Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,416)

Search Parameters:
Keywords = swarm models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6085 KB  
Article
Heat Pump Optimization—Comparative Study of Different Optimization Algorithms and Heat Exchanger Area Approximations
by Eivind Brodal
Energies 2025, 18(19), 5270; https://doi.org/10.3390/en18195270 - 3 Oct 2025
Abstract
More energy efficient heat pumps can be designed if the industry is able to identify reliable optimization schemes able to predict how a fixed amount of money is best spent on the different individual components. For example, how to optimally design and size [...] Read more.
More energy efficient heat pumps can be designed if the industry is able to identify reliable optimization schemes able to predict how a fixed amount of money is best spent on the different individual components. For example, how to optimally design and size the different heat exchangers (HEs) in a heat pump with respect to cost and performance. In this work, different optimization algorithms and HE area integral approximations are compared for heat pumps with two and three HEs, with or without ejectors. Since the main goal is to identify optimal numerical schemes, not optimal designs, heat transfer is simplified, assuming a constant U-value for all HEs, which reduces the computational work significantly. Results show that high-order HE area approximations are 10400 times faster than conventional trapezoidal and adaptive integral methods. High-order schemes with 45 grid points (N) obtained 80100% optimization success rates. For subcritical processes, the LMTD method produced accurate results with N5, but such schemes are unreliable and difficult to extend to real HE models with non-constant U. Results also show that constrained gradient-based optimizations are 10 times faster than particle swarm, and that conventional GA optimizations are extremely inefficient. This study therefore recommends applying high-order HE area approximations and gradient-based optimizations methods developing accurate optimization schemes for the industry, which include realistic heat transfer coefficients. Full article
21 pages, 2769 KB  
Article
Computational Intelligence-Based Modeling of UAV-Integrated PV Systems
by Mohammad Hosein Saeedinia, Shamsodin Taheri and Ana-Maria Cretu
Solar 2025, 5(4), 45; https://doi.org/10.3390/solar5040045 - 3 Oct 2025
Abstract
The optimal utilization of UAV-integrated photovoltaic (PV) systems demands accurate modeling that accounts for dynamic flight conditions. This paper introduces a novel computational intelligence-based framework that models the behavior of a moving PV system mounted on a UAV. A unique mathematical approach is [...] Read more.
The optimal utilization of UAV-integrated photovoltaic (PV) systems demands accurate modeling that accounts for dynamic flight conditions. This paper introduces a novel computational intelligence-based framework that models the behavior of a moving PV system mounted on a UAV. A unique mathematical approach is developed to translate UAV flight dynamics, specifically roll, pitch, and yaw, into the tilt and azimuth angles of the PV module. To adaptively estimate the diode ideality factor under varying conditions, the Grey Wolf Optimization (GWO) algorithm is employed, outperforming traditional methods like Particle Swarm Optimization (PSO). Using a one-year environmental dataset, multiple machine learning (ML) models are trained to predict maximum power point (MPP) parameters for a commercial PV panel. The best-performing model, Rational Quadratic Gaussian Process Regression (RQGPR), demonstrates high accuracy and low computational cost. Furthermore, the proposed ML-based model is experimentally integrated into an incremental conductance (IC) MPPT technique, forming a hybrid MPPT controller. Hardware and experimental validations confirm the model’s effectiveness in real-time MPP prediction and tracking, highlighting its potential for enhancing UAV endurance and energy efficiency. Full article
(This article belongs to the Special Issue Efficient and Reliable Solar Photovoltaic Systems: 2nd Edition)
20 pages, 2412 KB  
Article
Prediction and Analysis of Abalone Aquaculture Production in China Based on an Improved Grey System Model
by Qing Yu, Jinling Ye, Xinlei Xu, Zhiqiang Lu and Li Ma
Sustainability 2025, 17(19), 8862; https://doi.org/10.3390/su17198862 - 3 Oct 2025
Abstract
This study employs an improved fractional-order grey multivariable convolution model (FGMC(1,N,2r)) to predict abalone aquaculture output in Fujian, Shandong, and Guangdong. By integrating fractional-order accumulation (r1, r2) with a particle-swarm-optimization (PSO) algorithm, the model addresses limitations of handling [...] Read more.
This study employs an improved fractional-order grey multivariable convolution model (FGMC(1,N,2r)) to predict abalone aquaculture output in Fujian, Shandong, and Guangdong. By integrating fractional-order accumulation (r1, r2) with a particle-swarm-optimization (PSO) algorithm, the model addresses limitations of handling multivariable interactions and sequence heterogeneity within small-sample regional datasets. Grey relational analysis (GRA) first identified key factors exhibiting the strongest associations with production: abalone production in Fujian and Shandong is predominantly influenced by funding for aquatic-technology extension (GRA degrees of 0.9156 and 0.8357, respectively), while in Guangdong, production was most strongly associated with import volume (GRA degree of 0.9312). Validation confirms that FGMC(1,N,2r) achieves superior predictive accuracy, with mean absolute percentage errors (MAPE) of 0.51% in Fujian, 3.51% in Shandong, and 2.12% in Guangdong, significantly outperforming benchmark models. Prediction of abalone production for 2024–2028 project sustained growth across Fujian, Shandong, and Guangdong. However, risks associated with typhoon disasters (X6 and import dependency (X5) require attention. The study demonstrates that the FGMC(1,N,2r) model achieves high predictive accuracy for regional aquaculture output. It identifies the primary drivers of abalone production: technology-extension funding in Fujian and Shandong, and import volume in Guangdong. These findings support the formulation of region-specific strategies, such as enhancing technological investment in Fujian and Shandong, and strengthening seed supply chains while reducing import dependency in Guangdong. Furthermore, by identifying vulnerabilities such as typhoon disasters and import reliance, the study underscores the need for resilient infrastructure and diversified seed sources, thereby providing a robust scientific basis for production optimization and policy guidance towards sustainable and environmentally sound aquaculture development. Full article
Show Figures

Figure 1

26 pages, 2266 KB  
Article
Two-Sided Matching with Bounded Rationality: A Stochastic Framework for Personnel Selection
by Saeed Najafi-Zangeneh, Naser Shams-Gharneh and Olivier Gossner
Mathematics 2025, 13(19), 3173; https://doi.org/10.3390/math13193173 - 3 Oct 2025
Abstract
Personnel selection represents a two-sided matching problem in which firms compete for qualified candidates by designing job-offer packages. While traditional models assume fully rational agents, real-world decision-makers often face bounded rationality due to limited information and cognitive constraints. This study develops a matching [...] Read more.
Personnel selection represents a two-sided matching problem in which firms compete for qualified candidates by designing job-offer packages. While traditional models assume fully rational agents, real-world decision-makers often face bounded rationality due to limited information and cognitive constraints. This study develops a matching framework that incorporates bounded rationality through the Quantal Response Equilibrium, where firms and candidates act as probabilistic rather than perfect optimizers under uncertainty. Using Maximum Likelihood Estimation and organizational hiring data, we validate that both sides display bounded rational behavior and that rationality increases as the selection process advances. Building on these findings, we propose a two-stage stochastic optimization approach to determine optimal job-offer packages that balance organizational policies with candidate competencies. The optimization problem is solved using particle swarm optimization, which efficiently explores the solution space under uncertainty. Data analysis reveals that only 23.10% of low-level hiring decisions align with rational choice predictions, compared to 64.32% for high-level positions. In our case study, bounded rationality increases package costs by 26%, while modular compensation packages can reduce costs by up to 25%. These findings highlight the cost implications of bounded rationality, the advantages of flexible offers, and the systematic behavioral differences across job levels. The framework provides theoretical contributions to matching under bounded rationality and offers practical insights to help organizations refine their personnel selection strategies and attract suitable candidates more effectively. Full article
(This article belongs to the Section D2: Operations Research and Fuzzy Decision Making)
Show Figures

Figure 1

34 pages, 2710 KB  
Review
The Role of Fractional Calculus in Modern Optimization: A Survey of Algorithms, Applications, and Open Challenges
by Edson Fernandez, Victor Huilcapi, Isabela Birs and Ricardo Cajo
Mathematics 2025, 13(19), 3172; https://doi.org/10.3390/math13193172 - 3 Oct 2025
Abstract
This paper provides a comprehensive overview of the application of fractional calculus in modern optimization methods, with a focus on its impact in artificial intelligence (AI) and computational science. We examine how fractional-order derivatives have been integrated into traditional methodologies, including gradient descent, [...] Read more.
This paper provides a comprehensive overview of the application of fractional calculus in modern optimization methods, with a focus on its impact in artificial intelligence (AI) and computational science. We examine how fractional-order derivatives have been integrated into traditional methodologies, including gradient descent, least mean squares algorithms, particle swarm optimization, and evolutionary methods. These modifications leverage the intrinsic memory and nonlocal features of fractional operators to enhance convergence, increase resilience in high-dimensional and non-linear environments, and achieve a better trade-off between exploration and exploitation. A systematic and chronological analysis of algorithmic developments from 2017 to 2025 is presented, together with representative pseudocode formulations and application cases spanning neural networks, adaptive filtering, control, and computer vision. Special attention is given to advances in variable- and adaptive-order formulations, hybrid models, and distributed optimization frameworks, which highlight the versatility of fractional-order methods in addressing complex optimization challenges in AI-driven and computational settings. Despite these benefits, persistent issues remain regarding computational overhead, parameter selection, and rigorous convergence analysis. This review aims to establish both a conceptual foundation and a practical reference for researchers seeking to apply fractional calculus in the development of next-generation optimization algorithms. Full article
(This article belongs to the Special Issue Fractional Order Systems and Its Applications)
22 pages, 2526 KB  
Article
An Explainable Deep Learning Framework with Adaptive Feature Selection for Smart Lemon Disease Classification in Agriculture
by Naeem Ullah, Michelina Ruocco, Antonio Della Cioppa, Ivanoe De Falco and Giovanna Sannino
Electronics 2025, 14(19), 3928; https://doi.org/10.3390/electronics14193928 - 2 Oct 2025
Abstract
Early and accurate detection of lemon disease is necessary for effective citrus crop management. Traditional approaches often lack refined diagnosis, necessitating more powerful solutions. The article introduces adaptive PSO-LemonNetX, a novel framework integrating a novel deep learning model, adaptive Particle Swarm Optimization (PSO)-based [...] Read more.
Early and accurate detection of lemon disease is necessary for effective citrus crop management. Traditional approaches often lack refined diagnosis, necessitating more powerful solutions. The article introduces adaptive PSO-LemonNetX, a novel framework integrating a novel deep learning model, adaptive Particle Swarm Optimization (PSO)-based feature selection, and explainable AI (XAI) using LIME. The approach improves the accuracy of classification while also enhancing the explainability of the model. Our end-to-end model obtained 97.01% testing and 98.55% validation accuracy. Performance was enhanced further with adaptive PSO and conventional classifiers—100% validation accuracy using Naive Bayes and 98.8% testing accuracy using Naive Bayes and an SVM. The suggested PSO-based feature selection performed better than ReliefF, Kruskal–Wallis, and Chi-squared approaches. Due to its lightweight design and good performance, this approach can be adapted for edge devices in IoT-enabled smart farms, contributing to sustainable and automated disease detection systems. These results show the potential of integrating deep learning, PSO, grid search, and XAI into smart agriculture workflows for enhancing agricultural disease detection and decision-making. Full article
(This article belongs to the Special Issue Image Processing and Pattern Recognition)
Show Figures

Figure 1

39 pages, 1827 KB  
Article
Development of Dynamic System Applications Using Distributed Quantum-Centric Computing
by Tiberiu Stefan Letia, Camelia Avram, Dahlia Al-Janabi, Ionel Miu and Octavian Cuibus
Mathematics 2025, 13(19), 3159; https://doi.org/10.3390/math13193159 - 2 Oct 2025
Abstract
Many applications of quantum computers require the classical and quantum implementation of dynamic systems (DSs). These applications comprise interacting quantum and classical tasks. While quantum tasks evolve in the quantum domain, classical tasks behave in the classical domain. Besides tackling these kinds of [...] Read more.
Many applications of quantum computers require the classical and quantum implementation of dynamic systems (DSs). These applications comprise interacting quantum and classical tasks. While quantum tasks evolve in the quantum domain, classical tasks behave in the classical domain. Besides tackling these kinds of tasks, the computational gap between these domains is covered by the current study. The quantum computing feature All at Once (A@O) executions is appropriate for static systems but less for DSs. The novelty of the proposed approach consists of using Distributed Quantum-Centric Petri Net (DQCPN) models composed of quantum and high-level Petri Nets for specification, design, verification, and implementation of classical–quantum applications. Quantum Processing Units (QPUs) are linked to classical components implementing the control and optimization operations in the proposed application. Many practical applications combine quantum and classical computing to address optimization problems. Quantum computers can be built with a combination of qubits and bosonic qumodes, leading to a new paradigm toward quantum computing. The optimizations are performed by some Evolutionary Algorithms (EAs), including Particle Swarm Optimization (PSO) methods and Genetic Algorithms (GAs). For experiments, an Urban Vehicle Traffic System (UVTS) is used as an open distributed system. The vehicle flows are implemented by discrete qubits, discrete vectors of qubits, or qumodes. Full article
(This article belongs to the Special Issue Recent Advances in Scientific Computing & Applications)
37 pages, 24514 KB  
Article
Prediction and Reliability Analysis of the Pressuremeter Modulus of the Deep Overburden in Hydraulic Engineering Based on Machine Learning and Physical Mechanisms
by Hanyu Guo, Deshan Cui, Qingchun Li, Qiong Chen and Lin Lai
Appl. Sci. 2025, 15(19), 10643; https://doi.org/10.3390/app151910643 - 1 Oct 2025
Abstract
In the process of large-scale water conservancy and hydropower station construction in the southwest region of China, obtaining the deep overburden pressuremeter modulus Em is of great significance for the calculation of foundation bearing capacity and dam foundation settlement. However, due to [...] Read more.
In the process of large-scale water conservancy and hydropower station construction in the southwest region of China, obtaining the deep overburden pressuremeter modulus Em is of great significance for the calculation of foundation bearing capacity and dam foundation settlement. However, due to the complex nature of the soil properties in deep overburden layers, conducting deep-hole pressuremeter tests is challenging, time-consuming, and costly. In order to efficiently and accurately obtain the pressuremeter modulus of deep overburden, this paper takes the deep overburden in the river valley where a large hydropower station dam is located in the southwest region as the research object. It proposes a method based on data-driven prediction of the pressuremeter modulus and combines it with the physical mechanism to carry out the reliability analysis of the prediction results. By constructing a database of soil physical and mechanical parameters, including the pressuremeter modulus, the prediction performance of Random Forest (RF), Support Vector Regression (SVR), and BP Neural Network on the pressure modulus was evaluated. The Particle Swarm Optimization (PSO) was utilized for hyperparameter optimization to enhance the reliability of prediction results. The results indicate that the RF and PSO-RF models exhibit a comprehensive advantage for accurately predicting the pressuremeter modulus. The prediction results of the model for new data have a strong correlation with the results calculated by the Menard formula, which demonstrates the reliability of the model. Therefore, establishing the relationship between the conventional physical and mechanical parameters of deep overburden and the pressuremeter modulus, and predicting the pressuremeter modulus based on data-driven methods, has significant engineering value for obtaining the pressuremeter modulus of deep overburden efficiently, economically, and reliably. It also holds significant importance for the extended application of machine learning in the field of soil parameter prediction. Full article
(This article belongs to the Section Civil Engineering)
51 pages, 958 KB  
Systematic Review
AI-Enhanced Intrusion Detection for UAV Systems: A Taxonomy and Comparative Review
by MD Sakibul Islam, Ashraf Sharif Mahmoud and Tarek Rahil Sheltami
Drones 2025, 9(10), 682; https://doi.org/10.3390/drones9100682 - 1 Oct 2025
Abstract
The diverse usage of Unmanned Aerial Vehicles (UAVs) across commercial, military, and civil domains has significantly heightened the need for robust cybersecurity mechanisms. Given their reliance on wireless communications, real-time control systems, and sensor integration, UAVs are highly susceptible to cyber intrusions that [...] Read more.
The diverse usage of Unmanned Aerial Vehicles (UAVs) across commercial, military, and civil domains has significantly heightened the need for robust cybersecurity mechanisms. Given their reliance on wireless communications, real-time control systems, and sensor integration, UAVs are highly susceptible to cyber intrusions that can disrupt missions, compromise data integrity, or cause physical harm. This paper presents a comprehensive literature review of Intrusion Detection Systems (IDSs) that leverage artificial intelligence (AI) to enhance the security of UAV and UAV swarm environments. Through rigorous analysis of recent peer-reviewed publications, we have examined the studies in terms of AI model algorithm, dataset origin, deployment mode: centralized, distributed or federated. The classification also includes the detection strategy: online versus offline. Results show a dominant preference for centralized, supervised learning using standard datasets such as CICIDS2017, NSL-KDD, and KDDCup99, limiting applicability to real UAV operations. Deep learning (DL) methods, particularly Convolutional Neural Networks (CNNs), Long Short-term Memory (LSTM), and Autoencoders (AEs), demonstrate strong detection accuracy, but often under ideal conditions, lacking resilience to zero-day attacks and real-time constraints. Notably, emerging trends point to lightweight IDS models and federated learning frameworks for scalable, privacy-preserving solutions in UAV swarms. This review underscores key research gaps, including the scarcity of real UAV datasets, the absence of standardized benchmarks, and minimal exploration of lightweight detection schemes, offering a foundation for advancing secure UAV systems. Full article
25 pages, 6901 KB  
Article
Improving Active Support Capability: Optimization and Scheduling of Village-Level Microgrid with Hybrid Energy Storage System Containing Supercapacitors
by Yu-Rong Hu, Jian-Wei Ma, Ling Miao, Jian Zhao, Xiao-Zhao Wei and Jing-Yuan Yin
Eng 2025, 6(10), 253; https://doi.org/10.3390/eng6100253 - 1 Oct 2025
Abstract
With the rapid development of renewable energy and the continuous pursuit of efficient energy utilization, distributed photovoltaic power generation has been widely used in village-level microgrids. As a key platform connecting distributed photovoltaics with users, energy storage systems play an important role in [...] Read more.
With the rapid development of renewable energy and the continuous pursuit of efficient energy utilization, distributed photovoltaic power generation has been widely used in village-level microgrids. As a key platform connecting distributed photovoltaics with users, energy storage systems play an important role in alleviating the imbalance between supply and demand in VMG. However, current energy storage systems rely heavily on lithium batteries, and their frequent charging and discharging processes lead to rapid lifespan decay. To solve this problem, this study proposes a hybrid energy storage system combining supercapacitors and lithium batteries for VMG, and designs a hybrid energy storage scheduling strategy to coordinate the “source–load–storage” resources in the microgrid, effectively cope with power supply fluctuations and slow down the life degradation of lithium batteries. In order to give full play to the active support ability of supercapacitors in suppressing grid voltage and frequency fluctuations, the scheduling optimization goal is set to maximize the sum of the virtual inertia time constants of the supercapacitor. In addition, in order to efficiently solve the high-complexity model, the reason for choosing the snow goose algorithm is that compared with the traditional mathematical programming methods, which are difficult to deal with large-scale uncertain systems, particle swarm optimization, and other meta-heuristic algorithms have insufficient convergence stability in complex nonlinear problems, SGA can balance global exploration and local development capabilities by simulating the migration behavior of snow geese. By improving the convergence effect of SGA and constructing a multi-objective SGA, the effectiveness of the new algorithm, strategy and model is finally verified through three cases, and the loss is reduced by 58.09%, VMG carbon emissions are reduced by 45.56%, and the loss of lithium battery is reduced by 40.49% after active support optimization, and the virtual energy inertia obtained by VMG from supercapacitors during the scheduling cycle reaches a total of 0.1931 s. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

17 pages, 2721 KB  
Article
Physics-Guided Neural Surrogate Model with Particle Swarm- Based Multi-Objective Optimization for Quasi-Coaxial TSV Interconnect Design
by Zheng Liu, Guangbao Shan, Zeyu Chen and Yintang Yang
Micromachines 2025, 16(10), 1134; https://doi.org/10.3390/mi16101134 - 30 Sep 2025
Abstract
In reconfigurable radio frequency (RF) microsystems, the interconnect structure critically affects high-frequency signal integrity, and the accuracy of electromagnetic (EM) modeling directly determines the overall system performance. Conventional neural network-based surrogate models mainly focus on minimizing numerical errors, while neglecting essential physical constraints, [...] Read more.
In reconfigurable radio frequency (RF) microsystems, the interconnect structure critically affects high-frequency signal integrity, and the accuracy of electromagnetic (EM) modeling directly determines the overall system performance. Conventional neural network-based surrogate models mainly focus on minimizing numerical errors, while neglecting essential physical constraints, such as causality and passivity, thereby limiting their applicability in both time and frequency domains. This paper proposes a physics-constrained Neuro-Transfer surrogate model with a broadband output architecture to directly predict S-parameters over the 1–50 GHz range. Causality and passivity are enforced through dedicated regularization terms during training. Furthermore, a particle swarm optimization (PSO)-based multi-objective intelligent optimization framework is developed, incorporating fixed-weight normalization and a linearly decreasing inertia weight strategy to simultaneously optimize the S11, S21, and S22 performance of a quasi-coaxial TSV composite structure. Target values are set to −25 dB, −0.54 dB, and −24 dB, respectively. The optimized structural parameters yield prediction-to-simulation deviations below 1 dB, with an average prediction error of 2.11% on the test set. Full article
15 pages, 1847 KB  
Article
A PSO-VMD-LSTM-Based Photovoltaic Power Forecasting Model Incorporating PV Converter Characteristics
by Hailong Pan, Chao Li, Fuming Xiao, Hai Zhou and Binxin Zhu
Appl. Sci. 2025, 15(19), 10612; https://doi.org/10.3390/app151910612 - 30 Sep 2025
Abstract
High-precision photovoltaic (PV) power generation prediction models are essential for ensuring secure and stable grid operation and optimized dispatch. Existing models often ignore the significant variations in PV grid-connected inverter loss distributions and exhibit inadequate data decomposition processing, which influences the accuracy of [...] Read more.
High-precision photovoltaic (PV) power generation prediction models are essential for ensuring secure and stable grid operation and optimized dispatch. Existing models often ignore the significant variations in PV grid-connected inverter loss distributions and exhibit inadequate data decomposition processing, which influences the accuracy of the prediction models. This paper proposes a PSO-VMD-LSTM prediction model that includes PV converter loss characteristics. Firstly, the Particle Swarm Optimization (PSO) algorithm is employed to optimize the parameters of Variational Mode Decomposition (VMD), enabling effective decomposition of data under different weather conditions. Secondly, the decomposed sub-modes are individually fed into Long Short-Term Memory (LSTM) networks for prediction, and the results are subsequently reconstructed to obtain preliminary predictions. Finally, a neural network-based equivalent model for inverter losses is constructed; the preliminary predictions are fed into this model to obtain the final prediction results. Simulation case studies demonstrate that the proposed PSO-VMD-LSTM-based model can comprehensively consider the impact of uneven converter loss distribution and effectively improve the accuracy of PV power prediction models. Full article
(This article belongs to the Section Energy Science and Technology)
13 pages, 655 KB  
Article
Capacity Configuration Optimization of Wind–Light–Load Storage Based on Improved PSO
by Benhong Wang, Ligui Wu, Peng Zhang, Yifeng Gu, Fangqing Zhang and Jiang Guo
Energies 2025, 18(19), 5212; https://doi.org/10.3390/en18195212 - 30 Sep 2025
Abstract
To improve the economy and stability of data center green power direct supply, the capacity configuration optimization of wind–light–load storage based on improved particle swarm optimization (PSO) is conducted. According to wind speed, the Weibull distribution of wind output is established, while the [...] Read more.
To improve the economy and stability of data center green power direct supply, the capacity configuration optimization of wind–light–load storage based on improved particle swarm optimization (PSO) is conducted. According to wind speed, the Weibull distribution of wind output is established, while the Beta distribution of solar output is established according to light intensity. Furthermore, by conducting the correlation analysis, it is indicated that there is a negative correlation between wind and solar output, which is helpful to optimize the mix of wind and solar output. To minimize the yearly average cost of wind–light–load storage, the capacity configuration optimization model is established, where the constraints include wind and solar output, energy storage capacity, balance between wind and solar output and data center load. To solve the capacity configuration optimization model, the improved PSO is adopted, compared to other optimization algorithms, like differential evolution (DE), genetic algorithm (GA) and grey wolf optimizer (GWO); by adjusting the inertia weight factor dynamically, the improved PSO is more likely to escape the local optimal solution. To validate the feasibility of data center green power direct supply with wind–light–load storage, a case study is conducted. By solving the capacity configuration optimization model of wind–light–load storage with the improved PSO, the balance rate between wind–solar output and data center load is improved by 12.5%, while the rate of abandoned wind and solar output is reduced by 17.5%, which is helpful to improve the economy and stability of data center green power direct supply. Full article
Show Figures

Figure 1

22 pages, 1766 KB  
Article
A Leader-Assisted Decentralized Adaptive Formation Method for UAV Swarms Integrating a Pre-Trained Semantic Broadcast Communication Model
by Xing Xu, Bo Zhang and Rongpeng Li
Drones 2025, 9(10), 681; https://doi.org/10.3390/drones9100681 - 30 Sep 2025
Abstract
Multiple unmanned aerial vehicle (UAV) systems have attracted considerable research interest due to their broad applications, such as formation control. However, decentralized UAV formation faces challenges stemming from limited local observations, which may lead to consistency conflicts, and excessive communication. To address these [...] Read more.
Multiple unmanned aerial vehicle (UAV) systems have attracted considerable research interest due to their broad applications, such as formation control. However, decentralized UAV formation faces challenges stemming from limited local observations, which may lead to consistency conflicts, and excessive communication. To address these issues, this paper proposes SemanticBC-DecAF, a decentralized adaptive formation (DecAF) framework under a leader–follower architecture, incorporating a semantic broadcast communication (SemanticBC) mechanism. The framework consists of three modules: (1) a proximal policy optimization (PPO)-based semantic broadcast module, where the leader UAV transmits semantically encoded global obstacle images to followers to enhance their perception; (2) a YOLOv5-based detection and position estimation module, enabling followers to infer obstacle locations from recovered images; and (3) a multi-agent proximal policy optimization (MAPPO)-based formation module, which fuses global and local observations to achieve adaptive formation and obstacle avoidance. Experiments in the multi-agent simulation environment MPE show that the proposed framework significantly improves global perception and formation efficiency compared with methods that rely on local observations. Full article
(This article belongs to the Section Artificial Intelligence in Drones (AID))
18 pages, 3501 KB  
Article
Prediction of Diesel Engine Performance and Emissions Under Variations in Backpressure, Load, and Compression Ratio Using an Artificial Neural Network
by Nhlanhla Khanyi, Freddie Inambao and Riaan Stopforth
Appl. Sci. 2025, 15(19), 10588; https://doi.org/10.3390/app151910588 - 30 Sep 2025
Abstract
Excessive exhaust backpressure (EBP) in modern diesel engines disrupts gas exchange, increases residual gas fraction (RGF), and reduces combustion efficiency. Traditional experimental approaches, including simulations and bench testing, are often time-consuming and costly, which has driven growing interest in artificial neural networks (ANNs) [...] Read more.
Excessive exhaust backpressure (EBP) in modern diesel engines disrupts gas exchange, increases residual gas fraction (RGF), and reduces combustion efficiency. Traditional experimental approaches, including simulations and bench testing, are often time-consuming and costly, which has driven growing interest in artificial neural networks (ANNs) for accurately modelling complex engine behavior. This research introduces an ANN model designed to predict the impact of EBP on the performance and emissions of a diesel engine across varying compression ratio (CR) of 12, 14, 16, and 18 and engine load (25%, 50%, 75%, and 100%) conditions. The ANN model was developed and optimised using genetic algorithms (GA) and particle swarm optimisation (PSO). It was then trained using data from an experimentally validated one-dimensional computational fluid dynamics (1D-CFD) model developed through GT-Power GT-ISE v2024, simulating engine responses under variation CR, load, and EBP conditions. The optimised ANN architecture, featuring an optimal (3-14-10) configuration, was trained using the Levenberg–Marquardt back propagation algorithm. The performance of the model was assessed using statistical criteria, including the coefficient of determination (R2), root mean square error (RMSE), and k-fold cross-validation, by comparing its predictions with both experimental and simulated data. Results indicate that the optimised ANN model outperformed the baseline ANN and other machine learning (ML) models, attaining an R2 of 0.991 and an RMSE of 0.011. It reliably predicts engine performance and emissions under varying EBP conditions while offering insights for engine control, optimisation, diagnostics, and thermodynamic mechanisms. The overall prediction error ranged from 1.911% to 2.972%, confirming the model’s robustness in capturing performance and emission outcomes. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

Back to TopTop