Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = symmetric motion estimation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 6585 KB  
Article
Active Fault Tolerant Trajectory-Tracking Control of Autonomous Distributed-Drive Electric Vehicles Considering Steer-by-Wire Failure
by Xianjian Jin, Huaizhen Lv, Yinchen Tao, Jianning Lu, Jianbo Lv and Nonsly Valerienne Opinat Ikiela
Symmetry 2025, 17(9), 1471; https://doi.org/10.3390/sym17091471 - 6 Sep 2025
Viewed by 699
Abstract
In this paper, the concept of symmetry is utilized to design active fault tolerant trajectory-tracking control of autonomous distributed-drive electric vehicles—that is, the construction and the solution of active fault tolerant trajectory-tracking controllers are symmetrical. This paper presents a hierarchical fault tolerant control [...] Read more.
In this paper, the concept of symmetry is utilized to design active fault tolerant trajectory-tracking control of autonomous distributed-drive electric vehicles—that is, the construction and the solution of active fault tolerant trajectory-tracking controllers are symmetrical. This paper presents a hierarchical fault tolerant control strategy for improving the trajectory-tracking performance of autonomous distributed-drive electric vehicles (ADDEVs) under steer-by-wire (SBW) system failures. Since ADDEV trajectory dynamics are inherently affected by complex traffic conditions, various driving maneuvers, and other road environments, the main control objective is to deal with the ADDEV trajectory-tracking control challenges of system uncertainties, SBW failures, and external disturbance. First, the differential steering dynamics model incorporating a 3-DOF coupled system and stability criteria based on the phase–plane method is established to characterize autonomous vehicle motion during SBW failures. Then, by integrating cascade active disturbance rejection control (ADRC) with Karush–Kuhn–Tucker (KKT)-based torque allocation, the active fault tolerant control framework of trajectory tracking and lateral stability challenges caused by SBW actuator malfunctions and steering lockup is addressed. The upper-layer ADRC employs an extended state observer (ESO) to estimate and compensate against uncertainties and disturbances, while the lower-layer utilizes KKT conditions to optimize four-wheel torque distribution to compensate for SBW failures. Simulations validate the effectiveness of the controller with serpentine and double-lane-change maneuvers in the co-simulation platform MATLAB/Simulink-Carsim® (2019). Full article
Show Figures

Figure 1

32 pages, 9357 KB  
Article
On the Dynamics of a Synchronous Binary Asteroid System with Non-Uniform Mass Distribution
by Leandro Forne Brejão, Antonio F. Bertachini de Almeida Prado, Diogo Merguizo Sanchez and Jean P. dos Santos Carvalho
Mathematics 2025, 13(16), 2667; https://doi.org/10.3390/math13162667 - 19 Aug 2025
Viewed by 374
Abstract
In this work, particle dynamics in a binary asteroid system is analyzed within the Circular Restricted Three-Body Problem (CRTBP) framework, assuming the largest body is treated as a mass point. The secondary body is modeled as a mass dipole in synchronous rotation with [...] Read more.
In this work, particle dynamics in a binary asteroid system is analyzed within the Circular Restricted Three-Body Problem (CRTBP) framework, assuming the largest body is treated as a mass point. The secondary body is modeled as a mass dipole in synchronous rotation with its orbital motion, which leads to the spin–orbit resonance. The third body is a point of negligible mass whose motion is restricted to the orbital plane of the primary bodies. We considered asymmetrical and symmetrical dipole cases. The number and positions of the equilibrium points are determined for the dynamical analysis, and the zero-velocity curves are studied. This model preserves the number and geometric arrangement of the equilibrium points compared to the CRTBP. The equilibrium points adjacent to the dipole are the most sensitive in position to the variations in physical parameters. Considering the solar radiation pressure on the third body, different initial conditions for its motion in the vicinity of the dipole are analyzed. As a result, the particle survival time in orbital motion is estimated before colliding or suffering gravitational ejection from the system. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

13 pages, 2360 KB  
Article
New Bayesian Estimation Method Based on Symmetric Projection Space and Particle Flow Velocity
by Juan Tan, Zijun Wu and Lijuan Chen
Symmetry 2025, 17(6), 899; https://doi.org/10.3390/sym17060899 - 6 Jun 2025
Viewed by 458
Abstract
Aiming at the state estimation problem of nonlinear systems (NLSs), the traditional typical nonlinear filtering methods (e.g., Particle Filter, PF) have large errors in system state, resulting in low accuracy and high computational speed. To perfect the imperfections, a new Bayesian estimation method [...] Read more.
Aiming at the state estimation problem of nonlinear systems (NLSs), the traditional typical nonlinear filtering methods (e.g., Particle Filter, PF) have large errors in system state, resulting in low accuracy and high computational speed. To perfect the imperfections, a new Bayesian estimation method based on particle flow velocity (PFV-BEM) is proposed in this paper. Firstly, a symmetrical projection space based on the state information is selected, the basis function is determined by a set of Fourier series with symmetric properties, the state update is carried out according to the projection principle to calculate the prior information of the state, and select its particle points. Secondly, the particle flow velocity is defined, which describes the evolution process of random samples from the prior distribution to the posterior distribution. The posterior information of the state is calculated by solving the parameters related to the particle flow velocity. Finally, the estimated mean and standard deviation of the state are solved. Simulation experiments are carried out based on two instances of one-dimensional general nonlinear examples and multi-target motion tracking, The newly proposed algorithm is compared with the Particle Filter (PF), and the simulation results clearly indicate the feasibility of this novel Bayesian estimation algorithm. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

22 pages, 10784 KB  
Article
Structural Reliability Assessment of Dual RC Buildings for Different Shear Wall Configuration
by Fernando Velarde, Juan Bojórquez, Edén Bojórquez, Henry Reyes, Alfredo Reyes-Salazar, Robespierre Chávez, Mario D. Llanes-Tizoc, Federico Valenzuela-Beltrán, José I. Torres, Daniel Yee and Victor Baca
Buildings 2025, 15(11), 1783; https://doi.org/10.3390/buildings15111783 - 23 May 2025
Viewed by 1018
Abstract
Shear walls, integrated into conventional reinforced concrete (RC) moment-resisting frame systems (RC frame–shear wall building), have proven to be effective in improving the structural performance and reliability of buildings; however, the seismic behavior of the building depends directly on the location of these [...] Read more.
Shear walls, integrated into conventional reinforced concrete (RC) moment-resisting frame systems (RC frame–shear wall building), have proven to be effective in improving the structural performance and reliability of buildings; however, the seismic behavior of the building depends directly on the location of these elements. For this reason, this paper evaluates the structural reliability of ten medium-rise RC buildings designed based on the Mexico City Building Code, considering different shear wall configurations. With the aim to estimate and compare the seismic reliability, the buildings are modeled as complex 3D structures via the OpenSees 3.5 software, which are subjected to different ground motion records representative of the soft soil of Mexico City scaled at different intensity values in order to compute incremental dynamic analysis (IDA). Furthermore, the parameter used to estimate the reliability is the maximum interstory drift (MID), which is obtained from the incremental dynamic analysis in order to assess the structural fragility curves. Finally, the structural reliability estimation is computed via probabilistic models by combining the fragility and seismic hazard curves. It is concluded from the results that the structural reliability is maximized when shear walls are symmetrically distributed. On the other hand, the configuration with walls concentrated in the center of the building tends to oversize the frames to reach a reliability level comparable to that of symmetrical arrangements. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 2050 KB  
Article
An Autoregressive-Based Motor Current Signature Analysis Approach for Fault Diagnosis of Electric Motor-Driven Mechanisms
by Roberto Diversi, Alice Lenzi, Nicolò Speciale and Matteo Barbieri
Sensors 2025, 25(4), 1130; https://doi.org/10.3390/s25041130 - 13 Feb 2025
Cited by 1 | Viewed by 2011
Abstract
Maintenance strategies such as condition-based maintenance and predictive maintenance of machines have gained importance in industrial automation firms as key concepts in Industry 4.0. As a result, online condition monitoring of electromechanical systems has become a crucial task in many industrial applications. Motor [...] Read more.
Maintenance strategies such as condition-based maintenance and predictive maintenance of machines have gained importance in industrial automation firms as key concepts in Industry 4.0. As a result, online condition monitoring of electromechanical systems has become a crucial task in many industrial applications. Motor current signature analysis (MCSA) is an interesting noninvasive alternative to vibration analysis for the condition monitoring and fault diagnosis of mechanical systems driven by electric motors. The MCSA approach is based on the premise that faults in the mechanical load driven by the motor manifest as changes in the motor’s current behavior. This paper presents a novel data-driven, MCSA-based CM approach that exploits autoregressive (AR) spectral estimation. A multiresolution analysis of the raw motor currents is first performed using the discrete wavelet transform with Daubechies filters, enabling the separation of noise, disturbances, and variable torque effects from the current signals. AR spectral estimation is then applied to selected wavelet details to extract relevant features for fault diagnosis. In particular, a reference AR power spectral density (PSD) is estimated using data collected under healthy conditions. The AR PSD is then continuously or periodically updated with new data frames and compared to the reference PSD through the Symmetric Itakura–Saito spectral distance (SISSD). The SISSD, which serves as the health indicator, has proven capable of detecting fault occurrences through changes in the AR spectrum. The proposed procedure is tested on real data from two different scenarios: (i) an experimental in-house setup where data are collected during the execution of electric cam motion tasks (imbalance faults are emulated); (ii) the Korea Advanced Institute of Science and Technology testbed, whose data set is publicly available (bearing faults are considered). The results demonstrate the effectiveness of the method in both fault detection and isolation. In particular, the proposed health indicator exhibits strong detection capabilities, as its values under fault conditions exceed those under healthy conditions by one order of magnitude. Full article
Show Figures

Figure 1

18 pages, 4059 KB  
Article
A Multi-Cycle Echo Energy Concentration Method for High-Mobility Targets Enveloped by Time-Varying Plasma Sheath
by Bowen Bai, Qingmeng Wang, Bailiang Pu, Ke Zhang and Long Xue
Remote Sens. 2024, 16(13), 2316; https://doi.org/10.3390/rs16132316 - 25 Jun 2024
Cited by 1 | Viewed by 1301
Abstract
When a target moves at hypersonic speed, the aerodynamic thermal effect will cause air molecules to form a plasma sheath that envelopes the outer surface of the target, which consists of a large number of charged particles. The plasma sheath imposes a complicated [...] Read more.
When a target moves at hypersonic speed, the aerodynamic thermal effect will cause air molecules to form a plasma sheath that envelopes the outer surface of the target, which consists of a large number of charged particles. The plasma sheath imposes a complicated modulation effect on the radar echo signal in terms of amplitude, phase, and frequency. When the plasma sheath is time-varying, the inter-pulse coherence of the multi-cycle echo signals is severely disrupted, resulting in the failure of coherent accumulation. To address the problem of abnormal inter-pulse energy accumulation in targets covered with time-varying plasma sheaths, we analyzed the dynamic modulation effects of time-varying plasma sheaths on echo signals and constructed a radar echo model enveloped with time-varying plasma sheaths. Based on this, we propose a method for inter-pulse energy concentration of multi-cycle echo signals based on range-frequency inversion, second-order Wigner–Ville distribution (WVD), and slow-time symmetric auto-correlation. The proposed method is capable of realizing energy concentration for targets enveloped with time-varying plasma sheaths and can accurately estimate the motion parameters of the target. The effectiveness of our proposed method has been verified via simulation analysis of multi-cycle echo signals from targets enveloped with time-varying plasma sheaths, and the reliability of the method has been further validated through statistical experimental analysis. Full article
Show Figures

Graphical abstract

18 pages, 906 KB  
Article
CRT-Based Clock Synchronization for Millimeter-Wave Communication with Asymmetric Propagation Delays
by Shufeng Tan, Qifei Wang, Ziwei Wan and Fei Luo
Electronics 2024, 13(13), 2441; https://doi.org/10.3390/electronics13132441 - 21 Jun 2024
Cited by 2 | Viewed by 1182
Abstract
The rapid advancement of millimeter-wave communication technology has presented new challenges for time synchronization, driven by the need for high-speed and low-latency data transmission. Ethernet synchronization technologies, such as Precise Time Protocol (PTP), have emerged to overcome the limitations of point-to-point architecture and [...] Read more.
The rapid advancement of millimeter-wave communication technology has presented new challenges for time synchronization, driven by the need for high-speed and low-latency data transmission. Ethernet synchronization technologies, such as Precise Time Protocol (PTP), have emerged to overcome the limitations of point-to-point architecture and enable precise synchronization across multiple devices. A key drawback of conventional PTP is its reliance on symmetric packet exchange delays, which may not hold in real-world scenarios where there is relative mobility between master and slave nodes, leading to asymmetric propagation delays and clock offset errors. To address this issue, a novel clock synchronization protocol that integrates Chinese Remainder Theory (CRT) has been proposed. This protocol enhances conventional PTP by incorporating distance estimation based on CRT using multi-carrier phase measurement. By combining a coarse estimation of one-way propagation delay from conventional PTP with a fine estimation of remainder distance from CRT, the protocol accurately determines the distance between master and slave nodes, reducing motion errors and enhancing clock synchronization accuracy. Simulation results indicate that the Root Mean Square Error (RMSE) of distance estimation remains below 105 m, with a corresponding motion time error of approximately 0.01 picosecond. Full article
Show Figures

Figure 1

14 pages, 2660 KB  
Article
Research on Foot Contact State Detection Technology of Wheel-Legged Robot
by Yaodong Wang, Meng Hong, Hui Chai, Yinglong Zhang, Guan Wang, Chaoqun Wu and Min Guo
Sensors 2024, 24(12), 3956; https://doi.org/10.3390/s24123956 - 18 Jun 2024
Cited by 6 | Viewed by 2213
Abstract
The accurate perception of external environment information through the robot foot is crucial for the mobile robot to evaluate its ability to traverse terrain. Adequate foot-end contact signals can provide robust support for robot motion control and decision-making processes. The shape and uncertain [...] Read more.
The accurate perception of external environment information through the robot foot is crucial for the mobile robot to evaluate its ability to traverse terrain. Adequate foot-end contact signals can provide robust support for robot motion control and decision-making processes. The shape and uncertain rotation of the wheel-legged robot foot end represent a significant challenge to sensing the robot foot-end contact state, which current foot-end sensing schemes cannot solve. This paper presents a sensing method for the tire stress field of wheel-legged robots. A finite element analysis was conducted to study the deformation characteristics of the foot-end tire under force. Based on this analysis, a heuristic contact position estimator was designed that utilizes symmetrical deformation characteristics. Strain sensors, arranged in an array, extract the deformation information on the inner surface of the tire at a frequency of 200 Hz. The contact position estimator reduces the dimensionality of the data and fits the eigenvalues to the estimated contact position. Using support vector regression, the force estimator utilizes the estimated contact position and sensor signal to estimate the normal reaction force, designated as FZ. The sensing system is capable of detecting the contact position on the wheel circumference (with a root mean square error of 1.150°), as well as the normal force of 160 N on the Z axis (with a root mean square error of 6.04%). To validate the efficacy of the sensor detection method, a series of randomized and repeated experiments were conducted on a self-constructed test platform. This novel approach offers a promising avenue for perceiving contact states in wheel-legged robots. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

18 pages, 14623 KB  
Article
A Binocular Color Line-Scanning Stereo Vision System for Heavy Rail Surface Detection and Correction Method of Motion Distortion
by Chao Wang, Weixi Luo, Menghui Niu, Jiqiang Li and Kechen Song
J. Imaging 2024, 10(6), 144; https://doi.org/10.3390/jimaging10060144 - 13 Jun 2024
Viewed by 2171
Abstract
Thanks to the line-scanning camera, the measurement method based on line-scanning stereo vision has high optical accuracy, data transmission efficiency, and a wide field of vision. It is more suitable for continuous operation and high-speed transmission of industrial product detection sites. However, the [...] Read more.
Thanks to the line-scanning camera, the measurement method based on line-scanning stereo vision has high optical accuracy, data transmission efficiency, and a wide field of vision. It is more suitable for continuous operation and high-speed transmission of industrial product detection sites. However, the one-dimensional imaging characteristics of the line-scanning camera cause motion distortion during image data acquisition, which directly affects the accuracy of detection. Effectively reducing the influence of motion distortion is the primary problem to ensure detection accuracy. To obtain the two-dimensional color image and three-dimensional contour data of the heavy rail surface at the same time, a binocular color line-scanning stereo vision system is designed to collect the heavy rail surface data combined with the bright field illumination of the symmetrical linear light source. Aiming at the image motion distortion caused by system installation error and collaborative acquisition frame rate mismatch, this paper uses the checkerboard target and two-step cubature Kalman filter algorithm to solve the nonlinear parameters in the motion distortion model, estimate the real motion, and correct the image information. The experiments show that the accuracy of the data contained in the image is improved by 57.3% after correction. Full article
Show Figures

Figure 1

23 pages, 5554 KB  
Article
Assessing the Impact of Ground Motion Duration on Losses in Typical Modern Steel Moment Frames
by Amir Safiey, Sereen Majdalaweyh and Weichiang Pang
Buildings 2024, 14(5), 1373; https://doi.org/10.3390/buildings14051373 - 11 May 2024
Viewed by 1743
Abstract
This research was undertaken to study the duration effects on the seismic economic risk of steel moment frame (SMF) buildings, a prominent class of buildings in commercial stock. Firstly, a modified version of FEMA P-695 ground motion scaling, tailored for seismic loss estimation [...] Read more.
This research was undertaken to study the duration effects on the seismic economic risk of steel moment frame (SMF) buildings, a prominent class of buildings in commercial stock. Firstly, a modified version of FEMA P-695 ground motion scaling, tailored for seismic loss estimation purposes and incorporating two sets of spectrally matched bi-directional short- and long-duration ground motions, is proposed to study code-compliant plan-symmetrical SMFs with different heights (i.e., two to 20 stories). It is shown that long-duration ground motions increase the collapse risk of SMFs, on average, by 28.0% at the MCE level. Next, a component-based loss estimation methodology was adopted for evaluating the seismic losses under each set of ground motions. These losses are studied separately for building components (i.e., structural and nonstructural) and contents. Moreover, we propose an approach for calculating average annualized loss (AAL) as a prominent risk meter that segregates contributions of short- and long-duration ground motions to attain hazard consistency. Loss analyses showed the minimal impact of building height on the contribution of these two types of earthquakes. The seismic risk analysis of buildings also revealed that collapse risk is influenced mainly by duration effects followed by building and content losses. Full article
(This article belongs to the Special Issue Achieving Resilience and Other Challenges in Earthquake Engineering)
Show Figures

Figure 1

15 pages, 3340 KB  
Article
A Quantitative Precipitation Estimation Method Based on 3D Radar Reflectivity Inputs
by Yanqin Wen, Jun Zhang, Di Wang, Xianming Peng and Ping Wang
Symmetry 2024, 16(5), 555; https://doi.org/10.3390/sym16050555 - 3 May 2024
Cited by 1 | Viewed by 2095
Abstract
Quantitative precipitation estimation (QPE) by radar observation data is a crucial aspect of meteorological forecasting operations. Accurate QPE plays a significant role in mitigating the impact of severe convective weather. Traditional QPE methods mainly employ an exponential Z–R relationship to map the radar [...] Read more.
Quantitative precipitation estimation (QPE) by radar observation data is a crucial aspect of meteorological forecasting operations. Accurate QPE plays a significant role in mitigating the impact of severe convective weather. Traditional QPE methods mainly employ an exponential Z–R relationship to map the radar reflectivity to precipitation intensity on a point-to-point basis. However, this isolated point-to-point transformation lacks an effective representation of convective systems. Deep learning-based methods can learn the evolution patterns of convective systems from rich historical data. However, current models often rely on 2 km-height CAPPI images, which struggle to capture the complex vertical motions within convective systems. To address this, we propose a novel QPE model: combining the classic extrapolation model ConvLSTM with Unet for an encoder-decoder module assembly. Meanwhile, we utilize three-dimensional radar echo images as inputs and introduce the convolutional block attention module (CBAM) to guide the model to focus on individual cells most likely to trigger intense precipitation, which is symmetrically built on both channel and spatial attention modules. We also employ asymmetry in training using weighted mean squared error to make the model concentrate more on heavy precipitation events which are prone to severe disasters. We conduct experiments using radar data from North China and Eastern China. For precipitation above 1 mm, the proposed model achieves 0.6769 and 0.7910 for CSI and HSS, respectively. The results indicate that compared to other methods, our model significantly enhances precipitation prediction accuracy, with a more pronounced improvement in forecasting accuracy for heavy precipitation events. Full article
(This article belongs to the Special Issue Optimization of Asymmetric and Symmetric Algorithms)
Show Figures

Figure 1

23 pages, 44301 KB  
Article
Synthetic Aperture Ladar Motion Compensation Method Based on Symmetric Triangle Linear Frequency Modulation Continuous Wave Segmented Interference
by Ruihua Shi, Wei Li, Qinghai Dong, Bingnan Wang, Maosheng Xiang and Yinshen Wang
Remote Sens. 2024, 16(5), 793; https://doi.org/10.3390/rs16050793 - 24 Feb 2024
Cited by 3 | Viewed by 1718
Abstract
Synthetic Aperture Ladar (SAL) is a sensor that combines laser detection technology with synthetic aperture technology to achieve ultra-high-resolution imaging. Due to its extremely short wavelength, SAL is more sensitive to motion errors. The micrometer-level motion will affect the target’s azimuth focus. This [...] Read more.
Synthetic Aperture Ladar (SAL) is a sensor that combines laser detection technology with synthetic aperture technology to achieve ultra-high-resolution imaging. Due to its extremely short wavelength, SAL is more sensitive to motion errors. The micrometer-level motion will affect the target’s azimuth focus. This article proposes an SAL motion compensation method based on Symmetric Triangular Linear Frequency Modulation Continuous Wave (STLFMCW) segmented interference, utilizing the characteristics of a triangular wave, to solve the problem of target azimuth defocusing. This article first establishes an STLFMCW echo signal model based on the SAL system under the influence of motion errors. Secondly, the radial velocity gradient along the azimuth direction is extracted using the triangular-wave-positive and -negative frequency modulation signals segmented interference method. Then, for the initial phase wrapping problem, the frequency spectral cross-correlation method is used to accurately estimate the initial radial velocity error. The radial velocity gradient is integrated along the azimuth to obtain the platform motion trajectory. Finally, the compensation functions are constructed to complete the echo Range Cell Migration (RCM) correction and residual phase compensation, resulting in a focused SAL image. This article verifies the practical effect of this method in eliminating motion errors using only one-period STLFMCW signal through simulation and real experiments. The quantitative results show that compared with the traditional method, the proposed method reduces the azimuth Peak Sidelobe Ratio (PSLR) by 8dB and the Integrated Sidelobe Ratio (ISLR) by 9 dB. This method has significant improvements and is of great significance for high-resolution FMCW SAL imaging. Full article
(This article belongs to the Special Issue Advances in Synthetic Aperture Radar Data Processing and Application)
Show Figures

Graphical abstract

22 pages, 6569 KB  
Article
Proposed Shaft Coupling Based on RPRRR Mechanism: Positional Analysis and Consequences
by Stelian Alaci, Ioan Doroftei, Florina-Carmen Ciornei, Ionut-Cristian Romanu, Toma-Marian Ciocirlan and Mariana-Catalina Ciornei
Axioms 2023, 12(7), 707; https://doi.org/10.3390/axioms12070707 - 20 Jul 2023
Viewed by 1541
Abstract
This study proposes a solution for the transmission of rotation motion between two shafts with crossed directions. For constructive simplicity, the solutions including the planar pair were preferred and, from the two variants, namely structurally symmetric, revolute–planar–revolute (RPR), or asymmetric RRP, the last [...] Read more.
This study proposes a solution for the transmission of rotation motion between two shafts with crossed directions. For constructive simplicity, the solutions including the planar pair were preferred and, from the two variants, namely structurally symmetric, revolute–planar–revolute (RPR), or asymmetric RRP, the last was selected. The resulting solution, RPRRR, is a non-Denavit–Hartenberg (non-D–H) mechanism. The D–H methodology is laborious since the structure of the equivalent mechanism is more complex than the actual one. For this reason, in the present paper, the kinematic analysis of the mechanism uses geometrical conditions of existence of the planar pair. The system is solved analytically and two main conclusions result: for a set of constructive data and a stipulated position of the driving element, two different assembling positions exist and a rotation motion occurs in the final revolute joint, but in the internal revolute pairs, the motion is oscillatory. The correctness of the theoretical results was corroborated by a CATIA model. The mechanism was also constructed and smooth running was noticed. Two main concerns were considered for the design of the mechanism: avoiding mechanical interference between the elements and estimating the stresses and deformations. Full article
(This article belongs to the Special Issue Applied Mathematics and Information Sciences)
Show Figures

Figure 1

14 pages, 3390 KB  
Article
Computer Network Redundancy Reduction Using Video Compression
by Shabana Habib, Waleed Albattah, Mohammed F. Alsharekh, Muhammad Islam, Mohammad Munawar Shees and Hammad I. Sherazi
Symmetry 2023, 15(6), 1280; https://doi.org/10.3390/sym15061280 - 19 Jun 2023
Cited by 2 | Viewed by 2742
Abstract
Due to the strong correlation between symmetric frames, video signals have a high degree of temporal redundancy. Motion estimation techniques are computationally expensive and time-consuming processes used in symmetric video compression to reduce temporal redundancy. The block-matching technique is, on the other hand, [...] Read more.
Due to the strong correlation between symmetric frames, video signals have a high degree of temporal redundancy. Motion estimation techniques are computationally expensive and time-consuming processes used in symmetric video compression to reduce temporal redundancy. The block-matching technique is, on the other hand, the most popular and efficient of the different motion estimation and compensation techniques. Motion compensation based on the block-matching technique generally uses the minimization of either the mean square error (MSE) or mean absolute difference (MAD) in order to find the appropriate motion vector. This paper proposes to remove the highly temporally redundant information contained in each block of the video signal using the removing temporal redundancy (RTR) technique in order to improve the data rate and efficiency of the video signal. A comparison between the PSNR values of this technique and those of the JPEG video compression standard is made. As a result of its moderate memory and computation requirements, the algorithm was found to be suitable for mobile networks and embedded devices. Based on a detailed set of testing scenarios and the obtained results, it is evident that the RTR compression technique allowed a compression ratio of 22.71 and 95% loss in bit rate reduction while maintaining sufficient intact signal quality with minimized information loss. Full article
Show Figures

Figure 1

16 pages, 455 KB  
Article
The Convergence of Symmetric Discretization Models for Nonlinear Schrödinger Equation in Dark Solitons’ Motion
by Yazhuo Li, Qian Luo and Quandong Feng
Symmetry 2023, 15(6), 1229; https://doi.org/10.3390/sym15061229 - 9 Jun 2023
Cited by 1 | Viewed by 1135
Abstract
The Schrödinger equation is one of the most basic equations in quantum mechanics. In this paper, we study the convergence of symmetric discretization models for the nonlinear Schrödinger equation in dark solitons’ motion and verify the theoretical results through numerical experiments. Via the [...] Read more.
The Schrödinger equation is one of the most basic equations in quantum mechanics. In this paper, we study the convergence of symmetric discretization models for the nonlinear Schrödinger equation in dark solitons’ motion and verify the theoretical results through numerical experiments. Via the second-order symmetric difference, we can obtain two popular space-symmetric discretization models of the nonlinear Schrödinger equation in dark solitons’ motion: the direct-discrete model and the Ablowitz–Ladik model. Furthermore, applying the midpoint scheme with symmetry to the space discretization models, we obtain two time–space discretization models: the Crank–Nicolson method and the new difference method. Secondly, we demonstrate that the solutions of the two space-symmetric discretization models converge to the solution of the nonlinear Schrödinger equation. Additionally, we prove that the convergence order of the two time–space discretization models is O(h2+τ2) in discrete L2-norm error estimates. Finally, we present some numerical experiments to verify the theoretical results and show that our numerical experiments agree well with the proven theoretical results. Full article
Show Figures

Figure 1

Back to TopTop