Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,762)

Search Parameters:
Keywords = surface texture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1642 KB  
Article
Adhesion and Colonization Intensity of Staphylococcus epidermidis, Pseudomonas aeruginosa, and Candida albicans on Smooth, Micro-Textured, and Macro-Textured Silicone Biomaterials
by Kirils Jurševičs, Ingus Skadiņš, Jeļena Krasiļņikova, Anna Lece, Andrejs Šķesters and Eduards Jurševičs
J. Funct. Biomater. 2025, 16(9), 322; https://doi.org/10.3390/jfb16090322 - 1 Sep 2025
Abstract
Implantable biomaterials are widely used in modern medicine, especially in orthopaedics, cardiovascular surgery, dentistry, and plastic and reconstructive surgery. The issue of the interaction of implants with body tissues and the risk of infection associated with them is one of the most studied [...] Read more.
Implantable biomaterials are widely used in modern medicine, especially in orthopaedics, cardiovascular surgery, dentistry, and plastic and reconstructive surgery. The issue of the interaction of implants with body tissues and the risk of infection associated with them is one of the most studied and topical issues in medicine. It is very important to find a biomaterial that effectively combines both microbiology and tissue compatibility aspects. The aim of this research work was to determine the adhesion and colonization rates of Staphylococcus epidermidis, Pseudomonas aeruginosa, and Candida albicans on smooth, microtextured, and macro-textured silicone biomaterials in an in vitro study. A total of 90 silicone biomaterial samples were used, 30 for each type of biomaterial. In each of the biomaterial groups, half of the samples (n = 15) were used to determine the adhesion intensity and the other half to determine the colonization intensity on the active surface of the biomaterial samples. The study found that Staphylococcus epidermidis and Pseudomonas aeruginosa had the highest adhesion intensity on the macro-textured implant, while Candida albicans adhered best to smooth. Among the microorganisms, Pseudomonas aeruginosa demonstrated the highest colonization rate, followed by Staphylococcus epidermidis and then Candida albicans. The most intensive colonization of microorganisms was on the macro-textured implant, then on the micro-textured, and then on the smooth. The smooth and micro-textured implants did not show statistically significant differences in the intensity of adhesion and colonization. The biomaterials did not show pro-oxidant or anti-oxidant properties, and no lipid peroxidation was induced by the biomaterials. Full article
(This article belongs to the Section Antibacterial Biomaterials)
Show Figures

Figure 1

32 pages, 46726 KB  
Article
Potentially Toxic Elements and Natural Radioactivity in Nasser Lake Sediments: Environmental Risks in a Key Egyptian Freshwater Lake
by Esraa S. El-Shlemy, Ahmed Gad, Mohammed G. El Feky, Abdel-Moneim A. Mahmoud, Omnia El-Sayed and Neveen S. Abed
Toxics 2025, 13(9), 745; https://doi.org/10.3390/toxics13090745 (registering DOI) - 31 Aug 2025
Abstract
A necessary evaluation of freshwater ecosystem pollution levels and radiation risks remains crucial for maintaining environmental health, especially within economically developing areas. This study presents a comprehensive evaluation of the mineralogical, geochemical, and radiological characteristics of sediments in Nasser Lake, Egypt, to determine [...] Read more.
A necessary evaluation of freshwater ecosystem pollution levels and radiation risks remains crucial for maintaining environmental health, especially within economically developing areas. This study presents a comprehensive evaluation of the mineralogical, geochemical, and radiological characteristics of sediments in Nasser Lake, Egypt, to determine potential ecological and health risks. Forty sediment samples were collected from multiple locations, including both surface and bottom sediments, for analysis of textural attributes, mineral composition, potentially toxic elements, and natural radionuclides (238U, 232Th, and 40K). Results revealed sand-dominated sediments with low organic matter content. The heavy mineral assemblages derived from Nile River inputs, wind-deposited materials, and eroded igneous and metamorphic rocks. Geochemical analysis showed that arsenic, cadmium, chromium, and lead concentrations exceeded upper continental crust background values, with enrichment factors and geo-accumulation indices indicating significant anthropogenic contributions. The pollution indices revealed heavy contamination levels and extreme ecological risks, which were primarily driven by arsenic and cadmium concentrations. Radiological assessments detected activity concentrations of 238U, 232Th, and 40K below the world average, with hazard indices indicating minimal radiological risk except where localized hotspots were present. The study emphasizes the need for targeted monitoring and sustainable management practices to mitigate pollution and preserve the crucial freshwater environment of Nasser Lake. Full article
Show Figures

Figure 1

23 pages, 44089 KB  
Article
Wettability, Tribology, Degradation, and Topography of Laser-Textured Surfaces of Biopolymers
by Ciprian-Dumitru Ciofu, Petronela-Daniela Rusu (Ostahie), Marcin Adamiak, Oktawian Bialas, Catalin Tampu, Panagiotis Kyratsis, Anastasios Tzotzis, Simona-Nicoleta Mazurchevici, Alexandra Nedelcu, Zhengyi Jiang, Daniel Mindru and Dumitru Nedelcu
Micromachines 2025, 16(9), 1009; https://doi.org/10.3390/mi16091009 - 31 Aug 2025
Abstract
Surface texturing involves creating micro-channels, micro-dimples, micro-grooving, and other surface modifications. To do this, laser and micromachining are employed on the substrate surface in addition to other methods. The surface characteristics of the Arboblend V2 Nature biodegradable polymers with laser texturing, hexagonal and [...] Read more.
Surface texturing involves creating micro-channels, micro-dimples, micro-grooving, and other surface modifications. To do this, laser and micromachining are employed on the substrate surface in addition to other methods. The surface characteristics of the Arboblend V2 Nature biodegradable polymers with laser texturing, hexagonal and square patterns, and four and six passes are shown in this study. Regardless of the texture type, Arboblend V2 Nature’s hydrophilic surface (a contact angle of less than 90°) was demonstrated by the results of the wettability test. The underlying material’s wear behavior changed as a result of the LST surface modification. The COF values increased only after six passes with both textures. On the topographical side, Arboblend V2 Nature (square and hexagonal) shows a consistent X-axis expansion in the hexagonal geometry and a considerable amount of variability in the square geometry, especially at six passes, where the Y-axis (higher depths) is more compressed. According to the results, since textured surfaces are practicable, non-biodegradable polymers from a variety of industries can be substituted. Full article
(This article belongs to the Special Issue Microfabrication and Nanotechnology in Manufacturing Systems)
Show Figures

Figure 1

17 pages, 3166 KB  
Article
USV-Seg: A Vision-Language Framework for Guided Segmentation of USV with Physical Constraint Optimization
by Wenqiang Zhan, Qianqian Chen, Rongkun Zhou, Shenghua Chen, Xinlong Zhang, Lei Ma, Yan Wang and Guiyin Liu
Electronics 2025, 14(17), 3491; https://doi.org/10.3390/electronics14173491 - 31 Aug 2025
Abstract
Unmanned Surface Vehicles (USVs) play a critical role in maritime monitoring, environmental protection, and emergency response, necessitating accurate scene understanding in complex aquatic environments. Conventional semantic segmentation methods often fail to capture global context and lack physical boundary consistency, limiting real-world performance. This [...] Read more.
Unmanned Surface Vehicles (USVs) play a critical role in maritime monitoring, environmental protection, and emergency response, necessitating accurate scene understanding in complex aquatic environments. Conventional semantic segmentation methods often fail to capture global context and lack physical boundary consistency, limiting real-world performance. This paper proposes USV-Seg, a unified segmentation framework integrating a vision-language model, the Segment Anything Model (SAM), DINOv2-based visual features, and a physically constrained refinement module. We design a task-specific <Describe> Token to enable fine-grained semantic reasoning of navigation scenes, considering USV-to-shore distance, landform complexity, and water surface texture. A mask selection algorithm based on multi-layer Intersection-over-Prediction (IoP) heads improves segmentation precision across sky, water, and obstacle regions. A boundary-aware correction module refines outputs using estimated sky-water and land-water boundaries, enhancing robustness and realism. Unlike prior works that simply apply vision-language or geometric post-processing in isolation, USV-Seg integrates structured scene reasoning and scene-aware boundary constraints into a unified and physically consistent framework. Experiments on a real-world USV dataset demonstrate that USV-Seg outperforms state-of-the-art methods, achieving 96.30% mIoU in challenging near-shore scenarios. Full article
Show Figures

Graphical abstract

18 pages, 4692 KB  
Article
The Material Growth and Characteristics of Transition Metal Oxide Thin Films Based on Hot Wire Oxidation Sublimation Deposition Technology
by Fengchao Li, Qingguo Kang, Zhenwei Kang, Tengteng Li, Jiangang Yu, Haibing Qiu, Ting Liang and Cheng Lei
Materials 2025, 18(17), 4083; https://doi.org/10.3390/ma18174083 (registering DOI) - 31 Aug 2025
Abstract
Transition-metal oxides (TMOs) possess pronounced optoelectronic properties and are widely exploited in photovoltaics and photocatalysis. Here, we introduce a hot wire oxidation sublimation deposition (HWOSD) that directly converts elemental Mo and W into amorphous MoOx and WOx films on various substrates. [...] Read more.
Transition-metal oxides (TMOs) possess pronounced optoelectronic properties and are widely exploited in photovoltaics and photocatalysis. Here, we introduce a hot wire oxidation sublimation deposition (HWOSD) that directly converts elemental Mo and W into amorphous MoOx and WOx films on various substrates. Scanning electron microscopy and atomic force microscopy reveal uniform thickness and conformal coverage over textured and planar surfaces. X-ray photoelectron spectroscopy indicates high oxygen contents with stoichiometric ratios of 2.94 (MoOx) and 2.91 (WOx). Optical measurements show transmittances > 94% across 400–1200 nm, yielding optical band gaps of 1.86 eV (MoOx) and 2.67 eV (WOx). The conductivities of MoOx and WOx were 2.58 × 10−6 S cm−1 and 5.14 × 10−7 S cm−1 at room temperature, and the TMO/Si surface potential differences are 200 mV and 114 mV, respectively. Minority-carrier-lifetime measurements indicate that MoOx films confer an additional passivation benefit to the i a-Si:H/c-Si/i a-Si:H stack. Annealing of MoOx and WOx realized their phase transition from an amorphous state to a polycrystalline state, with changes in their optical transmittance in the visible light region. Investigation of the photovoltaic performances of MoOx and WOx as HTLs deposited by HWOSD demonstrates their excellent electronic functionality in optoelectronics. These results establish HWOSD as a scalable, low-temperature method to fabricate high-quality TMO films and expand their potential in advanced optoelectronic devices. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

16 pages, 1166 KB  
Article
Preservation of Rabbit Meat in High-Density Polyethylene Packaging Bags Reinforced with Ethyl Cellulose Nanoparticles Loaded with Rosemary Extract
by Brenda Sánchez-Camacho, María de la Luz Zambrano-Zaragoza, José Eleazar Aguilar-Toalá, Rosy Gabriela Cruz-Monterrosa, Monzerrat Rosas-Espejel and Jorge L. Mejía-Méndez
Polysaccharides 2025, 6(3), 76; https://doi.org/10.3390/polysaccharides6030076 - 29 Aug 2025
Viewed by 384
Abstract
In this work, ethyl cellulose nanoparticles loaded with rosemary extract (RCL-NPs) were synthesized and utilized to reinforce high-density polyethylene (HDPE) packaging bags as a nanotechnological alternative for rabbit meat preservation. The synthesized RCL-NPs were characterized by DLS and for their stability. The analyzed [...] Read more.
In this work, ethyl cellulose nanoparticles loaded with rosemary extract (RCL-NPs) were synthesized and utilized to reinforce high-density polyethylene (HDPE) packaging bags as a nanotechnological alternative for rabbit meat preservation. The synthesized RCL-NPs were characterized by DLS and for their stability. The analyzed variables of rabbit meat packaged samples included drained liquid, weight loss, color, pH, texture, and hardness. The total phenolic content (TPC) and antioxidant capacity of rosemary extract were also investigated. The results demonstrated that RCL-NPs were 117.30 nm in size with a negative surface charge (−24.59 mV) and low PDI (0.12). According to the Higuchi model, the release rate of RCL-NPs was sustained from 0 to 24 h. The encapsulation efficiency of the implemented synthesis route was 99.97%. The TPC of rosemary extract was 566.13 ± 1.72 mg GAE/L, whereas their antioxidant activity utilizing the DPPH and FRAP assays was 27.86 ± 0.32 mM Trolox/L and 0.31 mM Trolox/L, respectively. Contrary to control samples, rabbit meat samples conserved in HDPE packaging bags reinforced with RCL-NPs prevent drained liquid and weight loss, while preserving *L (60 ± 2.5–66.10 ± 2.0) and *b (10.67 ± 2.28–11.62 ± 2.39), pH (5.22 ± 0.05–5.80 ± 0.03), and texture (10.37 ± 0.82–0.70 ± 0.50). In the same regard, the developed material conserved the hardness of rabbit meat samples, exhibiting values that ranged from 27.79 ± 7.23 to 27.60 ± 3.05 N during the evaluated period (0–13 days). The retrieved data demonstrate the efficacy of RCL in preserving the quality of rabbit meat when integrated with additional food packaging materials. Full article
(This article belongs to the Collection Bioactive Polysaccharides)
Show Figures

Figure 1

25 pages, 18019 KB  
Article
Living Textures and Mycelium Skin Co-Creation: Designing Colour, Pattern, and Performance for Bio-Aesthetic Expression in Mycelium-Bound Composites
by Anastasia Globa, Eugene Soh and Hortense Le Ferrand
Biomimetics 2025, 10(9), 573; https://doi.org/10.3390/biomimetics10090573 - 29 Aug 2025
Viewed by 167
Abstract
Natural materials present sustainable opportunities in architectural design, but often lack the aesthetic controllability associated with synthetic alternatives. This research explores the bio-aesthetic potential of mycelium-bound composites (MBCs) cultivated from Ganoderma Steyaertanum (Reishi mushroom), focusing on how external stimuli and surface [...] Read more.
Natural materials present sustainable opportunities in architectural design, but often lack the aesthetic controllability associated with synthetic alternatives. This research explores the bio-aesthetic potential of mycelium-bound composites (MBCs) cultivated from Ganoderma Steyaertanum (Reishi mushroom), focusing on how external stimuli and surface treatments influence material expression. This investigation was carried out through interdisciplinary collaboration involving design, architecture, and material science. Two post-demolding surface treatment strategies were applied to MBC samples: ‘Delayed Growth‘ and ‘Accelerated Growth‘. These treatments were designed to assess the mycelium’s responsiveness in terms of colour and texture development. A controlled set of samples was analysed using scanning electron microscopy, Fourier-transform infrared spectroscopy, and hydrophobicity testing to evaluate changes in microstructure, chemical composition, and surface properties. The results demonstrate that mycelium exhibits a measurable capacity for aesthetic adaptation, with distinct variations in pigmentation and texture emerging under different treatment conditions. These findings highlight the potential for co-creative design processes with living materials and offer new insights into the integration of biological responsiveness in design practices. The study contributes to the advancement of sustainable material systems and expands the possibilities for bio-design through controlled interaction with bio-materials. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
12 pages, 2492 KB  
Case Report
Post-Mortem Animal Bite Mark Analysis Reimagined: A Pilot Study Evaluating the Use of an Intraoral Scanner and Photogrammetry for Forensic 3D Documentation
by Salvatore Nigliaccio, Davide Alessio Fontana, Emanuele Di Vita, Marco Piraino, Pietro Messina, Antonina Argo, Stefania Zerbo, Davide Albano, Enzo Cumbo and Giuseppe Alessandro Scardina
Forensic Sci. 2025, 5(3), 39; https://doi.org/10.3390/forensicsci5030039 - 29 Aug 2025
Viewed by 131
Abstract
Digital dentistry is undergoing rapid evolution, with three-dimensional imaging technologies increasingly integrated into routine clinical workflows. Originally developed for accurate dental arch reconstruction, modern intraoral scanners have demonstrated expanding versatility in capturing intraoral mucosal as well as perioral cutaneous structures. Concurrently, photogrammetry has [...] Read more.
Digital dentistry is undergoing rapid evolution, with three-dimensional imaging technologies increasingly integrated into routine clinical workflows. Originally developed for accurate dental arch reconstruction, modern intraoral scanners have demonstrated expanding versatility in capturing intraoral mucosal as well as perioral cutaneous structures. Concurrently, photogrammetry has emerged as a powerful method for full-face digital reconstruction, particularly valuable in orthodontic and prosthodontic treatment planning. These advances offer promising applications in forensic sciences, where high-resolution, three-dimensional documentation of anatomical details such as palatal rugae, lip prints, and bite marks can provide objective and enduring records for legal and investigative purposes. This study explores the forensic potential of two digital acquisition techniques by presenting two cadaveric cases of animal bite injuries. In the first case, an intraoral scanner (Dexis 3600) was used in an unconventional extraoral application to directly scan skin lesions. In the second case, photogrammetry was employed using a digital single-lens reflex (DSLR) camera and Agisoft Metashape, with standardized lighting and metric scale references to generate accurate 3D models. Both methods produced analyzable digital reconstructions suitable for forensic archiving. The intraoral scanner yielded dimensionally accurate models, with strong agreement with manual measurements, though limited by difficulties in capturing complex surface morphology. Photogrammetry, meanwhile, allowed for broader contextual reconstruction with high texture fidelity, albeit requiring more extensive processing and scale calibration. A notable advantage common to both techniques is the avoidance of physical contact and impression materials, which can compress and distort soft tissues, an especially relevant concern when documenting transient evidence like bite marks. These results suggest that both technologies, despite their different origins and operational workflows, can contribute meaningfully to forensic documentation of bite-related injuries. While constrained by the exploratory nature and small sample size of this study, the findings support the viability of digitized, non-destructive evidence preservation. Future perspectives may include the integration of artificial intelligence to assist with morphological matching and the establishment of digital forensic databases for pattern comparison and expert review. Full article
Show Figures

Figure 1

17 pages, 4189 KB  
Article
Preparation of Hydrophobic Glass Surfaces by Femtosecond Laser
by Xuyun Peng, Xiaojun Tan, Wei Tan, Jian Huang, Chaojun Ding, Yushan Yang, Jieshun Yang, Haitao Chen, Liang Guo and Qingmao Zhang
Micromachines 2025, 16(9), 988; https://doi.org/10.3390/mi16090988 - 28 Aug 2025
Viewed by 175
Abstract
Functional glass surfaces with tunable wettability are of growing interest in optical, biomedical, and architectural applications. In this study, we investigate the influence of femtosecond laser processing parameters—including power, scanning speed, and repetition rate—on the surface morphology, wettability, and optical properties of Panda [...] Read more.
Functional glass surfaces with tunable wettability are of growing interest in optical, biomedical, and architectural applications. In this study, we investigate the influence of femtosecond laser processing parameters—including power, scanning speed, and repetition rate—on the surface morphology, wettability, and optical properties of Panda glass. Laser structuring generated microscale ablation features and increased surface roughness (arithmetic mean height, Sa, rising from ~0.02 µm for pristine glass to ~1.85 µm under optimized conditions). The treated surfaces exhibited enhanced hydrophobicity, with static water contact angles up to ~82° and sliding angles exceeding 50°, indicating significant droplet pinning. Optical characterization further showed a reduction in transmittance at 550 nm from ~92% (pristine) to ~68% after laser treatment, consistent with increased scattering by surface textures. These findings demonstrate that femtosecond laser processing is an effective mask-free method to enhance the hydrophobicity of glass surfaces and establish clear process–structure–property relationships, providing guidance for future optimization toward superhydrophobic performance. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing, 2nd Edition)
Show Figures

Figure 1

17 pages, 8159 KB  
Article
Bangia fusco-purpurea Vegan Sausages: Orthogonal Experimental Optimization and Gel Formation Mechanism
by Xiaoting Chen, Shiqing Zhuo, Nan Pan, Yongchang Su, Zhiyu Liu and Jingna Wu
Foods 2025, 14(17), 3014; https://doi.org/10.3390/foods14173014 - 28 Aug 2025
Viewed by 238
Abstract
To develop highly nutritious Bangia fusco-purpurea (BFP) vegan sausages, we investigated the effects of BFP, gluten, and xanthan gum–konjac gum–carrageenan complex gel (CG) on the gel strength and sensory quality of the sausages. The formulation process was optimized through single-factor and orthogonal tests, [...] Read more.
To develop highly nutritious Bangia fusco-purpurea (BFP) vegan sausages, we investigated the effects of BFP, gluten, and xanthan gum–konjac gum–carrageenan complex gel (CG) on the gel strength and sensory quality of the sausages. The formulation process was optimized through single-factor and orthogonal tests, whereas the gel formation mechanism of the key factors was explored. The orthogonal test results showed that the optimal addition levels of BFP, gluten, and CG were 5%, 56%, and 37%, respectively. Variance analysis revealed that both gluten and CG significantly affected gel strength (p < 0.05), with gluten notably influencing the overall sensory quality (p < 0.05). Texture profile analysis (TPA) and rheological properties demonstrated that as gluten (33–37%) and CG (52–56%) concentrations increased, the gel strength and elastic modulus exhibited concentration-dependent enhancement. Further analysis of the sulfhydryl content, disulfide bonds, surface hydrophobicity, and microstructure revealed that higher gluten content promoted intermolecular disulfide crosslinking and hydrophobic group exposure, whereas CG contributed to physical filling via hydrogen and ionic bonds, resulting in a uniform and dense gel network structure. The synergistic effects of gluten and CG enhanced the gel properties of BFP vegan sausages, providing a theoretical foundation for the development of high-quality plant protein-based meat alternatives. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

10 pages, 2952 KB  
Article
Weakly Supervised Monocular Fisheye Camera Distance Estimation with Segmentation Constraints
by Zhihao Zhang and Xuejun Yang
Electronics 2025, 14(17), 3429; https://doi.org/10.3390/electronics14173429 - 28 Aug 2025
Viewed by 190
Abstract
Monocular fisheye camera distance estimation is a crucial visual perception task for autonomous driving. Due to the practical challenges of acquiring precise depth annotations, existing self-supervised methods usually consist of a monocular distance model and an ego-motion predictor with the goal of minimizing [...] Read more.
Monocular fisheye camera distance estimation is a crucial visual perception task for autonomous driving. Due to the practical challenges of acquiring precise depth annotations, existing self-supervised methods usually consist of a monocular distance model and an ego-motion predictor with the goal of minimizing a reconstruction matching loss. However, they suffer from inaccurate distance estimation in low-texture regions, especially road surfaces. In this paper, we introduce a weakly supervised learning strategy that incorporates semantic segmentation, instance segmentation, and optical flow as additional sources of supervision. In addition to the self-supervised reconstruction loss, we introduce a road surface flatness loss, an instance smoothness loss, and an optical flow loss to enhance the accuracy of distance estimation. We evaluate the proposed method on the WoodScape and SynWoodScape datasets, and it outperforms the self-supervised monocular baseline, FisheyeDistanceNet. Full article
Show Figures

Figure 1

18 pages, 4892 KB  
Article
Features of the Solid HDDR Process in Sintered (Nd,Pr,Gd)-Fe-B Magnets at Low Hydrogen Pressure and Low Temperature
by Renhui Liu, Ihor I. Bulyk, Munan Yang, Yifan Wang and Hang Wang
Materials 2025, 18(17), 4019; https://doi.org/10.3390/ma18174019 - 27 Aug 2025
Viewed by 173
Abstract
This article investigates the connection between the process parameters of solid hydrogenation, disproportionation (HD), desorption, and recombination (DR) (HDDR) in sintered (Nd,Pr,Gd)-Fe-B magnets, as well as their phase composition and degree of texture (DoT). During HD, hydrogen pressures of 10–50 kPa were applied [...] Read more.
This article investigates the connection between the process parameters of solid hydrogenation, disproportionation (HD), desorption, and recombination (DR) (HDDR) in sintered (Nd,Pr,Gd)-Fe-B magnets, as well as their phase composition and degree of texture (DoT). During HD, hydrogen pressures of 10–50 kPa were applied at temperatures ranging from 700 to 785 °C for reaction times ranging from 3 to 11 h. DR was performed at 750–850 °C. The HD reaction was observed across the full range of hydrogen pressure and temperature. The phase composition of the disproportionation products depends on the depth in the sample. Applying HDDR treatment at a pressure of 10 kPa is an effective way to increase the DoT of magnets. Magnets are anisotropic following the HDDR treatment across the parameter ranges. The dependence of the DoT value on HDDR treatment parameters is complicated, with the main trend being a decline in DoT with increasing hydrogen pressure. The DoT is determined by the disproportionation and recombination temperatures, as well as the depth at 50 kPa pressure. The recombined phase is isotropic near the sample surface and highly anisotropic within the sample after 50 kPa is applied. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

23 pages, 11004 KB  
Article
Evaluating BIM and Mesh-Based 3D Modeling Approaches for Architectural Heritage: The Dosoftei House in Iași City, Romania
by Iosif Lavric, Valeria-Ersilia Oniga, Ana-Maria Loghin, Gabriela Covatariu and George-Cătălin Maleș
Appl. Sci. 2025, 15(17), 9409; https://doi.org/10.3390/app15179409 - 27 Aug 2025
Viewed by 212
Abstract
Given its considerable cultural, historical, and economic value, built heritage requires the application of modern techniques for effective documentation and conservation. While multiple sensors are available for 3D modeling, laser scanning remains the most commonly employed due to its efficiency, precision, and ability [...] Read more.
Given its considerable cultural, historical, and economic value, built heritage requires the application of modern techniques for effective documentation and conservation. While multiple sensors are available for 3D modeling, laser scanning remains the most commonly employed due to its efficiency, precision, and ability to comprehensively capture the building’s geometry, surface textures, and structural details. This results in highly detailed 3D representations that are very important for accurate documentation, analysis, and conservation planning. This study investigates the complementary potential of different 3D modeling approaches for the digital representation of the Dosoftei House in Iasi, a monument of historical significance. For this purpose, an integrated point cloud was created based on a mobile hand-held laser scanner (HMLS), i.e., the FJD Trion P1 and a terrestrial laser scanner (TLS), i.e., the Maptek I-Site 8820 long-range laser scanner, the latter specifically used to capture the roof structures. Based on this dataset, a parametric model was created in Revit, supported by panoramic images, allowing for a structured representation useful in technical documentation and heritage management. In parallel, a mesh model was generated in CloudCompare using Poisson surface reconstruction. The comparison of the two methods highlights the high geometric accuracy of the mesh model and the Building Information Modeling (BIM) model’s capability to efficiently manage information linked to architectural elements. While the mesh provides detailed geometry, the BIM model excels in information organization and supports informed decision-making in conservation efforts. This research proposes leveraging the advantages of both methods within an integrated workflow, applicable on a larger scale in architectural heritage conservation projects. Full article
Show Figures

Figure 1

20 pages, 3459 KB  
Article
Diagnosis of Potassium Content in Rubber Leaves Based on Spatial–Spectral Feature Fusion at the Leaf Scale
by Xiaochuan Luo, Rongnian Tang, Chuang Li and Cheng Qian
Remote Sens. 2025, 17(17), 2977; https://doi.org/10.3390/rs17172977 - 27 Aug 2025
Viewed by 325
Abstract
Hyperspectral imaging (HSI) technology has attracted extensive attention in the field of nutrient diagnosis for rubber leaves. However, the mainstream method of extracting leaf average spectra ignores the leaf spatial information in hyperspectral imaging and dilutes the response characteristics exhibited by nutrient-sensitive local [...] Read more.
Hyperspectral imaging (HSI) technology has attracted extensive attention in the field of nutrient diagnosis for rubber leaves. However, the mainstream method of extracting leaf average spectra ignores the leaf spatial information in hyperspectral imaging and dilutes the response characteristics exhibited by nutrient-sensitive local areas of leaves, thereby limiting the accuracy of modeling. This study proposes a spatial–spectral feature fusion method based on leaf-scale sub-region segmentation. It introduces a clustering algorithm to divide leaf pixel spectra into several subclasses, and segments sub-regions on the leaf surface based on clustering results. By optimizing the modeling contribution weights of leaf sub-regions, it improves the modeling and generalization accuracy of potassium diagnosis for rubber leaves. Experiments have been carried out to verify the proposed method, which is based on spatial–spectral feature fusion to outperform those of average spectral modeling. Specifically, after pixel-level MSC preprocessing, when the spectra of rubber leaf pixel regions were clustered into nine subsets, the diagnostic accuracy of potassium content in rubber leaves reached 0.97, which is better than the 0.87 achieved by average spectral modeling. Additionally, precision, macro-F1, and macro-recall all reached 0.97, which is superior to the results of average spectral modeling. Moreover, the proposed method is also superior to the spatial–spectral feature fusion method that integrates texture features. The visualization results of leaf sub-region weights showed that strengthening the modeling contribution of leaf edge regions is conducive to improving the diagnostic accuracy of potassium in rubber leaves, which is consistent with the response pattern of leaves to potassium. Full article
(This article belongs to the Special Issue Artificial Intelligence in Hyperspectral Remote Sensing Data Analysis)
Show Figures

Figure 1

33 pages, 26241 KB  
Article
Evaluation of Hydrocarbon Entrapment Linked to Hydrothermal Fluids and Mapping the Spatial Distribution of Petroleum Systems in the Cretaceous Formation: Implications for the Advanced Exploration and Development of Petroleum Systems in the Kurdistan Region, Iraq
by Zana Muhammad, Namam Salih and Alain Préat
Minerals 2025, 15(9), 908; https://doi.org/10.3390/min15090908 - 27 Aug 2025
Viewed by 256
Abstract
This study utilizes high-resolution X-ray computed tomography (CT) to evaluate the reservoir characterization in heterogenous carbonate rocks. These rocks show a diagenetic alteration that influences the reservoir quality in the Cretaceous Qamchuqa–Bekhme formations in outcrop and subsurface sections (Gali-Bekhal, Bekhme, and Taq Taq [...] Read more.
This study utilizes high-resolution X-ray computed tomography (CT) to evaluate the reservoir characterization in heterogenous carbonate rocks. These rocks show a diagenetic alteration that influences the reservoir quality in the Cretaceous Qamchuqa–Bekhme formations in outcrop and subsurface sections (Gali-Bekhal, Bekhme, and Taq Taq oilfields, NE Iraq). The scanning of fifty-one directional line analyses was conducted on three facies: marine, early diagenetic (non-hydrothermal), and late diagenetic (hydrothermal dolomitization, or HTD). The facies were analyzed from thousands of micro-spot analyses (up to 5250) and computed tomographic numbers (CTNs) across vertical, horizontal, and inclined directions. The surface (outcrop) marine facies exhibited CTNs ranging from 2578 to 2982 Hounsfield Units (HUs) (Av. 2740 HU), with very low average porosity (1.20%) and permeability (0.14 mD) values, while subsurface marine facies showed lower CTNs (1446–2556 HU, Av. 2360 HU) and higher porosity (Av. 8.40%) and permeability (Av. 1.02 mD) compared to the surface samples. Subsurface marine facies revealed higher porosity, lower density, and considerably enhanced conditions for hydrocarbon storage. The CT measurements and petrophysical properties in early diagenesis highlight a considerable porous system in the surface compared to the one in subsurface settings, significantly controlling the quality of the reservoir storage. The late diagenetic scanning values coincide with a saddle dolomite formation formed under high temperature conditions and intensive rock–fluid interactions. These dolomites are related to a hot fluid and are associated with intensive fracturing, vuggy porosities, and zebra-like textures. These textures are more pronounced in the surface than the subsurface settings. A surface evaluation showed a wide CTN range, accompanied by an average porosity of up to 15.47% and permeability of 301.27 mD, while subsurface facies exhibited a significant depletion in the CTN (<500 HU), with an average porosity of about 14.05% and permeability of 91.56 mD. The petrophysical characteristics of the reservoir associated with late-HT dolomitization (subsurface setting) show two populations. The first one exhibited CTN values between 1931 and 2586 HU (Av. 2341 HU), with porosity ranging from 3.10 to 18.43% (Av. 8.84%) and permeability from 0.08 to 2.39 mD (Av. 0.31 mD). The second one recorded a considerable range of CTNs from 457 to 2446 HU (Av. 1823 HU), with porosity from 6.38 to 52.92% (Av. 20.97%) and permeability from 0.16 to 5462.62 mD (Av. 223.11 mD). High temperatures significantly altered the carbonate rock’s properties, with partial/complete occlusion of the porous vuggy and fractured networks, enhancing or reducing the reservoir quality and its storage. In summary, the variations in the CTN across both surface and subsurface facies provide new insight into reservoir heterogeneity and characterization, which is a fundamental factor for understanding the potential of hydrocarbon storage within various geological settings. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

Back to TopTop