Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,692)

Search Parameters:
Keywords = sustainable farming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3453 KB  
Article
Analysis of the Effects of Prey, Competitors, and Human Activity on the Spatiotemporal Distribution of the Wolverine (Gulo gulo) in a Boreal Region of Heilongjiang Province, China
by Yuhan Ma, Xinxue Wang, Binglian Liu, Ruibo Zhou, Dan Ju, Xuyang Ji, Qifan Wang, Lei Liu, Xinxin Liu and Zidong Zhang
Biology 2025, 14(9), 1165; https://doi.org/10.3390/biology14091165 - 1 Sep 2025
Abstract
Understanding how endangered carnivores partition spatiotemporal distribution in human-dominated landscapes is pivotal for mitigating biodiversity loss in climate-sensitive boreal ecosystems. Here, we used kernel density data derived from a 16-month camera-trap survey (140 UVL7 cameras), cold single-season (November–April) occupancy models, and MaxEnt 3.4.4 [...] Read more.
Understanding how endangered carnivores partition spatiotemporal distribution in human-dominated landscapes is pivotal for mitigating biodiversity loss in climate-sensitive boreal ecosystems. Here, we used kernel density data derived from a 16-month camera-trap survey (140 UVL7 cameras), cold single-season (November–April) occupancy models, and MaxEnt 3.4.4 to identify the effects of biotic interactions, anthropogenic disturbance, and environmental factors on the spatiotemporal distribution of the wolverine (Gulo gulo) in Beijicun National Nature Reserve, Heilongjiang Province, China. We found that wolverines exhibited crepuscular activity patterns using night-time relative abundance index (NRAI) = 50.29% with bimodal peaks (05:00–07:00, 13:00–15:00), with dawn activity predominant during the warm season (05:00–06:00) and a bimodal activity pattern in the cold season (08:00–09:00, 14:00–15:00). Temporal overlap with prey (overlap coefficient Δ = 0.84) and competitors (Δ = 0.70) was high, but overlap with human-dominated temporal patterns was low (Δ = 0.58). Wolverines avoided human settlements and major roads, preferred moving along forest trails and gentle slopes, and avoided high-altitude deciduous forests. Populations were mainly concentrated in southern Hedong and Qianshao Forest Farms, which are characterized by high habitat integrity, high prey densities, and minimal anthropogenic disturbance. These findings suggest that wolverines may influence boreal trophic networks, especially in areas with intact prey communities, competitors, and spatial refugia from human disturbances. We recommend that habitat protection and management within the natural reserve be prioritized and that sustainable management practices for prey species be implemented to ensure the long-term survival of wolverines. Full article
Show Figures

Figure 1

22 pages, 4626 KB  
Review
Biochar for Mitigating Nitrate Leaching in Agricultural Soils: Mechanisms, Challenges, and Future Directions
by Lan Luo, Jie Li, Zihan Xing, Tao Jing, Xinrui Wang and Guilong Zhang
Water 2025, 17(17), 2590; https://doi.org/10.3390/w17172590 - 1 Sep 2025
Abstract
Nitrate leaching from agricultural soils is a major contributor to groundwater contamination and non-point source pollution. Controlling this loss remains challenging due to the complexity of soil–water–nutrient interactions under intensive farming practices. Biochar, a porous, carbon-rich material derived from biomass pyrolysis, has emerged [...] Read more.
Nitrate leaching from agricultural soils is a major contributor to groundwater contamination and non-point source pollution. Controlling this loss remains challenging due to the complexity of soil–water–nutrient interactions under intensive farming practices. Biochar, a porous, carbon-rich material derived from biomass pyrolysis, has emerged as a promising amendment for nitrate mitigation. This review summarizes recent advances in understanding the roles of biochar in nitrate retention and transformation in soils, including both direct mechanisms—such as surface adsorption, ion exchange, and pore entrapment—and indirect mechanisms—such as enhanced microbial activity, soil structure improvement, and root system development. Field and laboratory evidence shows that biochar can reduce NO3-N leaching by 15–70%, depending on its properties, soil conditions, and application context. However, inconsistencies in performance due to differences in biochar types, soil conditions, and environmental factors remain a major barrier to widespread adoption. This review also suggests current knowledge gaps and research needs, including long-term field validation, biochar material optimization, and integration of biochar into precision nutrient management. Overall, biochar presents a multifunctional strategy for reducing nitrate leaching and promoting sustainable nitrogen management in agroecosystems. Full article
(This article belongs to the Special Issue Advanced Research in Non-Point Source Pollution of Watersheds)
15 pages, 5530 KB  
Article
Illegal Wildlife Trade in Al-Madinah, Saudi Arabia: Species, Prices, and Conservation Risks
by Abdulhadi Aloufi, Ehab Eid and Mohamed Alamri
Diversity 2025, 17(9), 615; https://doi.org/10.3390/d17090615 (registering DOI) - 1 Sep 2025
Abstract
Illegal wildlife trade is a major global driver of biodiversity loss, shaped by high consumer demand, transboundary networks, and uneven enforcement. In the Middle East, particularly the Gulf Cooperation Council (GCC) region, factors such as high purchasing power, cultural traditions (e.g., falconry, prestige [...] Read more.
Illegal wildlife trade is a major global driver of biodiversity loss, shaped by high consumer demand, transboundary networks, and uneven enforcement. In the Middle East, particularly the Gulf Cooperation Council (GCC) region, factors such as high purchasing power, cultural traditions (e.g., falconry, prestige pets), and expanding digital marketplaces sustain both legal and illegal flows. We present a nine-year (2017–2025) assessment based on weekly, repeated field surveys at the Friday Market, adjacent pet shops, and private farms, complemented by systematic monitoring of online advertisements on Haraj.com.sa. We recorded 1063 individual animals across 88 species, birds (39.4%), reptiles (52.0%), and mammals (8.6%), and analyzed prices, conservation status, and venue-specific patterns. The most frequently recorded taxa included the white-eared bulbul (Pycnonotus leucotis), common slider (Trachemys scripta), and Egyptian mastigure (Uromastyx aegyptia). Mammals, though fewer in number, commanded the highest prices, particularly cheetahs (Acinonyx jubatus) and lions (Panthera leo). About 26% of species were IUCN-listed as threatened, with CITES Appendix I taxa fetching higher prices. Findings underscore the need for real-time monitoring, targeted enforcement, and cross-border collaboration to address escalating trade in rare and protected species. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

37 pages, 2462 KB  
Review
Caffeic Acid as a Promising Natural Feed Additive: Advancing Sustainable Aquaculture
by Nguyen Dinh-Hung, Luu Tang Phuc Khang, Suwanna Wisetkaeo, Ngoc Tuan Tran, Lee Po-Tsang, Christopher L. Brown, Papungkorn Sangsawad, Sefti Heza Dwinanti, Patima Permpoonpattana and Nguyen Vu Linh
Biology 2025, 14(9), 1160; https://doi.org/10.3390/biology14091160 - 1 Sep 2025
Abstract
Caffeic acid (CA), a plant-derived phenolic compound, is emerging as a promising natural feed additive for sustainable aquaculture. Its growth-promoting, immunomodulatory, and antimicrobial activities suggest utility as an alternative that diminishes antibiotic use in fish farming. Evidence across multiple species indicates improvements in [...] Read more.
Caffeic acid (CA), a plant-derived phenolic compound, is emerging as a promising natural feed additive for sustainable aquaculture. Its growth-promoting, immunomodulatory, and antimicrobial activities suggest utility as an alternative that diminishes antibiotic use in fish farming. Evidence across multiple species indicates improvements in innate immune responses, enhanced antioxidant capacity, and increased survival during pathogen challenge. Nevertheless, adoption remains limited by unresolved questions regarding optimal inclusion levels, species-specific physiological responses, interactions with other dietary components, and effects on the gut microbiota. This review synthesizes current research on CA, critically evaluates its functional roles in aquaculture, and assesses its relevance to sustainable production. Priorities for future work include elucidating mechanisms of action, conducting cross-species dose–response studies, standardizing dosing protocols, clarifying microbiome effects, and evaluating economic feasibility for large-scale use. Addressing these gaps will be essential to realize the full potential of CA as a functional feed additive in sustainable aquaculture systems. Full article
(This article belongs to the Special Issue Aquatic Animal Nutrition and Feed)
Show Figures

Figure 1

31 pages, 763 KB  
Review
Tackling Threats from Emerging Fungal Pathogens: Tech-Driven Approaches for Surveillance and Diagnostics
by Farjana Sultana, Mahabuba Mostafa, Humayra Ferdus, Nur Ausraf and Md. Motaher Hossain
Stresses 2025, 5(3), 56; https://doi.org/10.3390/stresses5030056 (registering DOI) - 1 Sep 2025
Abstract
Emerging fungal plant pathogens are significant biotic stresses to crops that threaten global food security, biodiversity, and agricultural sustainability. Historically, these pathogens cause devastating crop losses and continue to evolve rapidly due to climate change, international trade, and intensified farming practices. Recent advancements [...] Read more.
Emerging fungal plant pathogens are significant biotic stresses to crops that threaten global food security, biodiversity, and agricultural sustainability. Historically, these pathogens cause devastating crop losses and continue to evolve rapidly due to climate change, international trade, and intensified farming practices. Recent advancements in diagnostic technologies, including remote sensing, sensor-based detection, and molecular techniques, are transforming disease monitoring and detection. These tools, when combined with data mining and big data analysis, facilitate real-time surveillance and early intervention strategies. There is a need for extension and digital advisory services to empower farmers with actionable insights for effective disease management. This manuscript presents an inclusive review of the socioeconomic and historical impacts of fungal plant diseases, the mechanisms driving the emergence of these pathogens, and the pressing need for global surveillance and reporting systems. By analyzing recent advancements and the challenges in the surveillance and diagnosis of fungal pathogens, this review advocates for an integrated, multidisciplinary approach to address the growing threats posed by these emerging fungal diseases. Fostering innovation, enhancing accessibility, and promoting collaboration at both national and international levels are crucial for the agricultural community to protect crops from these emerging biotic stresses, ensuring food security and supporting sustainable farming practices. Full article
(This article belongs to the Section Plant and Photoautotrophic Stresses)
26 pages, 892 KB  
Review
Transcription Factors in Rice (Oryza sativa) Agriculture: Enhancing Resilience to Environmental Stress and Global Food Security
by Helmi Gammanpila, M. A. Nethmini Sashika and S. V. G. N. Priyadarshani
Stresses 2025, 5(3), 55; https://doi.org/10.3390/stresses5030055 (registering DOI) - 1 Sep 2025
Abstract
Rice (Oryza sativa), a crucial global staple, grapples with environmental stress and resource constraints, necessitating sustainable farming. This review explores the transformative role of transcription factors (TFs) in revolutionizing rice agriculture and their potential impact on global food security. It underscores [...] Read more.
Rice (Oryza sativa), a crucial global staple, grapples with environmental stress and resource constraints, necessitating sustainable farming. This review explores the transformative role of transcription factors (TFs) in revolutionizing rice agriculture and their potential impact on global food security. It underscores TFs’ pivotal role in gene expression, particularly in responding to environmental stimuli, presenting a promising avenue for enhancing rice resilience. Delving into key TF families in rice, it highlights their multifaceted roles in abiotic stress responses, defense mechanisms, yield improvement, nutrient uptake, seed development, photosynthesis, and flowering regulation. Specific TFs, including DREB (Dehydration-Responsive Element-Binding), WRKY, NAC, MYB (Myeloblastosis), AP2/ERF (APETALA2/Ethylene Responsive Factor), and bHLH (basic Helix–Loop–Helix), are examined for their contributions to stress resilience, defense mechanisms, and yield enhancement. Concrete examples from cutting-edge research illustrate the tangible benefits of harnessing these molecular regulators. However, manipulating TFs presents challenges, necessitating innovative approaches such as predictive models, collaborative field testing, and transparent communication to navigate intricate regulatory networks and regulatory hurdles. Ultimately, a promising future emerges where manipulating rice TFs leads to the development of resilient, high-yielding, and nutritious varieties. Embracing research advancements and addressing existing challenges is imperative to unlock the full potential of these concealed regulators, ensuring sustainable food security for a growing global population. Full article
(This article belongs to the Section Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

23 pages, 2096 KB  
Review
Epigenetic Mechanisms Associated with Livestock Adaptation to Heat Stress
by Sundar Aravindh, Mullakkalparambil Velayudhan Silpa, Santhi Priya Voggu, Ebenezer Binuni Rebez, Gajendirane Kalaignazhal, Mouttou Vivek Srinivas, Frank Rowland Dunshea and Veerasamy Sejian
Biology 2025, 14(9), 1154; https://doi.org/10.3390/biology14091154 - 1 Sep 2025
Abstract
The livestock sector, a crucial source of revenue and global food security, is facing serious challenges due to climate change driven by global warming. This leads to serious effects on animal health and productivity, making it difficult for the livestock industry to meet [...] Read more.
The livestock sector, a crucial source of revenue and global food security, is facing serious challenges due to climate change driven by global warming. This leads to serious effects on animal health and productivity, making it difficult for the livestock industry to meet the global demand and sustain the livelihoods of farmers. The main factor affecting livestock’s productivity is heat stress. However, animals develop various adaptive mechanisms to cope with the effects of heat stress. Cellular and molecular responses act as key defense mechanisms, enabling animals adapt to environmental changes. The recent advancements in molecular biology have opened up opportunities for extensive research on epigenetics, which has a key role in regulating gene expression in animals in response to environmental stimuli. Such studies have gained considerable attention regarding heat acclimation in animals due to the fact that epigenetic mechanisms have been recognized as key players in long-term adaptation to high temperatures in farm animals. This review summarizes the different mechanisms and methodologies used to assess heat stress-associated epigenetic changes, including DNA methylation, which is an extensively studied epigenetic regulatory mechanism in relation to gene expression. The review also highlights the mechanisms and regulation of adaptation to heat stress in animals and collates information related to various epigenetic markers to assess the heat stress response, thereby aiding in improving thermal resilience in animals. Full article
Show Figures

Figure 1

26 pages, 3150 KB  
Case Report
Metabolic Disorders in Transition Dairy Cows in a 500-Cow Herd—Analysis, Prevention and Follow-Up
by Melanie Schären-Bannert, Benno Waurich, Fanny Rachidi, Adriana Wöckel, Wolf Wippermann, Julia Wittich, Guntram Hermenau, Erik Bannert, Peter Hufe, Detlef May, Sven Dänicke, Hermann Swalve and Alexander Starke
Dairy 2025, 6(5), 49; https://doi.org/10.3390/dairy6050049 (registering DOI) - 1 Sep 2025
Abstract
Managing transition cows and preventing diseases related to this period is challenging due to the latter’s multifactorial nature. The aim of this applied observational case study is to illustrate and discuss the different aspects involved and provide an approach to analysis and the [...] Read more.
Managing transition cows and preventing diseases related to this period is challenging due to the latter’s multifactorial nature. The aim of this applied observational case study is to illustrate and discuss the different aspects involved and provide an approach to analysis and the resulting management solutions using a real-life case within a 500-cow herd. The initial assessment, involving the collection of data on the level of production, animal health and behaviour, and metabolic indicators, as well as management and housing key indicators, revealed key risk factors, including overcrowding, suboptimal feeding strategies, inadequate water supply, and insufficient disease monitoring. These factors contributed to increased cases of metabolic disorders such as hypocalcemia (annual incidence 7.8%), excessive lipomobilisation, and displaced abomasum (annual incidence 5.2%). A holistic approach combining feeding adjustments, disease monitoring, facility improvements, and long-term management strategies was implemented to address these challenges. Short-term interventions, such as optimizing the dietary cation–anion balance and enhancing disease detection protocols, led to noticeable improvements. However, structural constraints and external factors, such as extreme weather conditions (heat stress) and economic limitations, created significant hurdles in achieving immediate and sustained success. The farm ultimately opted for infrastructural improvements, including a new transition cow facility, to provide a long-term solution to these recurring issues. This case highlights the complexity of transition cow management, demonstrating that long-term success depends on continuous monitoring, interdisciplinary collaboration, and adaptability in response to evolving challenges in dairy production. Full article
Show Figures

Figure 1

13 pages, 424 KB  
Review
Investigating the Utility of Dopamine in Agricultural Practices: A Review
by Wael M. Semida, Kareem Khalafallah Abdeltawab, Ashraf Sh. Osman and Mohamed H. H. Roby
Metabolites 2025, 15(9), 586; https://doi.org/10.3390/metabo15090586 (registering DOI) - 31 Aug 2025
Abstract
Background/Objectives: Dopamine (DA), a chemical commonly associated with neuroscience and human physiology, has been the subject of growing interest in the field of agriculture due to its potential applications. Methods: This comprehensive review examines the multifaceted role of dopamine in agricultural [...] Read more.
Background/Objectives: Dopamine (DA), a chemical commonly associated with neuroscience and human physiology, has been the subject of growing interest in the field of agriculture due to its potential applications. Methods: This comprehensive review examines the multifaceted role of dopamine in agricultural practices, elucidating its chemical characteristics, biological activities, and diverse applications. The review examines the chemical properties and physiological functions of dopamine in plants, highlighting the unique characteristics that make it suitable for agricultural applications. A significant portion of the review is dedicated to analyzing the biological activities of dopamine, particularly its antioxidant properties, and exploring the underlying mechanisms. The review also delves into the potential of dopamine to enhance crop growth, yield, and quality and investigates the influence of dopamine on plant physiology and metabolism. Results: Furthermore, the review provides a forward-looking perspective on the prospects of dopamine in agriculture, identifying emerging trends and areas of innovation that hold promise for sustainable and resilient farming systems. Conclusions: In summary, this review consolidates the current knowledge surrounding dopamine’s potential in agriculture, underscoring its versatility as a natural tool for growth enhancement and environmental sustainability, and offering valuable insights for researchers, practitioners, and policymakers seeking innovative approaches to address the challenges of modern agriculture. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

26 pages, 1699 KB  
Review
Improving Biocontrol Potential of Antagonistic Yeasts Against Fungal Pathogen in Postharvest Fruits and Vegetables Through Application of Organic Enhancing Agents
by Gerefa Sefu Edo, Esa Abiso Godana, Guillaume Legrand Ngolong Ngea, Kaili Wang, Qiya Yang and Hongyin Zhang
Foods 2025, 14(17), 3075; https://doi.org/10.3390/foods14173075 - 31 Aug 2025
Abstract
Fruits and vegetables are essential for a healthy diet, providing vital nutrients and contributing to global food security. Fungal pathogens that interact with fruits and vegetables reduce their quality and shelf life and lead to economic losses and risks to human health through [...] Read more.
Fruits and vegetables are essential for a healthy diet, providing vital nutrients and contributing to global food security. Fungal pathogens that interact with fruits and vegetables reduce their quality and shelf life and lead to economic losses and risks to human health through the production of mycotoxins. Chemical fungicides, used to control postharvest pathogens, are posing serious environmental and health risks, driving interest in safer alternative strategies. Biocontrol methods using antagonistic microbes, such as yeasts, are eco-friendly, sustainable, and the most promising, but they often have limited efficacy and specificity in diverse produce. There is growing interest in the innovative enhancement of biocontrol strategies. The present review shows that inducing, enhancing, co-application, encapsulation, and post-application treatments are common enhancement techniques, while environmental, host, and pathogen characteristics, antagonistic microbial traits, and chemical inputs are the major gearing factors for the best application methods. These methods do not involve genetic modification, which is adequate to reduce the proliferation of GMOs (Genetically Modified Organisms) while optimizing antagonistic microbial performance by promoting growth, inducing host resistance, enhancing antifungal properties, improving adhesion, and boosting stress tolerance. Most enhancers fall under groups of nutritional additives, protective carriers, growth stimulants, and encapsulants. Integrating these enhancers and best methods promises reduced postharvest losses, supports sustainable agriculture, and addresses economic losses and food security challenges. This study highlights the role of organic and natural elicitors, their application methods, their mechanisms in improving BCAs (Biological Control Agents), and their overall efficiency. This review concisely compiles recent strategies, calling for further research to revolutionize fungal pathogen management, reduce food waste, and promote responsible farming practices. Full article
(This article belongs to the Special Issue Sustainable Agriculture for Food and Nutrition Security)
Show Figures

Figure 1

21 pages, 2777 KB  
Review
Key Concepts Used in Climate Change Mitigation Strategies in the Coffee Sector
by Yazmín Rubí Córdoba-Mora, Marisol Lima-Solano, Fernando Carlos Gómez-Merino, Rafael Antonio Díaz-Porras, Adriana Contreras-Oliva and Victorino Morales-Ramos
Sustainability 2025, 17(17), 7848; https://doi.org/10.3390/su17177848 (registering DOI) - 31 Aug 2025
Abstract
Key concepts such as “carbon footprint”, “carbon neutral”, “carbon neutrality”, “low carbon”, and “net-zero emissions” have gained prominence in the context of climate change, a current issue that has become an urgent global challenge caused by anthropogenic activities, including agriculture. This bibliometric review [...] Read more.
Key concepts such as “carbon footprint”, “carbon neutral”, “carbon neutrality”, “low carbon”, and “net-zero emissions” have gained prominence in the context of climate change, a current issue that has become an urgent global challenge caused by anthropogenic activities, including agriculture. This bibliometric review analyzed the use of these concepts in mitigation strategies for the coffee sector, since coffee production significantly contributes to greenhouse gas (GHG) emissions, primarily due to land use change, fertilizer use, and processing methods, and therefore, sustainable approaches within the whole coffee value chain need to be implemented. A total of 105 documents from the Scopus database, covering publications from January 1988 to June 2023, were analyzed. Co-word analysis and co-occurrence mapping techniques, together with traditional bibliometric laws and historical evolution analysis using VOSviewer and Bibliometrix, were applied. The evolution of research over time revealed that the first concept introduced for documenting the reduction in greenhouse gas (GHG) emissions was “low carbon emissions” in 1909, but it was not until 2008 that the first document was published establishing a link between “low carbon emissions” and “coffee”. In 2015, two more concepts, “carbon neutral” and “carbon neutrality”, documented since 1968 and 1995, respectively, were used in articles related to coffee. So far, the most relevant concept in quantifying GHG emissions in the context of coffee production activities has been “carbon footprint”. When it comes to new documents linking key concepts to coffee, between 2015 and 2018, there was an average of six documents per year. Since 2019, the average has remained at 15, highlighting the need to continue documenting climate change mitigation strategies in the coffee sector. Practical application of our findings for coffee sustainability programs must include the adoption of on-farm sustainable agricultural practices that span the entire value chain. In conclusion, this study underscores the importance of concepts such as “carbon footprint” and “carbon neutrality” as key pillars in the development of effective climate change mitigation strategies in the coffee sector and the significance of their integration into future research and global policies with practical applications, with far-reaching implications for sustainable agriculture in the near future. Full article
Show Figures

Figure 1

18 pages, 20579 KB  
Article
Isolation and Characterization of a Novel Porcine Teschovirus 2 Strain: Incomplete PERK-Mediated Unfolded Protein Response Supports Viral Replication
by Xiaoying Feng, Yiyang Du, Yueqing Lv, Xiaofang Wei, Chang Cui, Yibin Qin, Bingxia Lu, Zhongwei Chen, Kang Ouyang, Ying Chen, Zuzhang Wei, Weijian Huang, Ying He and Yifeng Qin
Viruses 2025, 17(9), 1200; https://doi.org/10.3390/v17091200 - 31 Aug 2025
Abstract
Porcine Teschovirus (PTV) is a highly prevalent pathogen within swine populations, primarily associated with encephalitis, diarrhea, pneumonia, and reproductive disorders in pigs, thereby posing a significant threat to the sustainable development of the pig farming industry. In this study, a novel strain of [...] Read more.
Porcine Teschovirus (PTV) is a highly prevalent pathogen within swine populations, primarily associated with encephalitis, diarrhea, pneumonia, and reproductive disorders in pigs, thereby posing a significant threat to the sustainable development of the pig farming industry. In this study, a novel strain of PTV was isolated from the feces of a pig exhibiting symptoms of diarrhea, utilizing PK-15 cell lines. The structural integrity of the viral particles was confirmed via transmission electron microscopy, and the viral growth kinetics and characteristics were evaluated in PK-15 cells. High-throughput sequencing facilitated the acquisition of the complete viral genome, and subsequent phylogenetic analysis and full-genome alignment identified the strain as belonging to the PTV 2 genotype. Further investigation revealed that infection with the PTV-GXLZ2024 strain induces phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α) in PK-15 cells, indicating activation of the unfolded protein response (UPR) through the PERK pathway, with minimal involvement of the IRE1 or ATF6 pathways. Notably, ATF4 protein expression was progressively downregulated throughout the infection, while downstream CHOP protein levels remained unchanged, indicating an incomplete UPR induced by PTV-GXLZ2024. Furthermore, PERK knockdown was found to enhance the replication of PTV-GXLZ2024. This study provides critical insights into the molecular mechanisms underlying PTV pathogenesis and establishes a foundation for future research into its evolutionary dynamics and interactions with host organisms. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

16 pages, 2315 KB  
Article
Morphometric Variation and Production Constraints of Criollo Sheep in the High Andes of Southern Peru
by Richard Estrada, Elias Guelac-Mori, Cristian Pedemonte-Cruz, Katherine M. Chiqui-Condori, Klinsmann Montero Pacherres, Dilser Cerdan-Ramos and Dayana M. Zúñiga-Aranibar
Agriculture 2025, 15(17), 1860; https://doi.org/10.3390/agriculture15171860 (registering DOI) - 31 Aug 2025
Abstract
This study aimed to characterize the morphometric traits and production systems of Criollo sheep in the highlands of Caylloma, Arequipa, Peru. A total of 455 sheep were evaluated using a stratified proportional sampling method across the districts of Tisco, San Antonio de Chuca, [...] Read more.
This study aimed to characterize the morphometric traits and production systems of Criollo sheep in the highlands of Caylloma, Arequipa, Peru. A total of 455 sheep were evaluated using a stratified proportional sampling method across the districts of Tisco, San Antonio de Chuca, and Yanque. Morphometric data were collected under standardized conditions, and nine zoometric indices were calculated to assess functional conformation and productive aptitude. Additionally, 52 sheep producers were surveyed to contextualize herd management practices. Results revealed low levels of formal education and limited technical assistance among producers. Sheep farming was primarily sustained by family tradition, with declining flock sizes attributed to pasture scarcity and climatic challenges. Campaign-based sales strategies and rudimentary reproductive management were prevalent. Health practices showed widespread deworming but limited preventive care. Multivariate analysis indicated significant morphometric variation linked to sex, biotype, and dental stage. This integrative approach highlights both the adaptive potential and production constraints of Criollo sheep in high-altitude environments, providing a basis for developing breeding strategies based on morphometric indices. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

21 pages, 815 KB  
Review
Non-Alcoholic Fatty Liver Disease in Poultry: Risk Factors, Mechanism of Development, and Emerging Strategies
by Aneeqa Imtiaz, Muhammad Talha Bin Tahir, Minmeng Zhao, Daoqing Gong, Jing Ge and Tuoyu Geng
Int. J. Mol. Sci. 2025, 26(17), 8460; https://doi.org/10.3390/ijms26178460 (registering DOI) - 30 Aug 2025
Viewed by 43
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant metabolic disorder in modern poultry production, particularly affecting high-yielding laying hens. This condition compromises bird welfare, productivity, and economic sustainability within commercial farming systems. This narrative review provides a comprehensive overview of the [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant metabolic disorder in modern poultry production, particularly affecting high-yielding laying hens. This condition compromises bird welfare, productivity, and economic sustainability within commercial farming systems. This narrative review provides a comprehensive overview of the underlying mechanisms through which hepatic lipid accumulation, metabolic dysfunctions, hormonal imbalances, genetic susceptibilities, and environmental stress contribute to the development of NAFLD. The multifactorial nature of NAFLD is explored through a critical assessment of the literature, highlighting the influence of diet composition, management practices, and physiological demands associated with intensive egg production. Emphasis is placed on recent advancements in nutritional modulation, selective breeding, and housing improvements aimed at prevention and mitigation of NAFLD. Furthermore, the review identifies key research gaps, including limited understanding of epigenetic influences and the long-term efficacy of intervention strategies. An integrative framework is advocated, synergizing genetics, nutrition, and environmental optimization to effectively address the complexity of NAFLD in poultry and supports the development of resilient production systems. The insights presented aims to inform both future research and practical applications for enhancing poultry health and performance. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

26 pages, 2313 KB  
Article
First Tests on the Performance and Reliability of an Experimental Bio-Based UTTO Lubricant Used in an Agricultural Tractor
by Roberto Fanigliulo, Renato Grilli, Laura Fornaciari, Stefano Benigni and Daniele Pochi
Energies 2025, 18(17), 4612; https://doi.org/10.3390/en18174612 (registering DOI) - 30 Aug 2025
Viewed by 50
Abstract
Inside the transmission group of an agricultural tractor, the efficiency of power transfer to moving parts, their lubrication, and protection from wear are guaranteed by UTTO (Universal Tractor Transmission Oil) fluids, which are also used to operate the hydraulic system. These fluids, with [...] Read more.
Inside the transmission group of an agricultural tractor, the efficiency of power transfer to moving parts, their lubrication, and protection from wear are guaranteed by UTTO (Universal Tractor Transmission Oil) fluids, which are also used to operate the hydraulic system. These fluids, with mineral or synthetic origin, are characterized by excellent lubricating properties, high toxicity, and low biodegradability, which makes it important to replace them with more eco-sustainable fluids, such as those based on vegetable oils that are highly biodegradable and have low toxicity. It is also important to consider EU policies on the use of such fluids in sensitive environmental applications. To this end, several experimental bio-UTTO formulations were tested at CREA to evaluate—compared to conventional fluids—their suitability for use as lubricants for transmissions and hydraulic systems through endurance tests carried out in a Fluid Test Rig (FTR) specifically developed by CREA to apply controlled and repeatable work cycles to small volumes of oil, which are characterized by high thermal and mechanical stresses. The technical performance and the main physical–chemical parameters of the fluids were continuously monitored during the work cycles. Based on these experiences, this study describes the first application of a methodological approach aimed at testing an experimental biobased UTTO on a tractor used in normal farm activity. The method was based on a former test at the FTR in which the performance of the bio-UTTO was compared to that of the conventional UTTO recommended by the tractor manufacturer. Given the good results of the FTR test, bio-UTTO was introduced in a 20-year-old medium-power tractor, replacing the mineral fluid originally supplied, for the first reliability tests during its normal use on the CREA farm. After almost 600 h of work, the technical performance and the trend of chemical–physical parameters of bio-UTTO did not undergo significant changes. No damage to the tractor materials or oil leaks was observed. The test is still ongoing, but according to the results, in line with the indications provided by the FTR test, the experimental bio-UTTO seems suitable for replacing the conventional fluid in the tractor used in this study. Full article
Show Figures

Figure 1

Back to TopTop