Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = supercontinuum generation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2113 KB  
Article
Generation of 27 nm Spectral Bandwidth, Two-Port Output Pulses Directly from a Yb-Doped Fiber Laser
by Junyu Chen, Mengyun Hu, Jianing Chen, Chixuan Zou, Zichen Zhao, Gantong Zhong and Shuai Yuan
Photonics 2025, 12(8), 812; https://doi.org/10.3390/photonics12080812 - 14 Aug 2025
Viewed by 377
Abstract
We reported on a generation of 27 nm spectral bandwidth, two-port output ultrashort pulses directly from an all-normal-dispersion passively mode-locked Yb-fiber laser. Based on the nonlinear polarization rotation (NPR) mode-locking technique, high pump power and optical devices with high damage thresholds were introduced [...] Read more.
We reported on a generation of 27 nm spectral bandwidth, two-port output ultrashort pulses directly from an all-normal-dispersion passively mode-locked Yb-fiber laser. Based on the nonlinear polarization rotation (NPR) mode-locking technique, high pump power and optical devices with high damage thresholds were introduced to achieve broad spectral bandwidth and strong output power. The dual wavelengths were emitted from the clockwise and counterclockwise ports, respectively, and self-started mode-locking was achieved. The bidirectional output laser generates stable pulses with up to 223.5 mW average power at a 46.04 MHz repetition rate, corresponding to a pulse energy of 5 nJ. The bidirectional ultrashort outputs of the laser provide potential applications in supercontinuum generation and medical and biological applications. Full article
(This article belongs to the Special Issue Advances in Ultrafast Laser Science and Applications)
Show Figures

Figure 1

34 pages, 6553 KB  
Review
Recent Advances in Photonic Crystal Fiber-Based SPR Biosensors: Design Strategies, Plasmonic Materials, and Applications
by Ayushman Ramola, Amit Kumar Shakya, Vinay Kumar and Arik Bergman
Micromachines 2025, 16(7), 747; https://doi.org/10.3390/mi16070747 - 25 Jun 2025
Cited by 1 | Viewed by 1607
Abstract
This article presents a comprehensive overview of recent advancements in photonic crystal fiber (PCF)-based sensors, with a particular focus on the surface plasmon resonance (SPR) phenomenon for biosensing. With their ability to modify core and cladding structures, PCFs offer exceptional control over light [...] Read more.
This article presents a comprehensive overview of recent advancements in photonic crystal fiber (PCF)-based sensors, with a particular focus on the surface plasmon resonance (SPR) phenomenon for biosensing. With their ability to modify core and cladding structures, PCFs offer exceptional control over light guidance, dispersion management, and light confinement, making them highly suitable for applications in refractive index (RI) sensing, biomedical imaging, and nonlinear optical phenomena such as fiber tapering and supercontinuum generation. SPR is a highly sensitive optical phenomenon, which is widely integrated with PCFs to enhance detection performance through strong plasmonic interactions at metal–dielectric interfaces. The combination of PCF and SPR technologies has led to the development of innovative sensor geometries, including D-shaped fibers, slotted-air-hole structures, and internal external metal coatings, each optimized for specific sensing goals. These PCF-SPR-based sensors have shown promising results in detecting biomolecular targets such as excess cholesterol, glucose, cancer cells, DNA, and proteins. Furthermore, this review provides an in-depth analysis of key design parameters, plasmonic materials, and sensor models used in PCF-SPR configurations, highlighting their comparative performance metrics and application prospects in medical diagnostics, environmental monitoring, and chemical analysis. Thus, an exhaustive analysis of various sensing parameters, plasmonic materials, and sensor models used in PCF-SPR sensors is presented and explored in this article. Full article
Show Figures

Graphical abstract

14 pages, 4156 KB  
Article
Supercontinuum Generation in Suspended Core Fibers Based on Intelligent Algorithms
by Meiqian Jing and Tigang Ning
Photonics 2025, 12(5), 497; https://doi.org/10.3390/photonics12050497 - 16 May 2025
Viewed by 407
Abstract
This study presents a reverse-optimization framework for supercontinuum (SC) generation in Ge20Sb15Se65 suspended-core fibers (SCFs), integrating neural network modeling with the Nutcracker Optimization Algorithm to co-design optimal fiber structures and pump pulse parameters. A high-nonlinearity SCF structure (γ [...] Read more.
This study presents a reverse-optimization framework for supercontinuum (SC) generation in Ge20Sb15Se65 suspended-core fibers (SCFs), integrating neural network modeling with the Nutcracker Optimization Algorithm to co-design optimal fiber structures and pump pulse parameters. A high-nonlinearity SCF structure (γ ≈ 6–7 W−1·m−1) was first designed, and a neural network model was developed to accurately predict effective modal refractive indices and mode-field areas (RMSE < 1%). The generalized nonlinear Schrödinger equation was then used to study spectral broadening influenced by structural and pulse parameters. Global optimization was performed in four-dimensional structural and seven-dimensional combined parameter spaces, significantly enhancing computational efficiency. Simulation results demonstrated that the optimized design achieved a broad and flat SC spectrum extending from 0.7 µm to 25 µm (at –20 dB intensity), with lower peak power requirements compared to previous studies achieving similar coverage. The robustness and manufacturing tolerances of the optimized fiber structure were also analyzed, verifying the reliability of the design. This intelligent reverse-design strategy provides practical guidance and theoretical foundations for mid-infrared SC fiber design. Full article
(This article belongs to the Special Issue Optical Fiber Lasers and Laser Technology)
Show Figures

Figure 1

15 pages, 2856 KB  
Article
The Impact of the Girdle Waist Radius on the Radiation Characteristics of the Relativistic Electron in Cross-Collision with the Tightly Focused Linearly Polarized Laser
by Junze Shi, Jiachen Li, Yizhang Li, Zekai Yu, Gang Yan and Youwei Tian
Appl. Sci. 2025, 15(9), 5056; https://doi.org/10.3390/app15095056 - 1 May 2025
Viewed by 396
Abstract
Under the framework of classical electrodynamics, this article investigates the nonlinear Thomson scattering generated by the cross-collision between a tightly focused linearly polarized Gaussian laser pulse and a relativistic electron through numerical simulation and emulation. The oscillation direction and emission angle of the [...] Read more.
Under the framework of classical electrodynamics, this article investigates the nonlinear Thomson scattering generated by the cross-collision between a tightly focused linearly polarized Gaussian laser pulse and a relativistic electron through numerical simulation and emulation. The oscillation direction and emission angle of the electron’s trajectory are influenced by the beam waist radius and the delay time. The spatial radiation distribution of electrons exhibits a comet-shaped pattern, with the radiation being concentrated in the forward position. This is attributed to the high laser intensity at the focus, resulting in intense electron motion. As the beam waist radius keeps increasing continuously, the maximum radiation polar angle in the spatial distribution decreases. The time spectrum exhibits a symmetrical three-peak structure, with a high secondary peak. Meanwhile, the supercontinuum spectrum gradually transforms into a multi-peak distribution spectrum. In the multi-peak mode, the main peak and the secondary peak will interchange during the increase in the waist radius, generating rays with higher frequencies and energies. The aforementioned research findings reveal a portion of the mechanism of the nonlinear Thomson scattering theory and are beneficial for generating X-rays of higher quality. Full article
Show Figures

Figure 1

13 pages, 3705 KB  
Article
Investigating the Influence of Laser Polarization on Filamentation Thresholds in Transparent Media via Supercontinuum Coherence
by Yun Zhang, Yu Xia, Canneng Liang, Yuyao Xiong, Jingyuan Zhang, Shuang Lin, Suyu Li and Mingxing Jin
Sensors 2025, 25(7), 2285; https://doi.org/10.3390/s25072285 - 4 Apr 2025
Viewed by 605
Abstract
In this work, we experimentally investigate the characteristics of supercontinuum (SC) generation induced by femtosecond laser pulses with different polarization states in transparent medium. We employ a Mach–Zehnder Interferometer (MZI) to capture interference patterns during the filamentation process. The relative filamentation threshold, P [...] Read more.
In this work, we experimentally investigate the characteristics of supercontinuum (SC) generation induced by femtosecond laser pulses with different polarization states in transparent medium. We employ a Mach–Zehnder Interferometer (MZI) to capture interference patterns during the filamentation process. The relative filamentation threshold, Pth, is measured for femtosecond laser pulses with different polarization states. The results demonstrate that the intensity of SC is strongly correlated with the polarization state of the incident laser pulses. At the same pulse energy, circularly polarized (CP) pulses suppress SC generation compared to linearly polarized (LP) pulses. Compared with weak external focusing, short-focal-length focusing significantly broadens the spectral range of SC. As the focal length of the focusing lens increases, the measured Pth values also increase. The Pth of the CP pulses is consistently higher than that of LP pulses. The experimental measurements of Pth for femtosecond lasers with different polarization states provide basic data support for the research on nonlinear characteristics. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

10 pages, 4378 KB  
Article
Mid-Infrared Ultraflat Broadband Supercontinuum Generation with 10 dB Bandwidth of 2340 nm in a Tapered Fluorotellurite Fiber
by Guochuan Ren, Linjing Yang, Chuanfei Yao, Xuan Wang, Luyao Pu, Kaihang Li, Ling Zhang and Pingxue Li
Photonics 2025, 12(4), 297; https://doi.org/10.3390/photonics12040297 - 24 Mar 2025
Viewed by 515
Abstract
We demonstrate mid-infrared ultraflat broadband supercontinuum (SC) generation in a 40 cm long tapered fluorotellurite fiber pumped by a Raman soliton source. By tapering the end of the large-core-diameter fluorotellurite fiber, the dispersion is regulated and the nonlinear effect is enhanced, which effectively [...] Read more.
We demonstrate mid-infrared ultraflat broadband supercontinuum (SC) generation in a 40 cm long tapered fluorotellurite fiber pumped by a Raman soliton source. By tapering the end of the large-core-diameter fluorotellurite fiber, the dispersion is regulated and the nonlinear effect is enhanced, which effectively extends the mid-infrared SC spectral range and increases the spectral flatness. Finally, we obtained an SC light source with a spectral range from 1.8 to 4.7 μm; the 10 dB bandwidth of the source completely covers 1.88–4.22 μm, which has the farthest flat spectral edge in fluorotellurite fibers. The output power of the SC laser is about 1.04 W, and the power ratio of those above 3 μm in the spectrum to the total SC is ~24%. The optical-to-optical conversion efficiency is about 75%. Our results show that tapering of fluorotellurite fiber is an effective method to further extend and flatten the mid-infrared SC. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications, 2nd Edition )
Show Figures

Figure 1

15 pages, 12696 KB  
Article
Coherence Properties of a Supercontinuum Generated by Cascade Raman Processes in a Hollow-Core Fiber Filled with a Mixture of Deuterium and Hydrogen
by Yury Yatsenko, Andrey Pryamikov and Alexey Gladyshev
Photonics 2024, 11(12), 1176; https://doi.org/10.3390/photonics11121176 - 14 Dec 2024
Viewed by 976
Abstract
Here, we report a numerical study of supercontinuum generation in an antiresonant optical fiber with a hollow core filled with a mixture of deuterium (D2) and hydrogen (H2). For 1 ps pulses at a wavelength of 1.03 μm with [...] Read more.
Here, we report a numerical study of supercontinuum generation in an antiresonant optical fiber with a hollow core filled with a mixture of deuterium (D2) and hydrogen (H2). For 1 ps pulses at a wavelength of 1.03 μm with different chirp values, we demonstrate a possibility of obtaining a mid-IR coherent supercontinuum with a spectral width of 2300 nm, initiated by cascade processes at resonance frequencies of vibrational and rotational levels of D2 and H2. We show that an increase in the chirped pulse duration to 25 ps while maintaining the energy and spectral width allows increasing the quantum conversion efficiency in the mid-IR from 10 to 50% and expanding the range of optimal fiber lengths at which a high degree of supercontinuum coherence is achieved. Full article
(This article belongs to the Special Issue Cutting-Edge Developments in Fiber Laser)
Show Figures

Figure 1

11 pages, 3871 KB  
Article
A Bidirectional Mode-Locked Fiber Laser for Asynchronous Noise-like Pulse Generation
by Yongguo Zheng, Anshuang Wang, Yue Cai, Fan Zhang and Xinhai Zhang
Photonics 2024, 11(9), 886; https://doi.org/10.3390/photonics11090886 - 20 Sep 2024
Cited by 1 | Viewed by 1174
Abstract
We demonstrate a bidirectional fiber laser with an artificial saturable absorber of a step-index multimode fiber sandwiched by single-mode fibers. Two asynchronous noise-like pulse sequences with a repetition frequency difference of 3.16 kHz are obtained. The average power of the bidirectional asynchronous noise-like [...] Read more.
We demonstrate a bidirectional fiber laser with an artificial saturable absorber of a step-index multimode fiber sandwiched by single-mode fibers. Two asynchronous noise-like pulse sequences with a repetition frequency difference of 3.16 kHz are obtained. The average power of the bidirectional asynchronous noise-like pulses is greater than 36 mW, and the pulse energy is greater than 3 nJ. The laser we demonstrate has potential applications in micromachining, supercontinuum spectrum generation, and signal processing. Full article
(This article belongs to the Special Issue Nonlinear Optics and Hyperspectral Polarization Imaging)
Show Figures

Figure 1

9 pages, 1712 KB  
Article
An Organic Microcavity Laser Amplifier Integrated on the End Facet of an Optical Fiber
by Meng Wang, Zhuangzhuang Xu, Yaqi Ren, Xiaolei Bai and Xinping Zhang
Nanomaterials 2024, 14(15), 1314; https://doi.org/10.3390/nano14151314 - 4 Aug 2024
Viewed by 1800
Abstract
We report a thin-film optical amplifier integrated on a fiber facet based on polymer-coated distributed feedback (DFB) microcavities, which are fabricated on a planar substrate and then transferred onto fiber tips by means of a flexible transfer technique. The amplified light directly couples [...] Read more.
We report a thin-film optical amplifier integrated on a fiber facet based on polymer-coated distributed feedback (DFB) microcavities, which are fabricated on a planar substrate and then transferred onto fiber tips by means of a flexible transfer technique. The amplified light directly couples into the fiber and is detected when coupled out at the other end after propagating along the fiber for about 20 cm. A prominently amplification factor of about 4.33 at 578.57 nm is achieved by sending supercontinuum pulses into the hundreds of micrometers’ DFB microcavities along the normal direction, which is also the axis direction of the fiber. The random distortions of grating lines generated during the transfer process result in a larger amplification spectral range and a less strict polarization dependence for injected light. Benefitting from the device size of hundreds of micrometers and the ease of integration, polymer amplifiers based on DFB microcavities demonstrate significant application potentials in optical communication systems and miniaturized optical devices. Full article
Show Figures

Figure 1

10 pages, 2954 KB  
Communication
Polarization-Dependent Formation of Extremely Compressed Femtosecond Wave Packets and Supercontinuum Generation in Fused Silica
by Ilia Geints and Olga Kosareva
Photonics 2024, 11(7), 620; https://doi.org/10.3390/photonics11070620 - 28 Jun 2024
Viewed by 1048
Abstract
Previous studies of formation of extremely compressed wave packets during femtosecond filamentation in the region of anomalous group velocity dispersion in solid dielectrics mostly considered the case of linearly polarized laser pulses. However, recent results suggest potential applications of polarization state manipulation for [...] Read more.
Previous studies of formation of extremely compressed wave packets during femtosecond filamentation in the region of anomalous group velocity dispersion in solid dielectrics mostly considered the case of linearly polarized laser pulses. However, recent results suggest potential applications of polarization state manipulation for ultrafast laser writing of optical structures in bulk solid-state media. In the present work, evolution of radiation polarization parameters during formation of such extreme wave packets at the pump wavelength of 1900 nm in fused silica is studied numerically on the basis of the carrier-resolved unidirectional pulse propagation equation (UPPE). It was revealed that initial close-to-circular polarization leads to higher intensity of the anti-Stokes wing in the spectrum of the generated supercontinuum. Numerical simulations indicate a complex, space–time variant polarization state, and the resulting spatiotemporal electric field distribution exhibits a strong dependence on the initial polarization of the femtosecond pulse. At the same time, electric field polarization tends to linear one in the region with the highest field strength regardless of the initial parameters. The origin of this behavior is attributed to the properties of the supercontinuum components generation during filament-induced plasma formation. Full article
(This article belongs to the Special Issue Ultrafast Intense Laser Filamentation and Beyond)
Show Figures

Figure 1

11 pages, 4949 KB  
Article
The Generation of Circularly Polarized Isolated Attosecond Pulses with Tunable Helicity from CO Molecules in Polarization Gating Laser Fields
by Shiju Chen, Hua Yuan, Feng Wang, Jiahang Song, Yue Zhao, Chunhui Yang, Tianxin Ou, Ru Zhang, Qiang Chang and Yuping Sun
Photonics 2024, 11(5), 464; https://doi.org/10.3390/photonics11050464 - 15 May 2024
Cited by 2 | Viewed by 1779
Abstract
We theoretically demonstrate a scheme to generate circularly polarized (CP) isolated attosecond pulses (IAPs) with tunable helicity using a polarization gating laser field interacting with the CO molecule. The results show that a broadband CP supercontinuum is produced from the oriented CO molecule, [...] Read more.
We theoretically demonstrate a scheme to generate circularly polarized (CP) isolated attosecond pulses (IAPs) with tunable helicity using a polarization gating laser field interacting with the CO molecule. The results show that a broadband CP supercontinuum is produced from the oriented CO molecule, which supports the generation of an IAP with an ellipticity of 0.98 and a duration of 90 as. Furthermore, the helicity of the generated harmonics and IAP can be effectively controlled by modulating the laser field and the orientation angle of the CO molecule. Our method will advance research on chiral-specific dynamics and magnetic circular dichroism on the attosecond timescale. Full article
Show Figures

Figure 1

17 pages, 7129 KB  
Review
On-Chip Supercontinuum Generation Pumped by Short Wavelength Fiber Lasers
by Peng Chen, Zhe Long, Qi Cheng, Maozhuang Song, Wei Wang, Ruixue Liu, Zheng Zhang, Kai Xia, Zhen Yang, Lei Qian, Shengchuang Bai, Xunsi Wang, Peilong Yang, Peipeng Xu, El Sayed Yousef and Rongping Wang
Photonics 2024, 11(5), 440; https://doi.org/10.3390/photonics11050440 - 9 May 2024
Cited by 3 | Viewed by 2730
Abstract
Supercontinuum (SC) generation pumped by fiber lasers with short wavelengths below 2.0 μm is important since it can provide a compact light source for various applications. We review the progress of SC generation in various materials regarding the formation of the waveguides and [...] Read more.
Supercontinuum (SC) generation pumped by fiber lasers with short wavelengths below 2.0 μm is important since it can provide a compact light source for various applications. We review the progress of SC generation in various materials regarding the formation of the waveguides and point out the existing issues in the current investigations and possible solutions in the future. Full article
Show Figures

Figure 1

12 pages, 3225 KB  
Article
On the Impact of Wavelength Dependency on Supercontinuum Generation in Photonic Crystal Fibers
by Antonio Díaz-Soriano, Antonio Ortiz-Mora, David Martínez-Muñoz and Pedro Rodríguez
Appl. Sci. 2024, 14(4), 1429; https://doi.org/10.3390/app14041429 - 9 Feb 2024
Viewed by 1229
Abstract
It is common practice when simulating propagation through an optical fiber to assume that its characteristic parameters are constant and determined solely by the central wavelength of the input pulse. In this paper, we propose a study of the impact that the actual [...] Read more.
It is common practice when simulating propagation through an optical fiber to assume that its characteristic parameters are constant and determined solely by the central wavelength of the input pulse. In this paper, we propose a study of the impact that the actual wavelength dependence of these parameters has on the propagation results. To this end, simulations were carried out considering both the constant model and the wavelength-dependent model, applying them to the case of the especially sensitive effect of supercontinuous generation in a photonic crystal fiber. The results showed differences of up to 20% of the spectrum and, hence, the importance of taking into account the wavelength dependence of the dispersion fiber parameters to obtain more-realistic results in the simulations. Full article
Show Figures

Figure 1

13 pages, 4093 KB  
Article
Highly Collimated Monochromatic X-rays Generated by Collision of High-Energy Electrons with Tightly Focused Linearly Polarized Laser Pulse
by Mingjing Zeng, Yangyi Zhang, Yifan Chang and Youwei Tian
Crystals 2024, 14(1), 13; https://doi.org/10.3390/cryst14010013 - 22 Dec 2023
Cited by 1 | Viewed by 1720
Abstract
This article delves into the generation and modulation process of X-rays as high-energy photon sources. Using the principles of classical electrodynamics, this study enables nonrelativistic short pulse lasers to collide with high-energy electrons while the collision center is away from the focal point. [...] Read more.
This article delves into the generation and modulation process of X-rays as high-energy photon sources. Using the principles of classical electrodynamics, this study enables nonrelativistic short pulse lasers to collide with high-energy electrons while the collision center is away from the focal point. This scattering method may produce X-rays with good collimation and monochromaticity, and it progressively approaches inverse Thomson scattering. We studied and analyzed the effects of different electron characteristics and laser parameter settings on the high-energy angular distribution and spectrum of X-rays, especially the setting of the collision center and initial electron velocity, as well as the setting of laser intensity and pulse width. Linear polarized laser pulses with relativistic intensity can generate discrete supercontinuum X-rays with spectral distortion. In addition, the relationships between electronic and laser properties and radiation energy were also studied. Our research can provide valuable insights for manipulating collimated or distorted, monochromatic, or tunable X-rays, as well as understanding their properties. Full article
Show Figures

Figure 1

14 pages, 1865 KB  
Article
Exact Solution of the Raman Response Function of Chalcogenide Fiber and Its Influence on the Mid-Infrared Supercontinuum
by Zhijian Wu, Yang Ding and Xuefeng Peng
Appl. Sci. 2023, 13(23), 12923; https://doi.org/10.3390/app132312923 - 2 Dec 2023
Viewed by 1948
Abstract
We fabricated a core-cladding Ge–Sb–Se glass fiber with a Ge12.5Sb15Se72.5 core and Ge15Sb10Se75 cladding, achieved a supercontinuum spectrum spanning from 2 μm to 9 μm by pumping the Ge–Sb–Se fiber with a core [...] Read more.
We fabricated a core-cladding Ge–Sb–Se glass fiber with a Ge12.5Sb15Se72.5 core and Ge15Sb10Se75 cladding, achieved a supercontinuum spectrum spanning from 2 μm to 9 μm by pumping the Ge–Sb–Se fiber with a core diameter of 11 μm using a femtosecond laser pump at 3.8 μm, and numerically simulated the supercontinuum generation using the generalized nonlinear Schrödinger equation. In particular, we investigate the effect of the different Raman response functions that were calculated using the traditional single Lorentzian model and a multiple vibrational mode model on the evolution of the supercontinuum by comparing the supercontinua obtained from simulation and experimental results. We demonstrate that the Raman response function generated by the multiple vibrational mode model captures the actual response behavior of the material, and the supercontinuum generated using this model has more accuracy. To the best of our knowledge, this is the first reported study on supercontinuum generation in Ge–Sb–Se fiber utilizing a Raman response function calculated using the multiple vibrational mode model. This significant advancement enables more accurate simulation of supercontinuum generation in fibers with a multi-peaked structured Raman gain spectrum and holds great potential for optimizing the performance of various mid-infrared supercontinuum sources. Full article
Show Figures

Figure 1

Back to TopTop