Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,374)

Search Parameters:
Keywords = sustainable infrastructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 258 KB  
Article
Enhancing Research Visibility: A Comparative Study on the Implementation of CRIS Systems at Universidad Católica de Santa María and Its Contrast with Other Universities
by Javier Fernando Angulo-Osorio, César Daniel Valdivia-Portugal and Karina Rosas-Paredes
Publications 2025, 13(4), 51; https://doi.org/10.3390/publications13040051 (registering DOI) - 5 Oct 2025
Abstract
Research visibility has become a critical issue for universities, yet the institutional conditions that shape it remain underexplored. While Current Research Information Systems (CRISs) provide essential infrastructure for managing publications and researcher profiles, their impact depends on broader governance and cultural factors. This [...] Read more.
Research visibility has become a critical issue for universities, yet the institutional conditions that shape it remain underexplored. While Current Research Information Systems (CRISs) provide essential infrastructure for managing publications and researcher profiles, their impact depends on broader governance and cultural factors. This study compares four universities—two in Peru, one in Chile, and one in Spain—that have adopted the Pure CRIS platform. Data were manually extracted from institutional portals and analyzed descriptively, using normalized indicators such as publications per researcher, Sustainable Development Goal (SDG) alignment, and collaboration networks. Although based on a limited sample, the analysis highlights substantial contrasts: European institutions show consolidated integration of CRIS into national evaluation systems, while Latin American universities remain at earlier stages of adoption, with fragmented policies and limited international reach. The findings suggest that technological platforms alone are insufficient; institutional commitment, coherent policies, and academic cultures that value dissemination are decisive. These insights contribute a comparative framework to guide universities, particularly in Latin America, seeking to strengthen their global research visibility. Full article
26 pages, 3051 KB  
Article
Impact of Massive Electric Vehicle Penetration on Quito’s 138 kV Distribution System: Probabilistic Analysis for a Sustainable Energy Transition
by Paul Andrés Masache, Washington Rodrigo Freire, Leandro Gabriel Corrales, Ana Lucia Mañay and Pablo Andrés Reyes
World Electr. Veh. J. 2025, 16(10), 570; https://doi.org/10.3390/wevj16100570 (registering DOI) - 5 Oct 2025
Abstract
The study evaluates the impact of massive electric vehicle (EV) penetration on Quito’s 138 kV distribution system in Ecuador, employing a probabilistic approach to support a sustainable energy transition. The rapid adoption of EVs, as projected by Ecuador’s National Electromobility Strategy, poses significant [...] Read more.
The study evaluates the impact of massive electric vehicle (EV) penetration on Quito’s 138 kV distribution system in Ecuador, employing a probabilistic approach to support a sustainable energy transition. The rapid adoption of EVs, as projected by Ecuador’s National Electromobility Strategy, poses significant challenges to the capacity and reliability of the city’s electrical infrastructure. The objective is to analyze the system’s response to increased EV load and assess its readiness for this scenario. A methodology integrating dynamic battery modeling, Monte Carlo simulations, and power flow analysis was employed, evaluating two penetration levels: 800 and 25,000 EVs, under homogeneous and non-homogeneous distribution scenarios. The results indicate that while the system can handle moderate penetration, high penetration levels lead to overloads in critical lines, such as L10–15 and L11–5, compromising normal system operation. It is concluded that specific infrastructure upgrades and the implementation of smart charging strategies are necessary to mitigate operational risks. This approach provides a robust framework for effective planning of EV integration into the system, contributing key insights for a transition toward sustainable mobility. Full article
(This article belongs to the Special Issue Impact of Electric Vehicles on Power Systems and Society)
Show Figures

Figure 1

19 pages, 1948 KB  
Article
Graph-MambaRoadDet: A Symmetry-Aware Dynamic Graph Framework for Road Damage Detection
by Zichun Tian, Xiaokang Shao and Yuqi Bai
Symmetry 2025, 17(10), 1654; https://doi.org/10.3390/sym17101654 (registering DOI) - 5 Oct 2025
Abstract
Road-surface distress poses a serious threat to traffic safety and imposes a growing burden on urban maintenance budgets. While modern detectors based on convolutional networks and Vision Transformers achieve strong frame-level performance, they often overlook an essential property of road environments—structural symmetry [...] Read more.
Road-surface distress poses a serious threat to traffic safety and imposes a growing burden on urban maintenance budgets. While modern detectors based on convolutional networks and Vision Transformers achieve strong frame-level performance, they often overlook an essential property of road environments—structural symmetry within road networks and damage patterns. We present Graph-MambaRoadDet (GMRD), a symmetry-aware and lightweight framework that integrates dynamic graph reasoning with state–space modeling for accurate, topology-informed, and real-time road damage detection. Specifically, GMRD employs an EfficientViM-T1 backbone and two DefMamba blocks, whose deformable scanning paths capture sub-pixel crack patterns while preserving geometric symmetry. A superpixel-based graph is constructed by projecting image regions onto OpenStreetMap road segments, encoding both spatial structure and symmetric topological layout. We introduce a Graph-Generating State–Space Model (GG-SSM) that synthesizes sparse sample-specific adjacency in O(M) time, further refined by a fusion module that combines detector self-attention with prior symmetry constraints. A consistency loss promotes smooth predictions across symmetric or adjacent segments. The full INT8 model contains only 1.8 M parameters and 1.5 GFLOPs, sustaining 45 FPS at 7 W on a Jetson Orin Nano—eight times lighter and 1.7× faster than YOLOv8-s. On RDD2022, TD-RD, and RoadBench-100K, GMRD surpasses strong baselines by up to +6.1 mAP50:95 and, on the new RoadGraph-RDD benchmark, achieves +5.3 G-mAP and +0.05 consistency gain. Qualitative results demonstrate robustness under shadows, reflections, back-lighting, and occlusion. By explicitly modeling spatial and topological symmetry, GMRD offers a principled solution for city-scale road infrastructure monitoring under real-time and edge-computing constraints. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

21 pages, 2422 KB  
Article
The Impact of Drought Risk on Maize Crop in Romania
by Flavia Mirela Barna and Alina Claudia Manescu
Sustainability 2025, 17(19), 8870; https://doi.org/10.3390/su17198870 (registering DOI) - 4 Oct 2025
Abstract
This study examines the effects of climate change on maize production in Romania between 2003 and 2024, focusing on yield dynamics, regional disparities, and economic losses. Maize, a key crop in Romanian agriculture, has become increasingly vulnerable to extreme weather events, particularly droughts, [...] Read more.
This study examines the effects of climate change on maize production in Romania between 2003 and 2024, focusing on yield dynamics, regional disparities, and economic losses. Maize, a key crop in Romanian agriculture, has become increasingly vulnerable to extreme weather events, particularly droughts, which remain the most frequent risk. The analysis highlights a marked decline in maize yields and cultivated area in recent years, strongly correlated with severe droughts in 2020, 2022, and 2024. The results show that western and northern counties display greater resilience, while southeastern regions face significant yield losses. The economic impact is substantial, with losses exceeding EUR 1 billion. These findings underscore the systemic nature of climate-related risks and call for region-specific adaptation strategies, expanded irrigation infrastructure, and index-based insurance schemes to strengthen resilience and ensure sustainable maize production under changing climatic conditions. Full article
(This article belongs to the Special Issue Agricultural Economics, Advisory Systems and Sustainability)
25 pages, 8347 KB  
Article
Integrated Assessment of Pasture Ecosystem Degradation Processes in Arid Zones: A Case Study of Atyrau Region, Kazakhstan
by Kazhmurat Akhmedenov, Nurlan Sergaliev, Murat Makhambetov, Aigul Sergeyeva, Kuat Saparov, Roza Izimova, Akhan Turgumbaev and Dinmuhamed Iskaliev
Sustainability 2025, 17(19), 8869; https://doi.org/10.3390/su17198869 (registering DOI) - 4 Oct 2025
Abstract
This article presents an integrated assessment of pasture ecosystem degradation under conditions of extreme aridity in the Atyrau Region, where high livestock density, limited grazing capacity, and institutional fragmentation of land tenure exacerbate degradation risks. The study aimed to conduct a spatio-temporal analysis [...] Read more.
This article presents an integrated assessment of pasture ecosystem degradation under conditions of extreme aridity in the Atyrau Region, where high livestock density, limited grazing capacity, and institutional fragmentation of land tenure exacerbate degradation risks. The study aimed to conduct a spatio-temporal analysis of pasture conditions and identify critical load zones to support sustainable management strategies. The methodology was based on a multi-factor Anthropogenic Load (AL) model integrating (1) calculation of pasture load (PL) using 2023 agricultural statistics with livestock numbers converted into livestock units; (2) spatial analysis of grazing concentration through Kernel Density Estimation in ArcGIS 10.8; (3) assessment of infrastructural accessibility (Accessibility Index, Ai); and (4) quantitative evaluation of institutional land use organization (Institutional Index, Ii). This integrative approach enabled the identification of stable, transitional, and critically overloaded zones and provided a cartographic basis for sustainable management. Results revealed persistent degradation hotspots within 3–5 km of water sources and settlements, while up to 40% of productive pastures remain excluded from use. The proposed AL model demonstrated high reproducibility and applicability for environmental monitoring and regional land use planning in arid regions of Central Asia. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

29 pages, 1463 KB  
Review
An Overview of Fish Disease Diagnosis and Treatment in Aquaculture in Bangladesh
by Md. Naim Mahmud, Abu Ayub Ansary, Farzana Yasmin Ritu, Neaz A. Hasan and Mohammad Mahfujul Haque
Aquac. J. 2025, 5(4), 18; https://doi.org/10.3390/aquacj5040018 (registering DOI) - 4 Oct 2025
Abstract
Aquaculture has rapidly become a vital sector for ensuring global food security by meeting the growing demand for animal protein. Bangladesh, one of the world’s leading aquaculture producers, recorded a production of 4.91 million MT in 2022–2023, largely driven by inland farming systems. [...] Read more.
Aquaculture has rapidly become a vital sector for ensuring global food security by meeting the growing demand for animal protein. Bangladesh, one of the world’s leading aquaculture producers, recorded a production of 4.91 million MT in 2022–2023, largely driven by inland farming systems. Despite this remarkable growth, the sector is highly vulnerable to disease outbreaks, which are aggravated by different factors. Pathogens such as bacteria, viruses, fungi, and parasites cause significant losses, while conventional disease diagnosis in Bangladesh still depends mainly on visual assessment and basic laboratory techniques, limiting early detection. This narrative review highlights recent advances in diagnostics as molecular tools, immunodiagnostics, nanodiagnostics, machine learning, and next-generation sequencing (NGS) that are widely applied globally but remain limited in Bangladesh due to infrastructure gaps, lack of skilled manpower, and resource constraints. Current treatment strategies largely rely on antibiotics and aquaculture medicinal products (AMPs), often misused without proper diagnosis, contributing to antimicrobial resistance (AMR). Promising alternatives, including probiotics, immunostimulants, vaccines, and enhanced biosecurity, require greater adoption and farmer awareness. The near-term priorities for Bangladesh include standardized disease and AMR surveillance, prudent antibiotic stewardship, phased adoption of validated rapid diagnostics, and investment in diagnostic and human capacity. Policy-level actions, including a national aquatic animal health strategy, stricter antimicrobial regulation, strengthening diagnostic infrastructure in institution, are crucial to achieve sustainable disease management and ensure long-term resilience of aquaculture in Bangladesh. Full article
Show Figures

Figure 1

27 pages, 2297 KB  
Article
Artificial Intelligence Adoption in Non-Chemical Agriculture: An Integrated Mechanism for Sustainable Practices
by Arokiaraj A. Amalan and I. Arul Aram
Sustainability 2025, 17(19), 8865; https://doi.org/10.3390/su17198865 (registering DOI) - 4 Oct 2025
Abstract
Artificial Intelligence (AI) holds significant potential to enhance sustainable non-chemical agricultural methods (NCAM) by optimising resource management, automating precision farming practices, and strengthening climate resilience. However, its widespread adoption among farmers’ remains limited due to socio-economic, infrastructural, and justice-related challenges. This study investigates [...] Read more.
Artificial Intelligence (AI) holds significant potential to enhance sustainable non-chemical agricultural methods (NCAM) by optimising resource management, automating precision farming practices, and strengthening climate resilience. However, its widespread adoption among farmers’ remains limited due to socio-economic, infrastructural, and justice-related challenges. This study investigates AI adoption among NCAM farmers using an Integrated Mechanism for Sustainable Practices (IMSP) conceptual framework which combines the Technology Acceptance Model (TAM) with a justice-centred approach. A mixed-methods design was employed, incorporating Fuzzy-Set Qualitative Comparative Analysis (fsQCA) of AI adoption pathways based on survey data, alongside critical discourse analysis of thematic farmers narrative through a justice-centred lens. The study was conducted in Tamil Nadu between 30 September and 25 October 2024. Using purposive sampling, 57 NCAM farmers were organised into three focus groups: marginal farmers, active NCAM practitioners, and farmers from 18 districts interested in agricultural technologies and AI. This enabled an in-depth exploration of practices, adoption, and perceptions. The findings indicates that while factors such as labour shortages, mobile technology use, and cost efficiencies are necessary for AI adoption, they are insufficient without supportive extension services and inclusive communication strategies. The study refines the TAM framework by embedding economic, cultural, and political justice considerations, thereby offering a more holistic understanding of technology acceptance in sustainable agriculture. By bridging discourse analysis and fsQCA, this research underscores the need for justice-centred AI solutions tailored to diverse farming contexts. The study contributes to advancing sustainable agriculture, digital inclusion, and resilience, thereby supporting the United Nations’ Sustainable Development Goals (SDGs). Full article
Show Figures

Figure 1

15 pages, 5433 KB  
Article
Comparing Load-Bearing Capacity and Cost of Lime-Stabilized and Granular Road Bases for Rural Road Pavements
by Péter Primusz, Balázs Kisfaludi, Csaba Tóth and József Péterfalvi
Constr. Mater. 2025, 5(4), 74; https://doi.org/10.3390/constrmater5040074 - 3 Oct 2025
Abstract
In Hungary, on-site mixed stabilization of cohesive soil is considered only as soil improvement not a proper pavement layer, therefore its bearing capacity is not taken into account when designing pavement. It was our hypothesis that on low-volume roads built on cohesive soil, [...] Read more.
In Hungary, on-site mixed stabilization of cohesive soil is considered only as soil improvement not a proper pavement layer, therefore its bearing capacity is not taken into account when designing pavement. It was our hypothesis that on low-volume roads built on cohesive soil, lime or lime–cement stabilization can be an alternative to granular base layers. A case study was conducted to obtain initial results and to verify the research methodology. The efficacy of lime stabilization was evaluated across eight experimental road sections, with a view of assessing its structural and economic performance in comparison with crushed stone base layers reinforced with geo-synthetics. The results of the testing demonstrated elastic moduli of 120–180 MPa for the lime-stabilized layers, which closely matched the 200–280 MPa range observed for the crushed stone bases. The results demonstrated that lime stabilization offers a comparable load-bearing capacity while being the most cost-effective solution. Furthermore, this approach enhances sustainability by enabling the utilization of local soils, reducing reliance on imported materials, minimizing transport-related costs, and lowering carbon emissions. Lime stabilization provides a durable, environmentally friendly alternative for road construction, effectively addressing the challenges of material scarcity and rising construction costs while supporting infrastructure resilience. The findings highlight its potential to replace traditional base layers without compromising structural performance or economic viability. Full article
Show Figures

Figure 1

23 pages, 2788 KB  
Article
Green Cores as Architectural and Environmental Anchors: A Performance-Based Framework for Residential Refurbishment in Novi Sad, Serbia
by Marko Mihajlovic, Jelena Atanackovic Jelicic and Milan Rapaic
Sustainability 2025, 17(19), 8864; https://doi.org/10.3390/su17198864 - 3 Oct 2025
Abstract
This research investigates the integration of green cores as central biophilic elements in residential architecture, proposing a climate-responsive design methodology grounded in architectural optimization. The study begins with the full-scale refurbishment of a compact urban apartment, wherein interior partitions, fenestration and material systems [...] Read more.
This research investigates the integration of green cores as central biophilic elements in residential architecture, proposing a climate-responsive design methodology grounded in architectural optimization. The study begins with the full-scale refurbishment of a compact urban apartment, wherein interior partitions, fenestration and material systems were reconfigured to embed vegetated zones within the architectural core. Light exposure, ventilation potential and spatial coherence were maximized through data-driven design strategies and structural modifications. Integrated planting modules equipped with PAR-specific LED systems ensure sustained vegetation growth, while embedded environmental infrastructure supports automated irrigation and continuous microclimate monitoring. This plant-centered spatial model is evaluated using quantifiable performance metrics, establishing a replicable framework for optimized indoor ecosystems. Photosynthetically active radiation (PAR)-specific LED systems and embedded environmental infrastructure were incorporated to maintain vegetation viability and enable microclimate regulation. A programmable irrigation system linked to environmental sensors allows automated resource management, ensuring efficient plant sustenance. The configuration is assessed using measurable indicators such as daylight factor, solar exposure, passive thermal behavior and similar elements. Additionally, a post-occupancy expert assessment was conducted with several architects evaluating different aspects confirming the architectural and spatial improvements achieved through the refurbishment. This study not only demonstrates a viable architectural prototype but also opens future avenues for the development of metabolically active buildings, integration with decentralized energy and water systems, and the computational optimization of living infrastructure across varying climatic zones. Full article
(This article belongs to the Special Issue Advances in Ecosystem Services and Urban Sustainability, 2nd Edition)
Show Figures

Figure 1

25 pages, 1904 KB  
Article
Has the “Belt and Road Initiative” Promoted Chinese OFDI in Green Energy? Evidence from Chinese Energy Engagement in BRI Countries
by Yuli Liu, Min Xu, Yu Huang and Ningning Fu
Energies 2025, 18(19), 5268; https://doi.org/10.3390/en18195268 - 3 Oct 2025
Abstract
The advancement of green energy is a crucial mechanism for balancing economic growth with environmental sustainability, helping to mitigate conflicts between development and ecological preservation. This paper assesses the policy effects of the Belt and Road Initiative (BRI) on China’s overseas green energy [...] Read more.
The advancement of green energy is a crucial mechanism for balancing economic growth with environmental sustainability, helping to mitigate conflicts between development and ecological preservation. This paper assesses the policy effects of the Belt and Road Initiative (BRI) on China’s overseas green energy projects (including gas) using the difference-in-difference (DID) model from 2009 to 2022. The findings show that, overall, the BRI has notably augmented China’s green energy projects in the BRI countries. This result remains robust after excluding potential interference from Nationally Determined Contributions (NDCs). Specifically, its promotional effect shows heterogeneity. Firstly, the BRI has shown significant regional differences in promoting the development of China’s overseas green energy projects. Secondly, the BRI is more effective in promoting green energy projects in developing and low-risk countries compared to developed and high-risk countries. Additionally, it indicates that the BRI boosts green energy projects in BRI countries by enhancing their infrastructure quality, encompassing transportation, energy, communication, and financial infrastructure. Finally, based on the above findings, this paper provides context-specific recommendations aimed at enhancing the effectiveness of the BRI in promoting sustainable green energy cooperation. Full article
(This article belongs to the Section B: Energy and Environment)
20 pages, 2412 KB  
Article
Prediction and Analysis of Abalone Aquaculture Production in China Based on an Improved Grey System Model
by Qing Yu, Jinling Ye, Xinlei Xu, Zhiqiang Lu and Li Ma
Sustainability 2025, 17(19), 8862; https://doi.org/10.3390/su17198862 - 3 Oct 2025
Abstract
This study employs an improved fractional-order grey multivariable convolution model (FGMC(1,N,2r)) to predict abalone aquaculture output in Fujian, Shandong, and Guangdong. By integrating fractional-order accumulation (r1, r2) with a particle-swarm-optimization (PSO) algorithm, the model addresses limitations of handling [...] Read more.
This study employs an improved fractional-order grey multivariable convolution model (FGMC(1,N,2r)) to predict abalone aquaculture output in Fujian, Shandong, and Guangdong. By integrating fractional-order accumulation (r1, r2) with a particle-swarm-optimization (PSO) algorithm, the model addresses limitations of handling multivariable interactions and sequence heterogeneity within small-sample regional datasets. Grey relational analysis (GRA) first identified key factors exhibiting the strongest associations with production: abalone production in Fujian and Shandong is predominantly influenced by funding for aquatic-technology extension (GRA degrees of 0.9156 and 0.8357, respectively), while in Guangdong, production was most strongly associated with import volume (GRA degree of 0.9312). Validation confirms that FGMC(1,N,2r) achieves superior predictive accuracy, with mean absolute percentage errors (MAPE) of 0.51% in Fujian, 3.51% in Shandong, and 2.12% in Guangdong, significantly outperforming benchmark models. Prediction of abalone production for 2024–2028 project sustained growth across Fujian, Shandong, and Guangdong. However, risks associated with typhoon disasters (X6 and import dependency (X5) require attention. The study demonstrates that the FGMC(1,N,2r) model achieves high predictive accuracy for regional aquaculture output. It identifies the primary drivers of abalone production: technology-extension funding in Fujian and Shandong, and import volume in Guangdong. These findings support the formulation of region-specific strategies, such as enhancing technological investment in Fujian and Shandong, and strengthening seed supply chains while reducing import dependency in Guangdong. Furthermore, by identifying vulnerabilities such as typhoon disasters and import reliance, the study underscores the need for resilient infrastructure and diversified seed sources, thereby providing a robust scientific basis for production optimization and policy guidance towards sustainable and environmentally sound aquaculture development. Full article
Show Figures

Figure 1

26 pages, 20743 KB  
Article
Assessing Rural Landscape Change Within the Planning and Management Framework: The Case of Topaktaş Village (Van, Turkiye)
by Feran Aşur, Kübra Karaman, Okan Yeler and Simay Kaskan
Land 2025, 14(10), 1991; https://doi.org/10.3390/land14101991 - 3 Oct 2025
Abstract
Rural landscapes are changing rapidly, yet many assessments remain descriptive and weakly connected to planning instruments. This study connects rural landscape analysis with planning and management by examining post-earthquake transformations in Topaktaş (Tuşba, Van), a village redesigned and relocated after the 2011 events. [...] Read more.
Rural landscapes are changing rapidly, yet many assessments remain descriptive and weakly connected to planning instruments. This study connects rural landscape analysis with planning and management by examining post-earthquake transformations in Topaktaş (Tuşba, Van), a village redesigned and relocated after the 2011 events. Using ArcGIS 10.8 and the Analytic Hierarchy Process (AHP), we integrate DEM, slope, aspect, CORINE land cover Plus, surface-water presence/seasonality, and proximity to hazards (active and surface-rupture faults) and infrastructure (Karasu Stream, highways, village roads). A risk overlay is treated as a hard constraint. We produce suitability maps for settlement, agriculture, recreation, and industry; derive a composite optimum land-use surface; and translate outputs into decision rules (e.g., a 0–100 m fault no-build setback, riparian buffers, and slope thresholds) with an outline for implementation and monitoring. Key findings show legacy footprints at lower elevations, while new footprints cluster near the upper elevation band (DEM range 1642–1735 m). Most of the area exhibits 0–3% slopes, supporting low-impact access where hazards are manageable; however, several newly designated settlement tracts conflict with risk and water-service conditions. Although limited to a single case and available data resolutions, the workflow is transferable: it moves beyond mapping to actionable planning instruments—zoning overlays, buffers, thresholds, and phased management—supporting sustainable, culturally informed post-earthquake reconstruction. Full article
Show Figures

Figure 1

23 pages, 760 KB  
Article
The Impact of Computing Infrastructure Construction on Innovation in Manufacturing Enterprises: Evidence from a Quasi-Natural Experiment Based on the Establishment of China’s National Supercomputing Centers
by Meng Li and Yang Xu
Sustainability 2025, 17(19), 8858; https://doi.org/10.3390/su17198858 - 3 Oct 2025
Abstract
This study examines the establishment of China’s national supercomputing centers as an exogenous policy shock. Utilizing data from Chinese manufacturing enterprises listed between 2003 and 2023, it applies a multi-period difference-in-differences (DID) model to assess the impact of computing infrastructure on innovation within [...] Read more.
This study examines the establishment of China’s national supercomputing centers as an exogenous policy shock. Utilizing data from Chinese manufacturing enterprises listed between 2003 and 2023, it applies a multi-period difference-in-differences (DID) model to assess the impact of computing infrastructure on innovation within Chinese manufacturing enterprises. Results indicate that computing infrastructure significantly enhances manufacturing innovation, a finding that is robust across various tests. This effect is positively moderated by the internal R&D investment of enterprises and the external market share. Heterogeneity analysis reveals that the enhancement effect of computing infrastructure on innovation is more pronounced in non-state-owned enterprises, those located in the eastern region, and those with low ownership concentration. Furthermore, computing infrastructure not only boosts the quantity of innovation but also enhances its quality. This paper offers micro-level evidence for emerging countries to advance sustainable development, transformation, and upgrading of the manufacturing sector through computing infrastructure. Full article
Show Figures

Figure 1

35 pages, 2599 KB  
Article
Integrated Evaluation of C-ITS Services: Synergistic Effects of GLOSA and CACC on Traffic Efficiency and Sustainability
by Manuel Walch and Matthias Neubauer
Sustainability 2025, 17(19), 8855; https://doi.org/10.3390/su17198855 - 3 Oct 2025
Abstract
Cooperative Intelligent Transport Systems (C-ITS) have emerged as a key enabler of more efficient, safer, and environmentally sustainable road traffic by allowing vehicles and infrastructure to exchange information and coordinate behavior. To evaluate their benefits, impact assessment studies are essential. However, most existing [...] Read more.
Cooperative Intelligent Transport Systems (C-ITS) have emerged as a key enabler of more efficient, safer, and environmentally sustainable road traffic by allowing vehicles and infrastructure to exchange information and coordinate behavior. To evaluate their benefits, impact assessment studies are essential. However, most existing studies focus on individual C-ITS services in isolation, overlooking how combined deployments influence outcomes. This study addresses this gap by presenting the first systematic evaluation of individual and joint deployments of Cooperative Adaptive Cruise Control (CACC) and Green Light Optimal Speed Advisory (GLOSA) under diverse conditions. A dual-model simulation framework is applied, combining controlled artificial networks with calibrated real-world corridors in Upper Austria. This allows both statistical testing and validation of plausibility in real-world contexts. Key performance indicators include travel time and CO2 emissions, evaluated across varying lane configurations, numbers of traffic lights, demand levels, and equipment rates. The results demonstrate that C-ITS effectiveness is strongly context-dependent: while CACC generally provides larger efficiency gains, GLOSA yields consistent emission reductions, and the combined deployment offers conditional synergies but may also diminish benefits at high demand. The study contributes a guideline for selecting service configurations based on site conditions, thereby providing practical recommendations for future C-ITS rollouts. Full article
(This article belongs to the Special Issue Sustainable Traffic Flow Management and Smart Transportation)
26 pages, 933 KB  
Review
Waste and the Urban Economy: A Semantic Network Analysis of Smart, Circular, and Digital Transitions
by Dragan Čišić, Saša Drezgić and Saša Čegar
Urban Sci. 2025, 9(10), 410; https://doi.org/10.3390/urbansci9100410 - 3 Oct 2025
Abstract
As cities confront rising populations and mounting environmental pressures, waste is rapidly transforming from a logistical liability into a strategic economic resource. In this article, we investigate the evolving nexus between waste and urban economic systems by analyzing over 2000 scientific publications sourced [...] Read more.
As cities confront rising populations and mounting environmental pressures, waste is rapidly transforming from a logistical liability into a strategic economic resource. In this article, we investigate the evolving nexus between waste and urban economic systems by analyzing over 2000 scientific publications sourced from Web of Science and Scopus. Using advanced semantic embedding and network analysis, we identify seven major research communities at the intersection of digital innovation, circular economy, and smart urban infrastructure. Through PageRank-based influence mapping, we highlight key contributions that shape each thematic cluster—ranging from AI-powered waste classification to blockchain-enabled traceability and IoT-driven logistics. Our results reveal a dynamic and interdisciplinary research landscape where waste valorisation is not only a sustainability imperative but also a driver of urban economic renewal. This study offers both a conceptual map and a methodological framework for understanding how cities can embed intelligence, efficiency, and circularity into waste systems as part of a broader transition to regenerative, data-informed urban economies. Full article
Show Figures

Figure 1

Back to TopTop