Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,148)

Search Parameters:
Keywords = system evolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1674 KiB  
Review
Gum Rosin in Medical and Pharmaceutical Applications: From Conventional Uses to Modern Advancements
by Sonita Afrita Purba Siboro, Sabrina Aufar Salma, Syuhada, Kurnia Sari Setio Putri, Frita Yuliati, Won-Ki Lee and Kwon-Taek Lim
Materials 2025, 18(10), 2266; https://doi.org/10.3390/ma18102266 - 13 May 2025
Abstract
Gum rosin and its derivatives have been used traditionally in coatings and adhesives and are now increasingly applied in diverse medical and pharmaceutical fields. Owing to its film-forming ability, hydrophobic nature, biocompatibility, and ease of chemical modification, gum rosin has emerged as a [...] Read more.
Gum rosin and its derivatives have been used traditionally in coatings and adhesives and are now increasingly applied in diverse medical and pharmaceutical fields. Owing to its film-forming ability, hydrophobic nature, biocompatibility, and ease of chemical modification, gum rosin has emerged as a promising excipient for controlled drug release, targeted drug delivery, and other biomedical applications. This review summarizes the evolution of gum rosin applications, from its conventional roles to its modern utilization in nanocarriers, transdermal systems, and other advanced drug delivery platforms. In addition, we discuss the challenges related to allergenicity, brittleness, and excessive hydrophobicity and propose strategies (such as chemical modification and polymer blending) to overcome these issues. This review provides a reference framework for researchers developing new rosin-based materials in pharmaceutical sciences. Full article
18 pages, 4934 KiB  
Article
Hydrochemical Characteristics and Controlling Factors of Hengshui Lake Wetland During the Dry Season, North China
by Hongyan An, Tianjiao Wang, Xianzhou Meng, Xueyao Niu, Dongyang Song, Yibing Wang, Ge Gao, Mingming Li, Tong Zhang, Hongliang Song, Xinfeng Wang and Kuanzhen Mao
Water 2025, 17(10), 1468; https://doi.org/10.3390/w17101468 - 13 May 2025
Abstract
Wetland lakes are crucial ecosystems that serve as vital ecosystems that harbor rich biodiversity and provide essential ecological services, particularly in regulating regional water resources, purifying water quality, and maintaining ecological equilibrium. This study aims to conduct an in-depth investigation into the hydrochemical [...] Read more.
Wetland lakes are crucial ecosystems that serve as vital ecosystems that harbor rich biodiversity and provide essential ecological services, particularly in regulating regional water resources, purifying water quality, and maintaining ecological equilibrium. This study aims to conduct an in-depth investigation into the hydrochemical characteristics and their controlling factors during the dry season of the Hengshui Lake wetland system. By collecting water samples from the lake and shallow groundwater, and using water chemistry diagrams, ion ratios, mineral saturation indices, and multivariate statistical methods, the study systematically analyzes the hydrochemical characteristics of Hengshui Lake Wetland and its controlling factors. The results show: there is significant stratified differentiation in the water chemical composition: the lake water is weakly alkaline and fresh, while the shallow groundwater is highly mineralized and saline. Both are dominated by Na+, Mg2+, SO42−, and Cl. Significant differences exist in water chemistry types between the lake and shallow groundwater. The lake water exhibits homogenized characteristics with a dominant SO4·Cl·HCO3-Na·Mg type, whereas shallow groundwater displays five distinct hydrochemical facies indicative of multi-source recharge processes. Evaporation–rock interaction mechanisms dominate the system, as evidenced by a Gibbs diagram analysis showing evaporation crystallization as the primary control. Ion ratio calculations demonstrate synergistic effects between silicate weathering and evaporite dissolution, while mineral saturation indices confirm cooperative processes involving calcite/dolomite oversaturation and ongoing gypsum dissolution. Cation exchange indexes combined with chloro-alkaline indices reveal unidirectional recharge from lake water to shallow groundwater accompanied by active cationic exchange adsorption. Although the wetland predominantly maintains natural hydrological conditions, elevated γ(NO3)/γ(Na+) ratios in nearshore zones suggest initial agricultural contamination infiltration. This study shows that, as a typical example of a closed wetland, the hydrochemistry evolution of Hengshui Lake during the dry season is primarily dominated by the coupled effects of evaporation and rock–water interaction, with silicate weathering and evaporation rock dissolution as secondary factors, and human activity having a weak influence. The findings provide new insights into the understanding of the hydrochemical evolution process and its controlling factors in closed lakes, offering valuable data support and theoretical basis for the ecological restoration and sustainable management of closed lakes. Full article
(This article belongs to the Special Issue Groundwater Flow and Transport Modeling in Aquifer Systems)
20 pages, 3859 KiB  
Article
Cryo-Electron Microscopy of BfpB Reveals a Type IVb Secretin Multimer Adapted to Accommodate the Exceptionally Wide Bundle-Forming Pilus
by Janay I. Little, Pradip Kumar Singh, Montserrat Samsó and Michael S. Donnenberg
Pathogens 2025, 14(5), 471; https://doi.org/10.3390/pathogens14050471 - 13 May 2025
Abstract
Type IV pili (T4Ps) are multifunctional surface fibers essential for bacterial motility, adhesion, and virulence, found across Gram-negative and Gram-positive bacteria and archaea. Detailed descriptions of T4P structural biology are allowing progress in understanding T4P biogenesis. Secretins, large outer membrane channels, are crucial [...] Read more.
Type IV pili (T4Ps) are multifunctional surface fibers essential for bacterial motility, adhesion, and virulence, found across Gram-negative and Gram-positive bacteria and archaea. Detailed descriptions of T4P structural biology are allowing progress in understanding T4P biogenesis. Secretins, large outer membrane channels, are crucial for T4P extrusion in Gram-negative bacteria. Using cryo-EM and AlphaFold, we modeled the structure of BfpB, the secretin of the Bundle-Forming Pilus (BFP) of enteropathogenic Escherichia coli. BfpB exhibits a unique 17-fold symmetry, correlating with the thicker BFP filaments, and diverging from the 12–15 subunits typical of T4P, type 2 secretion (T2S), and type 3 secretion (T3S) systems. Additionally, we identified an extended β-hairpin loop in the N3 domain, resembling features of distantly related T3SS secretins, and an N-terminal helix where a C-terminal S-domain is seen in some T2S and T3S secretins. These findings reveal evolutionary parallels and structural adaptations in secretins, highlighting the link between oligomerization and pilus structure. This work advances our understanding of T4P biogenesis, secretin evolution, and bacterial secretion systems, offering insights into pathogenic diversity and future research directions. Full article
(This article belongs to the Special Issue Structural Biology Applied in the Study of Pathogenic Bacteria)
Show Figures

Figure 1

24 pages, 5625 KiB  
Review
A Review of High-Temperature Resistant Silica Aerogels: Structural Evolution and Thermal Stability Optimization
by Zhenyu Zhu, Wanlin Zhang, Hongyan Huang, Wenjing Li, Hao Ling and Hao Zhang
Gels 2025, 11(5), 357; https://doi.org/10.3390/gels11050357 - 13 May 2025
Abstract
Silica aerogels exhibit exceptionally low thermal conductivity and a low apparent density, as they are unique porous nanomaterials. They are extensively used in thermal insulation in terms of aerospace and building construction, adsorption processes for environmental applications, concentrating solar power systems, and so [...] Read more.
Silica aerogels exhibit exceptionally low thermal conductivity and a low apparent density, as they are unique porous nanomaterials. They are extensively used in thermal insulation in terms of aerospace and building construction, adsorption processes for environmental applications, concentrating solar power systems, and so on. However, the degradation of the silica aerogel’s nanoporous structure at high temperatures seriously restricts their practical applications. Through a comprehensive review of the high-temperature structural evolution and sintering mechanisms of silica aerogels, this paper introduces two strategies to enhance their thermal stability, including heteroatom doping and surface heterogeneous structure construction. In particular, atomic layer deposition (ALD) of ultra-thin coatings on silica aerogel holds significant potential for enhancing thermal stability, while preserving its ultra-low thermal conductivity. Full article
(This article belongs to the Special Issue Advanced Aerogels: From Design to Application)
Show Figures

Graphical abstract

14 pages, 14034 KiB  
Article
Study on the Dynamic Characteristics of DM-DFBL Self-Delayed Feedback with an Optoelectronic Oscillation Loop
by Nian Xie, Guangfu Bai, Yuanfen Li, Gang Kuang, Shu Xu, Daokai Huang, Xiaonan Wei, Qingzhe Wu and Weichao Huang
Photonics 2025, 12(5), 479; https://doi.org/10.3390/photonics12050479 - 13 May 2025
Abstract
Nonlinear dynamical states generated by self-delayed feedback based on fiber structures have broad applications. However, fiber-based optoelectronic feedback or pure optical feedback systems exhibit long delays, and the coupling mechanisms between these two loops differ significantly from those in short-delay systems. A systematic [...] Read more.
Nonlinear dynamical states generated by self-delayed feedback based on fiber structures have broad applications. However, fiber-based optoelectronic feedback or pure optical feedback systems exhibit long delays, and the coupling mechanisms between these two loops differ significantly from those in short-delay systems. A systematic investigation of feedback coupling mechanisms under long-delay conditions is of great significance for optimizing such systems. In this paper, the nonlinear dynamic state generated by directly modulated distributed feedback semiconductor laser (DM-DFBL) self-delayed feedback with an optoelectronic oscillation loop is studied. Both numerical and experimental results show that the DM-DFBL’s dynamical states vary with changes in optical and electrical feedback intensities. In the self-delayed feedback, the DM-DFBL exhibits an evolutionary path from a chaos (CO) state to a period-one (P1) state and finally becomes a steady state with the decrease of optical feedback intensity. In the optoelectronic oscillation loop, the DM-DFBL generates a microwave frequency comb (MFC), a full-frequency oscillation, and a P1 state. Additionally, the dynamic state of the DM-DFBL can be disturbed, and the stability of the P1 state and the QP state can be enhanced when the optoelectronic oscillation loop is introduced. These conclusions contribute to the precise control of dynamic evolution. Full article
Show Figures

Figure 1

29 pages, 2758 KiB  
Review
Past, Present and Future Perspectives of Forensic Genetics
by Itzae Adonai Gutiérrez-Hurtado, Mayra Elizabeth García-Acéves, Yolanda Puga-Carrillo, Mariano Guardado-Estrada, Denisse Stephania Becerra-Loaiza, Víctor Daniel Carrillo-Rodríguez, Reynaldo Plazola-Zamora, Juliana Marisol Godínez-Rubí, Héctor Rangel-Villalobos and José Alonso Aguilar-Velázquez
Biomolecules 2025, 15(5), 713; https://doi.org/10.3390/biom15050713 - 13 May 2025
Abstract
Forensic genetics has experienced remarkable advancements over the past decades, evolving from the analysis of a limited number of DNA segments to comprehensive genome-wide investigations. This progression has significantly improved the ability to establish genetic profiles under diverse conditions and scenarios. Beyond individual [...] Read more.
Forensic genetics has experienced remarkable advancements over the past decades, evolving from the analysis of a limited number of DNA segments to comprehensive genome-wide investigations. This progression has significantly improved the ability to establish genetic profiles under diverse conditions and scenarios. Beyond individual identification, forensic genetics now enables the inference of physical traits (e.g., eye, hair, and skin color, as well as body composition), biogeographic ancestry, lifestyle habits such as alcohol and tobacco use, and even the transfer of genital microbiomes post-coitus, among other characteristics. Emerging trends point to a future shaped by the integration of cutting-edge technologies, including CRISPR-Cas systems, artificial intelligence, and machine learning, which promise to further revolutionize the field. This review provides a thorough exploration of forensic genetics, tracing its evolution from its foundational methods (past) to its diverse modern applications (present) and offering insights into its potential future directions. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics)
Show Figures

Figure 1

16 pages, 4097 KiB  
Article
Study on Plasma-Chemical Mode of Pulsed Coaxial Dielectric Barrier Discharge Plasma Based on Mass Spectrometry
by Diankai Wang, Yongzan Zheng, Baosheng Du, Jianhui Han, Ming Wen and Tengfei Zhang
Aerospace 2025, 12(5), 433; https://doi.org/10.3390/aerospace12050433 - 13 May 2025
Abstract
This study systematically investigates the dynamic evolution of chemical regimes in pulsed coaxial dielectric barrier discharge (DBD) plasma under atmospheric pressure using mass spectrometry. An innovative real-time mass spectrometric monitoring methodology was established, enabling the dynamic tracking of the formation and consumption processes [...] Read more.
This study systematically investigates the dynamic evolution of chemical regimes in pulsed coaxial dielectric barrier discharge (DBD) plasma under atmospheric pressure using mass spectrometry. An innovative real-time mass spectrometric monitoring methodology was established, enabling the dynamic tracking of the formation and consumption processes of key reactive species such as ozone (O3) and nitrogen oxides (NOx). Energy density was the critical parameter governing the evolution of gaseous chemical components, with a quantitative elucidation of the regulatory mechanisms of air flow rate and control voltage on plasma chemical regime transition kinetics. Experimental results revealed significant parametric correlations: Under a constant control voltage of 140 V, increasing the gas flow rate from 0.5 to 5.5 L/min prolonged the transition duration from O3-NOx coexistence regime to a NOx-dominant regime from 408 s to 1210 s. Conversely, at a fixed flow rate of 3.5 L/min, elevating the control voltage from 120 V to 140 V accelerated this transition, reducing the required time from 2367 s to 718 s. Parametric sensitivity analysis demonstrated that control voltage exerts approximately 3.3 times greater influence on transition kinetics than flow rate variation. Through comprehensive analysis of the formation and consumption mechanisms of N, O, O3, and NOx species, we established a complete plasma chemical reaction network. This scheme provides fundamental insights into reaction pathways while offering practical optimization strategies for DBD systems. For aerospace applications, this work holds particular significance by demonstrating that the identified control parameters can be directly applied to plasma-assisted treatment of propellant wastewater at launch sites, where the efficient removal of nitrogen-containing pollutants is crucial. These findings advance both the fundamental understanding of atmospheric-pressure plasma chemistry and the engineering applications of plasma-based environmental remediation technologies in aerospace operations. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

21 pages, 7687 KiB  
Article
The Integration of Land Use Planning and the Varied Responses of Coupled Human–Natural Systems: A Case Study of Changning County in Southwest China
by Yanlan Xie, Xiaobo Liu, Xiaoshuang Zhuo, Shaoyao Zhang and Hao Zhang
Land 2025, 14(5), 1052; https://doi.org/10.3390/land14051052 - 13 May 2025
Abstract
An urban–rural–natural imbalance is evident; investigating the spatiotemporal evolution of the transitional geo-space (TG) between them facilitates the integration of urban–rural land use planning. In this study, we proposed a complex system model to explore the interactive dynamics between the social–economic systems and [...] Read more.
An urban–rural–natural imbalance is evident; investigating the spatiotemporal evolution of the transitional geo-space (TG) between them facilitates the integration of urban–rural land use planning. In this study, we proposed a complex system model to explore the interactive dynamics between the social–economic systems and natural ecosystems of Changning County, Southwest China, with the TG being identified and classified across the two systems. Based on a three-dimensional “direction–speed–pattern” framework, we further quantified production–living–ecological space (PLE) changes and examined the impacts of these changes on the TG from 2000 to 2022. The results are as follows: (1) The TG was classified into five categories that were stratified according to the coupling intensity and orientation of the socioeconomic system and natural ecosystems in Changning County. (2) The transition type with the most complex socio-ecological coupling was the type of semi-socioeconomic process–semi-natural ecological process, occupying 32.6% (309.4 km2) of the county’s total area in 2000 and demonstrating the most pronounced spatial dynamics, exhibiting a reduction of 78.6 km2 during the study period. (3) Negative impacts on TG dynamics were observed for the conversion of ecological space into agricultural production space (p < 0.01; R2 > 0.24) and the dynamic degree of PLE transformations (p < 0.01; R2 > 0.13). (4) The impacts of trends in PLE on the TG varied significantly across temporal phases, whereas the CONTAG index exhibited consistently non-significant effects throughout all study periods. This study provides a new insight into understanding the optimization of spatial development patterns in urban–rural–natural regions and offers theoretical support for the governance of national land space and high-quality economic and social development in mountainous areas. Full article
Show Figures

Figure 1

20 pages, 3787 KiB  
Review
Managing and Optimizing Hybrid Distributed Energy Systems: A Bibliometric Mapping of Current Knowledge and Strategies
by Daniel Słyś, Agnieszka Stec, Kacper Bednarz, Przemysław Ogarek and Martina Zeleňáková
Energies 2025, 18(10), 2497; https://doi.org/10.3390/en18102497 - 13 May 2025
Abstract
Hybrid renewable energy systems (HRESs) play a key role in the decarbonization of many sectors of the economy and, thus, in achieving ambitious climate goals. Due to the complexity of the issues and the impact of many factors on the efficiency of these [...] Read more.
Hybrid renewable energy systems (HRESs) play a key role in the decarbonization of many sectors of the economy and, thus, in achieving ambitious climate goals. Due to the complexity of the issues and the impact of many factors on the efficiency of these systems, it is necessary to ensure that they are properly designed, managed, and optimized. Many techniques and methods are used to achieve an optimal multi-source energy system. In recent years, there has been a growing interest in HRESs. Taking this into account, a comprehensive review of scientific literature was carried out, based on bibliometric analysis. Professional software was used for the research: Bibliometrix and VOSviewer. The bibliographic database was created using the international scientific platform Web of Science. The evolution of research trends and the dynamic development of research on the management and optimization of HRESs in the years 2010–2024 were presented. The results of the analysis confirmed the growing importance of integrated energy management systems and optimization strategies in the context of the global energy transformation. The analysis also indicated that, despite the growing interest in this topic, further development of advanced energy management strategies and optimization methods is necessary to effectively use renewable energy sources and enhance the stability of HRESs. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

46 pages, 7933 KiB  
Article
Securing Photovoltaic Systems as Critical Infrastructure: A Multi-Layered Assessment of Risk, Safety, and Cybersecurity
by Simona Riurean, Nicolae-Daniel Fîță, Dragoș Păsculescu and Răzvan Slușariuc
Sustainability 2025, 17(10), 4397; https://doi.org/10.3390/su17104397 - 12 May 2025
Abstract
This article presents a comprehensive analysis of photovoltaic (PV) systems, focusing on their development and emerging security challenges over the past decade in Europe and Romania. It begins by presenting regional deployment trends and the increasing significance of PV systems in national energy [...] Read more.
This article presents a comprehensive analysis of photovoltaic (PV) systems, focusing on their development and emerging security challenges over the past decade in Europe and Romania. It begins by presenting regional deployment trends and the increasing significance of PV systems in national energy strategies. In the Romanian context, a risk-based evaluation is conducted to assess the technical vulnerabilities and strategic relevance of PV installations, emphasizing the necessity to formally integrate them into the category of critical infrastructure. The study explores current safety practices, cybersecurity measures, and physical protections, identifying gaps that may affect operational continuity and infrastructure reliability. Given the growing exposure of PV systems to digital threats, the need for robust and adaptive cybersecurity strategies is also highlighted. In line with the principles of a sustainable circular economy, this work underlines the importance of embedding risk management and technical reliability across the entire lifecycle of PV systems. The authors propose recommendations aiming to enhance the resilience, security, and sustainable evolution of PV systems as vital components of a modern, decarbonized energy infrastructure. Full article
Show Figures

Figure 1

25 pages, 4120 KiB  
Systematic Review
Microorganisms in Macroalgae Cultivation Ecosystems: A Systematic Review and Future Prospects Based on Bibliometric Analysis
by Yinglong Chen, Pengbing Pei, Muhammad Aslam, Muhamad Syaifudin, Ran Bi, Ping Li and Hong Du
Microorganisms 2025, 13(5), 1110; https://doi.org/10.3390/microorganisms13051110 - 12 May 2025
Abstract
Microorganisms play an essential role in the biogeochemical processes of macroalgal cultivation ecosystems by participating in a complex network of interactions, significantly influencing the growth and development of macroalgae. This study used bibliometric analysis and VOSviewer based on Web of Science data to [...] Read more.
Microorganisms play an essential role in the biogeochemical processes of macroalgal cultivation ecosystems by participating in a complex network of interactions, significantly influencing the growth and development of macroalgae. This study used bibliometric analysis and VOSviewer based on Web of Science data to provide an overview by tracing the developmental footprint of the technology. Countries, institutions, authors, keywords, and key phrases were tracked and mapped accordingly. From 1 January 2003 to 31 December 2023, 619 documents by 2516 authors from 716 institutions in 51 countries were analyzed. Keyword co-occurrence network analysis revealed five main areas of research on microbes in macroalgal cultivation ecosystems: (1) identification of microbial species and functional genes, (2) biogeochemical cycling of carbon in microbial communities, (3) microbial influences on macroalgae growth and development, (4) bioactivities, and (5) studies based on database. Thematic evolution and map research emphasized the centrality of microbial diversity research in this direction. Over time, the research hotspots and the core scientific questions of the microorganisms in the macroalgal cultivation ecosystems have evolved from single-organism interactions to the complex dynamics of microbial communities. The application of high-throughput techniques had become a hotspot, and the adoption of systems biology approaches had further facilitated the integrated analysis of microbial community composition and function. Our results provide valuable guidance and information for future researches on algal–bacterial interactions and microbe-driven carbon cycling in coastal ecosystems. Full article
Show Figures

Figure 1

22 pages, 1789 KiB  
Article
Evaluation Model Based on the SGCNiFormer for the Influence of Different Storage Environments on Wheat Quality
by Qingchuan Zhang, Zexi Song and Mingwen Bi
Foods 2025, 14(10), 1715; https://doi.org/10.3390/foods14101715 - 12 May 2025
Abstract
Wheat is a vital staple food crop, and its post-harvest storage is paramount to maintaining its quality. However, conventional grain storage methods frequently impede the ability to promptly and accurately predict and assess quality changes. Moreover, most storage systems are ineffective in dealing [...] Read more.
Wheat is a vital staple food crop, and its post-harvest storage is paramount to maintaining its quality. However, conventional grain storage methods frequently impede the ability to promptly and accurately predict and assess quality changes. Moreover, most storage systems are ineffective in dealing with the impact of temperature and humidity fluctuations on wheat quality, which can potentially lead to quality degradation during storage. To address these challenges, this paper proposes a dual model system of “prediction-evaluation”, which integrates a dynamic quality prediction model based on SGCNiFormer with an evaluation framework based on K-Smeans clustering to establish a closed-loop mechanism from quality prediction to storage effect evaluation. The system incorporates a graph convolutional network (GCN) and a dynamic gating module, enabling precise simulation of the multidimensional evolution of wheat quality under the interaction of moisture and temperature. The experimental results demonstrate the superiority of SGCNiFormer in time-series prediction tasks, while the K-Smeans method establishes a wheat quality grading standard with physical interpretability. This integrated method provides a systematic theoretical framework for optimizing storage parameters and offers substantial support for intelligent grain storage management. Full article
Show Figures

Figure 1

16 pages, 668 KiB  
Article
Detrital Zircon U-Pb Geochronology of River Sands from the Yulongkash and Karakash Rivers in the Hotan River Drainage System, Southwestern Tarim Basin: Implications for Sedimentary Provenance and Tectonic Evolution
by Mingkuan Qin, Qiang Guo, Nian Liu, Qiang Xu, Jing Xiao, Shaohua Huang, Long Zhang, Miao Xu, Yayi Jiang and Shaohua Zhang
Minerals 2025, 15(5), 509; https://doi.org/10.3390/min15050509 - 12 May 2025
Abstract
The southwestern Tarim Basin, shaped by the far-field effects of the India-Eurasia collision, serves as a critical archive for reconstructing source-to-sink dynamics and tectonic evolution in a Cenozoic intracontinental foreland setting. This study presents detrital zircon U-Pb geochronology and trace element data from [...] Read more.
The southwestern Tarim Basin, shaped by the far-field effects of the India-Eurasia collision, serves as a critical archive for reconstructing source-to-sink dynamics and tectonic evolution in a Cenozoic intracontinental foreland setting. This study presents detrital zircon U-Pb geochronology and trace element data from sands of the Yulongkash and Karakash Rivers, major tributaries of the Hotan River draining the West Kunlun Orogenic Belt. Our results reveal distinct provenance signatures between the two tributaries: Yulongkash river sands (HT1) exhibit dominant Triassic (~208 Ma) and Early Paleozoic (~418 Ma) zircon populations, sourced primarily from the South Kunlun and Tianshuihai terranes, whereas Karakash river sands (MY1) are characterized by Early Paleozoic (~460 Ma) and Precambrian zircons, reflecting predominant contributions from the North Kunlun Terrane. Integration with published datasets highlights systematic spatial variations in detrital zircon age spectra, controlled by bedrock heterogeneity, fluvial geomorphology, and sediment mixing efficiency. Furthermore, crustal thickness reconstructions based on zircon trace elements constrain the terminal closure of the Proto-Tethys Ocean to ~420–440 Ma (peak crustal thickness: ~80 km) and the Paleo-Tethys Ocean to the Late Triassic (~210 Ma). These findings not only refine the provenance framework of the Hotan River drainage system but also provide critical insights into the timing of Tethyan ocean closures and the tectonic evolution of the West Kunlun Orogenic Belt, emphasizing the utility of detrital zircon records in deciphering orogenic histories within complex intracontinental settings. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
27 pages, 12260 KiB  
Article
Effects of a J-Shaped Blade on the Performance of a Vertical-Axis Wind Turbine Using the Improved Delayed Detached Eddy Simulation Method
by Tengyue Zhang, Gang Wang and Quanzheng Li
Machines 2025, 13(5), 403; https://doi.org/10.3390/machines13050403 - 12 May 2025
Abstract
Vertical-axis wind turbines (VAWTs) offer key advantages such as independence from wind direction, low manufacturing costs, and reduced noise levels, making them highly suitable for urban and offshore wind energy applications. Among various VAWT designs, the J-shaped VAWT demonstrates improved energy capture at [...] Read more.
Vertical-axis wind turbines (VAWTs) offer key advantages such as independence from wind direction, low manufacturing costs, and reduced noise levels, making them highly suitable for urban and offshore wind energy applications. Among various VAWT designs, the J-shaped VAWT demonstrates improved energy capture at low and medium tip speed ratios (TSRs) compared to symmetrical blade VAWTs, which has garnered increased interest in recent years. However, the mechanisms by which J-shaped blades enhance VAWT performance remain insufficiently explored. In this paper, the high-resolution three-dimensional Improved Delayed Detached Eddy Simulation was employed to investigate the evolution and interaction of complex vortex systems in J-shaped and symmetrical blade VAWTs at varying TSRs, aiming to deepen the understanding of J-shaped blade effects on wind turbine aerodynamic performance. The results indicate that the tip vortex plays a role in inhibiting flow separation, while the J-shaped blade generates a stronger tip vortex, conferring upon it an advantage in suppressing flow separation and delaying dynamic stall. Additionally, the smaller pressure differential between the root and tip of the J-shaped blade reduces cross-flow on the blade surface, thereby reducing susceptibility to flow separation. Therefore, as the blade enters the dynamic stall region at low and medium TSRs, the J-shaped blade achieves a higher lift coefficient than the symmetrical blade, yielding greater torque, and enhancing wind energy utilization. Full article
(This article belongs to the Special Issue Modelling, Design and Optimization of Wind Turbines)
Show Figures

Figure 1

25 pages, 3862 KiB  
Article
Generic Architecture for Self-Organized Adaptive Platform System of Systems
by Miri Sitton, Rozi Alon and Yoram Reich
Systems 2025, 13(5), 368; https://doi.org/10.3390/systems13050368 - 12 May 2025
Abstract
Future systems of systems (SoSs) must adapt rapidly to evolving environments and stakeholder needs, yet conventional system engineering approaches often lack the flexibility to accommodate such change without costly re-engineering. Addressing this gap, this study proposes a novel, generic architecture model for self-organized [...] Read more.
Future systems of systems (SoSs) must adapt rapidly to evolving environments and stakeholder needs, yet conventional system engineering approaches often lack the flexibility to accommodate such change without costly re-engineering. Addressing this gap, this study proposes a novel, generic architecture model for self-organized adaptive platform SoSs, emphasizing a modular, layered structure that enables dynamic integration and reconfiguration of sub-units for diverse missions. The research is grounded in a comprehensive review of complex SoS theory and platform system design, focusing on physical platforms with central management. Methodologically, this study develops a logical architecture for electronics and software, detailing the roles and interactions of each architectural layer and component. The model’s efficacy is demonstrated through its application to the F-35 Joint Strike Fighter, where it identified opportunities to enhance the aircraft’s adaptability and self-organization. Results indicate that early adoption of this generic architecture can significantly reduce design and redesign costs, prevent over-specification, and promote lifecycle adaptability across various platform types—including land, air, and sea systems. The proposed architecture thus offers a robust foundation for future adaptive SoSs, supporting efficient evolution in response to unpredictable operational demands. Full article
(This article belongs to the Special Issue System of Systems Engineering)
Show Figures

Figure 1

Back to TopTop