bagasse is a promising second-generation biofuel due to its abundance as a sugar industry by-product. Herein, enzymatic hydrolysate obtained from sugarcane bagasse pretreated with optimized hydrothermal alkaline sulfite (HAS) was evaluated for its fermentability using Saccharomyces cerevisiae PE-2 and Scheffersomyces stipitis CBS 5773. The HAS pretreatment achieved a high delignification rate (63%), resulting in a cellulose- and hemicellulose-enriched substrate (55% and 27%, respectively). While the cellulose content remained relatively constant, hemicellulose content was reduced by 25%, with significant removal of acetyl groups (80%) and arabinan groups (39%). The pretreated bagasse exhibited high digestibility, applying 10 FPU (filter paper unit) cellulase together with 10 CBU (cellobiose unit) β-glucosidase per gram of dry bagasse in the hydrolysis step, yielding 72% glucan and 66% xylan conversion within 72 h. The resulting hydrolysate was efficiently fermented by S. cerevisiae and S. stipitis, achieving ethanol yields of 0.51 and 0.43 g/g of sugars, respectively. The fermentation kinetics were comparable to those observed in a synthetic medium containing pure sugars, demonstrating the effectiveness of HAS pretreatment in generating readily fermentable, carbohydrate-rich substrates. HAS pretreatment enabled improved conversion of sugarcane bagasse into fermentation-ready sugars, constituting a potential resource for bioethanol synthesis applying both S. cerevisiae and S. stipitis in the future. Full article
Show Figures

Graphical abstract

16 pages, 2047 KB  
Article
Germination-Induced Biofortification: Improving Nutritional Efficacy, Physicochemical Properties, and In Vitro Digestibility of Black Rice Flour
by Lingfeng Zhu, Qiutao Xie, Dandan Qin, Yi He, Hongyan Yuan, Yingchao Mao, Zhaoping Pan, Gaoyang Li and Xinxin Xia
Foods 2025, 14(16), 2912; https://doi.org/10.3390/foods14162912 - 21 Aug 2025
Viewed by 525
Abstract
Germination is an effective strategy for enhancing functional and processing characteristics of whole grains. This research aimed to explore the changes of nutritional components, physicochemical properties, in vitro digestibility, and microstructural characteristics of black rice flour (BRF) during 0–48 h germination. The results [...] Read more.
Germination is an effective strategy for enhancing functional and processing characteristics of whole grains. This research aimed to explore the changes of nutritional components, physicochemical properties, in vitro digestibility, and microstructural characteristics of black rice flour (BRF) during 0–48 h germination. The results showed that germination significantly induced α-amylase activation of BRF, from 1.02 U/g to 4.46 U/g, leading to a 3.2-fold increase in reducing sugar content through starch hydrolysis. The content of apparent amylose was down-regulated during germination. The contents of free amino acids and minerals were markedly augmented in BRF. Specially, the GABA content was remarkedly enhanced, from 40.73 mg/kg to 258.35 mg/kg. Compared with BRF, the ratio of rapidly digestible starch (RDS) and resistant starch (RS) of germinated black rice flour (GBRF) increased by 12.04% and 0.43%, respectively, while the ratio of slowly digestible starch (SDS) decreased by 12.47% at 48 h. Scanning electron microscopy (SEM) analysis observed a more porous and loose surface structure in GBRF. X-ray diffraction (XRD) analysis illustrated that the relative crystallinity of GBRF was reduced with the prolonging of germination time. The dissociation of starch granules in GBRF ultimately led to a decrease in characteristic viscosity parameters, including peak, trough, final, and setback viscosity. In conclusion, germination improved the nutritional value and digestive characteristics of BRF, and altered its structure and physicochemical properties, which provides a reference for the development of whole grain-based products. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

22 pages, 3516 KB  
Article
Simultaneous Saccharification and Fermentation of Pretreated Corn Cobs by Mucor indicus for Ethanol Production
by Nenad Marđetko, Antonija Trontel, Mario Novak, Mladen Pavlečić, Ana Dobrinčić, Vlatka Petravić Tominac and Božidar Šantek
Clean Technol. 2025, 7(3), 71; https://doi.org/10.3390/cleantechnol7030071 - 15 Aug 2025
Viewed by 1422
Abstract
This study evaluates the enzymatic hydrolysis of pretreated corn cobs (PCCs) using a blend of commercial enzymes (Cellulase enzyme blend and Viscozyme L), followed by simultaneous saccharification and fermentation (SSF) with Mucor indicus DSM 2185 for ethanol production. A combination of 2% (vol [...] Read more.
This study evaluates the enzymatic hydrolysis of pretreated corn cobs (PCCs) using a blend of commercial enzymes (Cellulase enzyme blend and Viscozyme L), followed by simultaneous saccharification and fermentation (SSF) with Mucor indicus DSM 2185 for ethanol production. A combination of 2% (vol vol−1) Cellulase enzyme blend and 5.18% (vol vol−1) Viscozyme L, corresponding to an enzyme loading of 48.9 FPU/gPCCs, enabled near-complete hydrolysis of 40 g L−1 PCCs within 6–48 h, achieving 92.66% total carbohydrate conversion into fermentable sugars. In SSF experiments conducted in Erlenmeyer flasks, optimal ethanol production in matrix nutrient medium (MNM) reached 14.95 g L−1, with a conversion coefficient of 0.373 g g−1 at 30 °C over a 48 h period. Scale-up of the bioprocess in a 1.5 L stirred-tank bioreactor at 30 °C resulted in an ethanol concentration of 16.46 g L−1, a total carbohydrate conversion of 86.27%, and a substrate-to-ethanol conversion coefficient of 0.44 g g−1 within 22 h. Minor secondary metabolites, including 0.88 g L−1 xylitol and 0.26 g L−1 glycerol, were also detected. Overall, the results demonstrate the potential of M. indicus in combination with commercial enzyme blends as a scalable strategy for industrial ethanol production. Full article
Show Figures

Figure 1

22 pages, 3081 KB  
Article
Elucidating the Complex Structural and Molecular Mechanisms Driving P-Glycoprotein-Mediated Transport of Cardiac Glycosides
by Rohit Katti, Amanda M. Kozarich, Gershon A. K. Mensah and Michael G. Bartlett
Int. J. Mol. Sci. 2025, 26(16), 7813; https://doi.org/10.3390/ijms26167813 - 13 Aug 2025
Viewed by 549
Abstract
P-glycoprotein (Pgp) plays a significant role in the disposition of cardiac glycoside (CG) drugs across the cell membrane. The relatively narrow therapeutic indices of these drugs, coupled with the co-administration of drugs that inhibit Pgp’s transport mechanism, often cause an increased level of [...] Read more.
P-glycoprotein (Pgp) plays a significant role in the disposition of cardiac glycoside (CG) drugs across the cell membrane. The relatively narrow therapeutic indices of these drugs, coupled with the co-administration of drugs that inhibit Pgp’s transport mechanism, often cause an increased level of CG in the patient’s plasma, resulting in fatal arrhythmia. Therefore, understanding the underlying mechanism of the CG–Pgp interaction is necessary to circumvent Pgp-mediated transport and effectively design next-generation CGs. In this study, we conducted a comparative analysis to examine the interaction with Pgp and further understand the Pgp-mediated transport of digoxin, digitoxin, digoxigenin, and digitoxigenin. Through the drug-induced kinetic studies of Pgp, our findings suggest that each of the four drugs tested has a single binding site within Pgp. The CG–Pgp binding studies demonstrated that digoxin, digitoxin, and digoxigenin had relatively higher binding affinities. The CG-mediated conformational changes in Pgp indicated that each of the drugs shifts Pgp to an “outward-open” conformation in a nucleotide-dependent manner. STDD NMR indicated that the protons within the δ-lactone ring and the tri-D-digitoxose sugar moieties (glycones) predominantly interact with Pgp. Finally, a model was proposed for CG-induced Pgp-mediated ATP hydrolysis and transport by integrating our data with previously published Pgp-mediated CG transport results. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

Back to TopTop