Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (208)

Search Parameters:
Keywords = sustainable aviation fuel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2365 KB  
Article
Decentralized Model for Sustainable Aviation Fuel (SAF) Production from Residual Biomass Gasification in Spain
by Carolina Santamarta Ballesteros, David Bolonio, María-Pilar Martínez-Hernando, David León, Enrique García-Franco and María-Jesús García-Martínez
Resources 2025, 14(9), 133; https://doi.org/10.3390/resources14090133 - 22 Aug 2025
Viewed by 269
Abstract
Decarbonizing air transport is a major challenge in the global energy transition since electrification is not yet feasible. Sustainable aviation fuel (SAF) is a promising solution because it can reduce CO2 emissions without major infrastructure changes. This study proposes a decentralized model [...] Read more.
Decarbonizing air transport is a major challenge in the global energy transition since electrification is not yet feasible. Sustainable aviation fuel (SAF) is a promising solution because it can reduce CO2 emissions without major infrastructure changes. This study proposes a decentralized model for producing SAF in Spain through the gasification of residual lignocellulosic biomass followed by a refinement process using Fischer–Tropsch (FT) synthesis. The model uses underexploited agricultural residues such as cereal straw, vine pruning, and olive pruning, converting them into syngas in medium-scale facilities situated near biomass sources. The syngas is then transported to a central upgrading unit to produce SAF compliant with ASTM D7566 standards. The following two configurations were evaluated: one with a single gasification plant and upgrading unit and another with three gasification plants supplying one central FT facility. Energy yields, capital and operational expenditures (CAPEX and OPEX), logistic costs, and the levelized cost of fuel (LCOF) were assessed. Under a conservative scenario using one-third of the available certain types of biomass from three regions of Spain, annual SAF production could reach 517.6 million liters, with unit costs ranging from 1.63 to 1.24 EUR/L and up to 47,060 tonnes of CO2 emissions avoided per year. The findings support the model’s technical and economic viability and its alignment with circular economy principles and climate policy goals. This approach offers a scalable and replicable pathway for decarbonizing the aviation sector using local renewable resources. Full article
Show Figures

Figure 1

23 pages, 4659 KB  
Article
The Impact of COVID-19 on Civil Aviation Emissions: A High-Resolution Inventory Study in Eastern China’s Industrial Province
by Chuanyong Zhu, Baodong Jiang, Mengyi Qiu, Na Yang, Lei Sun, Chen Wang, Baolin Wang, Guihuan Yan and Chongqing Xu
Atmosphere 2025, 16(8), 994; https://doi.org/10.3390/atmos16080994 - 21 Aug 2025
Viewed by 173
Abstract
Emissions from civil aviation not only degrade the environmental quality around airports but also have the significant effects on climate change. According to the flight schedules, aircraft/engine combination information and revised emission factors from the International Civil Aviation Organization (ICAO) Aircraft Engine Emission [...] Read more.
Emissions from civil aviation not only degrade the environmental quality around airports but also have the significant effects on climate change. According to the flight schedules, aircraft/engine combination information and revised emission factors from the International Civil Aviation Organization (ICAO) Aircraft Engine Emission Databank (EEDB) based on meteorological data, the emissions of climate forcers (CFs: BC, CH4, CO2, H2O, and N2O), conventional air pollutants (CAPs: CO, HC, NOX, OC, PM2.5, and SO2), and hazardous heavy metals (HMs: As, Cu, Ni, Se, Cr, Cd, Hg, Pb, and Zn) from flights of civil aviation of eight airports in Shandong in 2018 and 2020 are estimated in this study. Moreover, the study quantifies the impact of COVID-19 on civil aviation emissions (CFs, CAPs, and HMs) in Shandong, revealing reductions of 47.45%, 48.03%, and 47.45% in 2020 compared to 2018 due to flight cuts. By 2020, total emissions reach 9075.44 kt (CFs), 35.57 kt (CAPs), and 0.51 t (HMs), with top contributors being Qingdao Liuting International Airport (ZSQD) (39.60–40.37%), Shandong Airlines (26.56–28.92%), and B738 aircraft (42.98–46.70%). As byproducts of incomplete fuel combustion, the shares of CO (52.40%) and HC (47.76%) emissions during taxi/ground idle mode are significant. In contrast, emissions during cruise phase are the dominant contributor of other species with a share of 74.67–95.61% of the associated total emissions. The findings highlight the disproportionate role of specific airlines, aircraft, and operational phases in regional aviation pollution. By bridging gaps in localized emission inventories and flight-phase analyses, this research supports targeted mitigation strategies, such as fleet modernization and ground operation optimization, to improve air quality in Shandong. The study highlights how sudden shifts in demand, such as those caused by pandemics, can significantly alter emission profiles, providing insights for sustainable aviation planning. Full article
(This article belongs to the Special Issue Aviation Emissions and Their Impact on Air Quality)
Show Figures

Figure 1

24 pages, 1733 KB  
Article
The Soft Fixed Route Hybrid Electric Aircraft Charging Problem with Variable Speed
by Anthony Deschênes, Raphaël Boudreault, Jonathan Gaudreault and Claude-Guy Quimper
World Electr. Veh. J. 2025, 16(8), 471; https://doi.org/10.3390/wevj16080471 - 18 Aug 2025
Viewed by 159
Abstract
The shift toward sustainable aviation has accelerated research into hybrid electric aircraft, particularly in the context of regional air mobility. To support this transition, we introduce the Soft Fixed Route Hybrid Electric Aircraft Charging Problem with Variable Speed (S-FRHACP-VS), a novel optimization problem [...] Read more.
The shift toward sustainable aviation has accelerated research into hybrid electric aircraft, particularly in the context of regional air mobility. To support this transition, we introduce the Soft Fixed Route Hybrid Electric Aircraft Charging Problem with Variable Speed (S-FRHACP-VS), a novel optimization problem for managing hybrid electric aircraft operations that considers variable speed. The objective is to minimize total costs by determining charging strategies, refueling decisions, hybridization ratios, and speed decisions while adhering to a soft schedule. This paper introduces an iterative variable-based fixation heuristic, named Iterative Two-Stage Mixed-Integer Programming Heuristic (ITS-MIP-H), that alternatively optimizes speed and hybridization ratios while considering the soft schedule constraints, nonlinear charging, and nonlinear energy consumption functions. In addition, a metaheuristic genetic algorithm is proposed as an alternative optimization approach. Experiments on ten realistic flight instances demonstrate that optimizing speed leads to an average cost reduction of 7.64% compared to the best non-speed-optimized model, with reductions of up to 18.64% compared to an all-fuel-based heuristic. Although genetic algorithm provides a viable alternative that performs better than the best non-speed-optimized model, the proposed iterative variable-based fixation heuristic approach consistently outperforms the metaheuristic, achieving the best solutions within seconds. These results provide new insights into the integration of hybrid electric aircraft within transportation networks, contributing to advancements in aircraft routing optimization, energy-efficient operations, and sustainable aviation policy development. Full article
(This article belongs to the Special Issue Electric and Hybrid Electric Aircraft Propulsion Systems)
Show Figures

Figure 1

44 pages, 1541 KB  
Review
Unlocking the Commercialization of SAF Through Integration of Industry 4.0: A Technological Perspective
by Sajad Ebrahimi, Jing Chen, Raj Bridgelall, Joseph Szmerekovsky and Jaideep Motwani
Sustainability 2025, 17(16), 7325; https://doi.org/10.3390/su17167325 - 13 Aug 2025
Viewed by 948
Abstract
Sustainable aviation fuel (SAF) has demonstrated significant potential to reduce carbon emissions in the aviation industry. Multiple national and international initiatives have been launched to accelerate SAF adoption, yet large-scale commercialization continues to face technological, operational, and regulatory barriers. Industry 4.0 provides a [...] Read more.
Sustainable aviation fuel (SAF) has demonstrated significant potential to reduce carbon emissions in the aviation industry. Multiple national and international initiatives have been launched to accelerate SAF adoption, yet large-scale commercialization continues to face technological, operational, and regulatory barriers. Industry 4.0 provides a suite of advanced technologies that can address these challenges and improve SAF operations across the supply chain. This study conducts an integrative literature review to identify and synthesize research on the application of Industry 4.0 technologies in the production and distribution of SAF. The findings highlight that technologies such as artificial intelligence (AI), Internet of Things (IoT), blockchain, digital twins, and 3D printing can enhance feedstock logistics, optimize conversion pathways, improve certification and compliance processes, and strengthen overall supply chain transparency and resilience. By mapping these applications to the six key workstreams of the SAF Grand Challenge, this study presents a practical framework linking technological innovation to both strategic and operational aspects of SAF commercialization. Integrating Industry 4.0 solutions into SAF production and supply chains contributes to reducing life cycle greenhouse gas (GHG) emissions, strengthens low-carbon energy systems, and supports the United Nations Sustainable Development Goal 13 (SDG 13). The findings from this research offer practical guidance to policymakers, industry practitioners, investors, and technology developers seeking to accelerate the global shift toward carbon neutrality in aviation. Full article
Show Figures

Figure 1

42 pages, 3290 KB  
Article
Hydroprocessed Ester and Fatty Acids to Jet: Are We Heading in the Right Direction for Sustainable Aviation Fuel Production?
by Mathieu Pominville-Racette, Ralph Overend, Inès Esma Achouri and Nicolas Abatzoglou
Energies 2025, 18(15), 4156; https://doi.org/10.3390/en18154156 - 5 Aug 2025
Viewed by 583
Abstract
Hydrotreated ester and fatty acids to jet (HEFA-tJ) is presently the most developed and economically attractive pathway to produce sustainable aviation fuel (SAF). An ongoing systematic study of the critical variables of different pathways to SAF has revealed significantly lower greenhouse gas (GHG) [...] Read more.
Hydrotreated ester and fatty acids to jet (HEFA-tJ) is presently the most developed and economically attractive pathway to produce sustainable aviation fuel (SAF). An ongoing systematic study of the critical variables of different pathways to SAF has revealed significantly lower greenhouse gas (GHG) reduction potential for the HEFA-tJ pathway compared to competing markets using the same resources for road diesel production. Moderate yield variations between air and road pathways lead to several hundred thousand tons less GHG reduction per project, which is generally not evaluated thoroughly in standard environmental assessments. This work demonstrates that, although the HEFA-tJ market seems to have more attractive features than biodiesel/renewable diesel, considerable viability risks might manifest as HEFA-tJ fuel market integration rises. The need for more transparent data and effort in this regard, before envisaging making decisions regarding the volume of HEFA-tJ production, is emphasized. Overall, reducing the carbon intensity of road diesel appears to be less capital-intensive, less risky, and several times more efficient in reducing GHG emissions. Full article
(This article belongs to the Special Issue Sustainable Approaches to Energy and Environment Economics)
Show Figures

Figure 1

16 pages, 1504 KB  
Article
Tuning the Activity of NbOPO4 with NiO for the Selective Conversion of Cyclohexanone as a Model Intermediate of Lignin Pyrolysis Bio-Oils
by Abarasi Hart and Jude A. Onwudili
Energies 2025, 18(15), 4106; https://doi.org/10.3390/en18154106 - 2 Aug 2025
Viewed by 314
Abstract
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds [...] Read more.
Catalytic upgrading of pyrolysis oils is an important step for producing replacement hydrocarbon-rich liquid biofuels from biomass and can help to advance pyrolysis technology. Catalysts play a pivotal role in influencing the selectivity of chemical reactions leading to the formation of main compounds in the final upgraded liquid products. The present work involved a systematic study of solvent-free catalytic reactions of cyclohexanone in the presence of hydrogen gas at 160 °C for 3 h in a batch reactor. Cyclohexanone can be produced from biomass through the selective hydrogenation of lignin-derived phenolics. Three types of catalysts comprising undoped NbOPO4, 10 wt% NiO/NbOPO4, and 30 wt% NiO/NbOPO4 were studied. Undoped NbOPO4 promoted both aldol condensation and the dehydration of cyclohexanol, producing fused ring aromatic hydrocarbons and hard char. With 30 wt% NiO/NbOPO4, extensive competitive hydrogenation of cyclohexanone to cyclohexanol was observed, along with the formation of C6 cyclic hydrocarbons. When compared to NbOPO4 and 30 wt% NiO/NbOPO4, the use of 10 wt% NiO/NbOPO4 produced superior selectivity towards bi-cycloalkanones (i.e., C12) at cyclohexanone conversion of 66.8 ± 1.82%. Overall, the 10 wt% NiO/NbOPO4 catalyst exhibited the best performance towards the production of precursor compounds that can be further hydrodeoxygenated into energy-dense aviation fuel hydrocarbons. Hence, the presence and loading of NiO was able to tune the activity and selectivity of NbOPO4, thereby influencing the final products obtained from the same cyclohexanone feedstock. This study underscores the potential of lignin-derived pyrolysis oils as important renewable feedstocks for producing replacement hydrocarbon solvents or feedstocks and high-density sustainable liquid hydrocarbon fuels via sequential and selective catalytic upgrading. Full article
Show Figures

Figure 1

31 pages, 3729 KB  
Review
Laminar Burning Velocity in Aviation Fuels: Conventional Kerosene, SAFs, and Key Hydrocarbon Components
by Zehua Song, Xinsai Yan, Ziyu Liu and Xiaoyi Yang
Appl. Sci. 2025, 15(14), 8098; https://doi.org/10.3390/app15148098 - 21 Jul 2025
Viewed by 618
Abstract
Sustainable aviation fuels (SAFs) are vitally important for aviation decarbonization. The laminar burning velocity (LBV), a key parameter reflecting the combustion behavior of fuel/oxidizer mixtures, serves as a fundamental metric for evaluating SAF performance. This paper systematically reviews and evaluates the LBV experiment [...] Read more.
Sustainable aviation fuels (SAFs) are vitally important for aviation decarbonization. The laminar burning velocity (LBV), a key parameter reflecting the combustion behavior of fuel/oxidizer mixtures, serves as a fundamental metric for evaluating SAF performance. This paper systematically reviews and evaluates the LBV experiment method and the performance of traditional aviation fuel, SAFs produced via different pathways, and individual components (n-alkanes, iso-alkanes, cycloalkanes, and aromatic hydrocarbons, as well as the impacts of isomers and homologues) in aviation fuels. It is found that LBV values of different SAFs exhibit significant fluctuations, approaching or slightly deviating from those of conventional aviation fuels. Carbon number, branching degree, substituent types, and testing methods in the components all affect LBV performance. Specifically, increased branching in iso-alkanes reduces LBV, cyclohexane and benzene show higher LBV than their methylated counterparts (methylcyclohexane and toluene), and n-alkylcyclohexanes/benzenes with short (C1–C3) side chains demonstrate minimal LBV variation. Spherical flame methods yield more consistent (and generally lower) LBV values than stagnation flame techniques. These findings provide insights for optimizing SAF–conventional fuel blends and enhancing drop-in compatibility while ensuring operational safety and usability. Full article
Show Figures

Graphical abstract

18 pages, 9956 KB  
Article
Hydrogen Storage Vessel for a Proton-Exchange Membrane (PEM) Fuel Cell Auxiliary Power Unit for Commercial Aircraft
by Anto Nickhil Antony Ramesh, Aliyu M. Aliyu, Nick Tucker and Ibrahim M. Albayati
Appl. Sci. 2025, 15(14), 8006; https://doi.org/10.3390/app15148006 - 18 Jul 2025
Viewed by 436
Abstract
Approximately 20% of emissions from air travel are attributed to the auxiliary power units (APUs) carried in commercial aircraft. This paper proposes to reduce greenhouse gas emissions in international air transport by adopting proton-exchange membrane (PEM) fuel cells to replace APUs in commercial [...] Read more.
Approximately 20% of emissions from air travel are attributed to the auxiliary power units (APUs) carried in commercial aircraft. This paper proposes to reduce greenhouse gas emissions in international air transport by adopting proton-exchange membrane (PEM) fuel cells to replace APUs in commercial aircraft: we consider the design of three compressed hydrogen storage vessels made of 304 stainless steel, 6061-T6 aluminium, and Grade 5 (Ti-6Al-4V) titanium and capable of delivering 440 kW—enough for a PEM fuel cell for a Boeing 777. Complete structural analyses for pressures from 35 MPa to 70 MPa and wall thicknesses of 25, 50, 100, and 150 mm are used to determine the optimal material for aviation applications. Key factors such as deformation, safety factors, and Von Mises equivalent stress are evaluated to ensure structural integrity under a range of operating conditions. In addition, CO2 emissions from a conventional 440 kW gas turbine APU and an equivalent PEM fuel cell are compared. This study provides insights into optimal material selection for compressed hydrogen storage vessels, emphasising safety, reliability, cost, and weight reduction. Ultimately, this research aims to facilitate the adoption of fuel cell technology in aviation, contributing to greenhouse emissions reduction and hence sustainable air transport. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

35 pages, 3537 KB  
Review
Sustainable Aviation Fuels: A Comprehensive Review of Production Pathways, Environmental Impacts, Lifecycle Assessment, and Certification Frameworks
by Weronika Klimczyk, Remigiusz Jasiński, Jakub Niklas, Maciej Siedlecki and Andrzej Ziółkowski
Energies 2025, 18(14), 3705; https://doi.org/10.3390/en18143705 - 14 Jul 2025
Viewed by 1810
Abstract
Sustainable aviation fuels (SAFs) are currently considered a key element in the decarbonization of the aviation sector, offering a feasible solution to reduce life cycle greenhouse gas emissions without requiring fundamental changes in aircraft or infrastructure. This article provides a comprehensive overview of [...] Read more.
Sustainable aviation fuels (SAFs) are currently considered a key element in the decarbonization of the aviation sector, offering a feasible solution to reduce life cycle greenhouse gas emissions without requiring fundamental changes in aircraft or infrastructure. This article provides a comprehensive overview of the current state of SAFs, including their classification, production technologies, economic aspects, and environmental performance. The analysis covers both currently certified SAF pathways, such as HEFA and FT-SPK, and emerging technologies like alcohol-to-jet and power-to-liquid, assessing their technological maturity, feedstock availability, and scalability. Economic challenges related to high production costs, investment risks, and policy dependencies are discussed, alongside potential mechanisms to support market deployment. Furthermore, the article reviews SAFs’ emission performance, including CO2 and non-CO2 effects, based on existing life cycle assessment (LCA) studies, with an emphasis on variability caused by feedstock type and production method. The findings highlight that, while SAFs can significantly reduce aviation-related emissions compared to fossil jet fuels, the magnitude of benefits depends strongly on supply chain design and sustainability criteria. There are various certified pathways for SAF production, as well as new technologies that can further contribute to the development of the industry. Properly selected biomass sources and production technologies can reduce greenhouse gas emissions by more than 70% compared to conventional fuels. The implementation of SAFs faces obstacles related to cost, infrastructure, and regulations, which hinder its widespread adoption. The study concludes that although SAFs represent a promising pathway for aviation climate mitigation, substantial scaling efforts, regulatory support, and continued technological innovation are essential to achieve their full potential. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

15 pages, 1974 KB  
Article
A Study on the Conceptual Design of a 50-Seat Supersonic Transport
by Taichi Kawanabe and Zhong Lei
Aerospace 2025, 12(7), 625; https://doi.org/10.3390/aerospace12070625 - 11 Jul 2025
Viewed by 303
Abstract
The research and development of the next generation of supersonic transports (SSTs) meets economic and environmental problems. An SST encounters critical challenges, including the need for low fuel consumption, low noise, and low gas emissions. Currently, the feasibility of developing SSTs is increasing [...] Read more.
The research and development of the next generation of supersonic transports (SSTs) meets economic and environmental problems. An SST encounters critical challenges, including the need for low fuel consumption, low noise, and low gas emissions. Currently, the feasibility of developing SSTs is increasing through the application of cutting-edge technologies, such as composite materials, advanced electric systems, sustainable aviation fuel, and innovative design methodologies. The object of this study was to perform the conceptual design of a 50-seat supersonic transport utilizing general conceptual design methods. In estimating weight and flight performance, statistical formulae were correlated with data from civil supersonic and subsonic jet transports. For wing sizing, carpet plots were created to explore the optimal combination of wing aspect ratio and wing loading. The results suggested that by utilizing advanced technologies, such as the use of a composite material for the structure, the maximum takeoff weight can potentially be reduced while still meeting design requirements. The constraint of climb gradient largely affects the maximum takeoff weight, and it is anticipated that flight performance at low speeds will be improved. Full article
(This article belongs to the Special Issue Research and Development of Supersonic Aircraft)
Show Figures

Figure 1

31 pages, 2780 KB  
Article
Multi-Criteria Analysis in the Selection of Alternative Fuels for Pulse Engines in the Aspect of Environmental Protection
by Grzegorz M. Szymański, Bogdan Wyrwas, Klaudia Strugarek, Mikołaj Klekowicki, Malwina Nowak, Aleksander Ludwiczak and Alicja Szymańska
Energies 2025, 18(14), 3604; https://doi.org/10.3390/en18143604 - 8 Jul 2025
Viewed by 395
Abstract
The growing interest in alternative fuels stems from the need to reduce greenhouse gas emissions and promote sustainable development. Despite the dominance of fossil fuels in aviation, pulsejet engines offer a promising platform for testing new fuels due to their simple design and [...] Read more.
The growing interest in alternative fuels stems from the need to reduce greenhouse gas emissions and promote sustainable development. Despite the dominance of fossil fuels in aviation, pulsejet engines offer a promising platform for testing new fuels due to their simple design and fuel versatility. This study presents a multi-criteria analysis of alternative fuels for use in pulsejet engines, emphasizing environmental impacts. Both gaseous (biogas, ethyne, LPG, and natural gas) and liquid fuels (methanol, ethanol, biodiesel, Jet A-1, and SAF) were examined. Exhaust emissions (CO2, H2O, CO) were simulated in Ansys 2025 based on literature data and chemical calculations. Additional factors analyzed included calorific value, production cost, thermal expansion, density, life cycle emissions (LCA), CO2 emissions per fuel mass, and renewable energy content. Using the zero-unitization method, results were normalized into a single aggregate variable for each fuel. The highest values were recorded for biogas and methanol, respectively, indicating their potential as alternative fuels. The findings support further development of sustainable fuels for pulsejet engines. Future research should address combustion optimization and noise reduction, enhancing viability in aviation and other transport sectors. Integration with the current fuel infrastructure is also recommended to facilitate broader implementation. Full article
(This article belongs to the Special Issue Challenges and Research Trends of Exhaust Emissions)
Show Figures

Figure 1

23 pages, 3015 KB  
Review
Sustainable Fuels for Gas Turbines—A Review
by István Péter Kondor
Sustainability 2025, 17(13), 6166; https://doi.org/10.3390/su17136166 - 4 Jul 2025
Viewed by 791
Abstract
The increasing global demand for sustainable energy solutions has intensified the need to replace fossil fuels in gas turbines, particularly in aviation and power generation where alternatives to gas turbines are currently limited. This review explores the feasibility of utilizing sustainable liquid and [...] Read more.
The increasing global demand for sustainable energy solutions has intensified the need to replace fossil fuels in gas turbines, particularly in aviation and power generation where alternatives to gas turbines are currently limited. This review explores the feasibility of utilizing sustainable liquid and gaseous fuels in gas turbines by evaluating their environmental impacts, performance characteristics, and technical integration potential. The study examines a broad range of alternatives, including biofuels, hydrogen, alcohols, ethers, synthetic fuels, and biogas, focusing on their production methods, combustion behavior, and compatibility with existing turbine technology. Key findings indicate that several bio-derived and synthetic fuels can serve as viable drop-in replacements for conventional jet fuels, especially under ASTM D7566 standards. Hydrogen and other gaseous alternatives show promise for industrial applications but require significant combustion system adaptations. The study concludes that a transition to sustainable fuels in gas turbines is achievable through coordinated advancements in combustion technology, fuel infrastructure, and regulatory support, thus enabling meaningful reductions in greenhouse gas emissions and advancing global decarbonization efforts. Full article
Show Figures

Figure 1

19 pages, 1272 KB  
Article
Waste to Biofuel: Process Design and Optimisation for Sustainable Aviation Fuel Production from Corn Stover
by Nur Aina Najihah Halimi, Ademola Odunsi, Alex Sebastiani and Dina Kamel
Energies 2025, 18(13), 3418; https://doi.org/10.3390/en18133418 - 29 Jun 2025
Viewed by 775
Abstract
Addressing the urgent need to decarbonise aviation and valorise agricultural waste, this paper investigates the production of Sustainable Aviation Fuel (SAF) from corn stover. A preliminary evaluation based on a literature review indicates that among various conversion technologies, fast pyrolysis (FP) emerged as [...] Read more.
Addressing the urgent need to decarbonise aviation and valorise agricultural waste, this paper investigates the production of Sustainable Aviation Fuel (SAF) from corn stover. A preliminary evaluation based on a literature review indicates that among various conversion technologies, fast pyrolysis (FP) emerged as the most promising option, offering the highest fuel yield (22.5%) among various pathways, a competitive potential minimum fuel selling price (MFSP) of 1.78 USD/L, and significant greenhouse gas savings of up to 76%. Leveraging Aspen Plus simulation, SAF production via FP was rigorously designed and optimised, focusing on the heat integration strategy within the process to minimise utility consumption and ultimately the total cost. Consequently, the produced fuel exceeded the American Society for Testing and Materials (ASTM) limit for the final boiling point, rendering it unsuitable as a standalone jet fuel. Nevertheless, it achieves regulatory compliance when blended at a rate of up to 10% with conventional jet fuel, marking a practical route for early adoption. Energy optimisation through pinch analysis integrated four hot–cold stream pairs, eliminating external heating, reducing cooling needs by 55%, and improving sustainability and efficiency. Economic analysis revealed that while heat integration slashed utility costs by 84%, the MFSP only decreased slightly from 2.35 USD/L to 2.29 USD/L due to unchanging material costs. Sensitivity analysis confirmed that hydrogen, catalyst, and feedstock pricing are the most influential variables, suggesting targeted reductions could push the MFSP below 2 USD/L. In summary, this work underscores the technical and economic viability of corn stover-derived SAF, providing a promising pathway for sustainable aviation and waste valorisation. While current limitations restrict fuel quality during full substitution, the results affirm the feasibility of SAF blending and present a scalable, low-carbon pathway for future development. Full article
(This article belongs to the Special Issue Biomass and Waste-to-Energy for Sustainable Energy Production)
Show Figures

Figure 1

17 pages, 5158 KB  
Article
Centrifugal Pumping Force in Oil Injection-Based TMS to Cool High-Power Aircraft Electric Motors
by Giuseppe Di Lorenzo, Diego Giuseppe Romano, Antonio Carozza and Antonio Pagano
Energies 2025, 18(13), 3390; https://doi.org/10.3390/en18133390 - 27 Jun 2025
Viewed by 366
Abstract
One of the challenges of our age is climate change and the ways in which it affects the Earth’s global ecosystem. To face the problems linked to such an issue, the international community has defined actions aimed at the reduction in greenhouse gas [...] Read more.
One of the challenges of our age is climate change and the ways in which it affects the Earth’s global ecosystem. To face the problems linked to such an issue, the international community has defined actions aimed at the reduction in greenhouse gas emissions in several sectors, including the aviation industry, which has been requested to mitigate its environmental impact. Conventional aircraft propulsion systems depend on fossil fuels, significantly contributing to global carbon emissions. For this reason, innovative propulsion technologies are needed to reduce aviation’s impact on the environment. Electric propulsion has emerged as a promising solution among the several innovative technologies introduced to face climate change challenges. It offers, in fact, a pathway to more sustainable air travel by eliminating direct greenhouse gas emissions, enhancing energy efficiency. Unfortunately, integrating electric motors into aircraft is currently a big challenge, primarily due to thermal management-related issues. Efficient heat dissipation is crucial to maintain optimal performance, reliability, and safety of the electric motor, but aeronautic applications are highly demanding in terms of power, so ad hoc Thermal Management Systems (TMSs) must be developed. The present paper explores the design and optimization of a TMS tailored for a megawatt electric motor in aviation, suitable for regional aircraft (~80 pax). The proposed system relies on coolant oil injected through a hollow shaft and radial tubes to directly reach hot spots and ensure effective heat distribution inside the permanent magnet cavity. The goal of this paper is to demonstrate how advanced TMS strategies can enhance operational efficiency and extend the lifespan of electric motors for aeronautic applications. The effectiveness of the radial tube configuration is assessed by means of advanced Computational Fluid Dynamics (CFD) analysis with the aim of verifying that the proposed design is able to maintain system thermal stability and prevent its overheating. Full article
(This article belongs to the Special Issue Power Electronics Technology and Application)
Show Figures

Figure 1

16 pages, 1390 KB  
Article
A Fast-Time MATLAB Model of an Aeronautical Low-Temperature PEM Fuel Cell for Sustainable Propulsion and Compressor Behavior at Varying Altitudes
by Abolfazl Movahedian, Gianluca Marinaro and Emma Frosina
Sustainability 2025, 17(13), 5817; https://doi.org/10.3390/su17135817 - 24 Jun 2025
Viewed by 458
Abstract
The aviation sector significantly contributes to environmental challenges, including global warming and greenhouse gas emissions, due to its reliance on fossil fuels. Fuel cells present a viable alternative to conventional propulsion systems. In the context of light aircraft applications, proton exchange membrane fuel [...] Read more.
The aviation sector significantly contributes to environmental challenges, including global warming and greenhouse gas emissions, due to its reliance on fossil fuels. Fuel cells present a viable alternative to conventional propulsion systems. In the context of light aircraft applications, proton exchange membrane fuel cells (PEMFCs) have recently attracted growing interest as a substitute for internal combustion engines (ICEs). However, their performance is highly sensitive to altitude variations, primarily due to limitations in compressor efficiency and instability in cathode pressure. To address these challenges, this research presents a comprehensive numerical model that couples a PEMFC system with a dynamic air compressor model under altitude-dependent conditions ranging from 0 to 3000 m. Iso-efficiency lines were integrated into the compressor map to evaluate its behavior across varying environmental parameters. The study examines key fuel cell stack characteristics, including voltage, current, and net power output. The results indicate that, as altitude increases, ambient pressure and air density decrease, causing the compressor to work harder to maintain the required compression ratio at the cathode of the fuel cell module. This research provides a detailed prediction of compressor efficiency trends by implementing iso-efficiency lines into the compressor map, contributing to sustainable aviation and aligning with global goals for low-emission energy systems by supporting cleaner propulsion technologies for lightweight aircraft. Full article
Show Figures

Figure 1

Back to TopTop