Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (128)

Search Parameters:
Keywords = tachyzoites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1274 KB  
Article
Purification and Characterization of Immunoglobulin Y (IgY) Targeting Surface Antigen 1 (SAG1) of Toxoplasma gondii
by Enrique Adrián Herrera-Aguirre, Diana León-Núñez, Jaime Marcial-Quino, Saúl Gómez-Manzo, César Augusto Reyes-López, Yolanda Medina-Flores, Olga Mata-Ruíz, Lizbeth Xicotencatl-García, Hector Luna-Pastén, Luz Belinda Ortiz-Alegría, Nury Pérez-Hernández, Magdalena Escorcia, Dolores Correa and Fernando Gómez-Chávez
Antibodies 2025, 14(4), 81; https://doi.org/10.3390/antib14040081 - 26 Sep 2025
Viewed by 359
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite responsible for toxoplasmosis, a disease with significant health implications for humans and animals. The surface antigen 1 (SAG1) of T. gondii is a major immunodominant protein that facilitates host cell invasion, [...] Read more.
Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite responsible for toxoplasmosis, a disease with significant health implications for humans and animals. The surface antigen 1 (SAG1) of T. gondii is a major immunodominant protein that facilitates host cell invasion, making it an ideal target for diagnostic and therapeutic interventions. Immunoglobulin Y (IgY), the primary antibody in avian species, offers unique advantages over mammalian IgG, including easier animal care, lower costs, high-yield production, and potential passive immunization. Objectives: This study aimed to induce, purify, and characterize IgY antibodies targeting T. gondii SAG1 from hen egg yolks. Methods: The coding region of the mature portion of T. gondii SAG1 was amplified by PCR, cloned into the pET32a(+) vector for heterologous expression in E. coli. The recombinant SAG1 (rSAG1) was purified by affinity chromatography and used to immunize hens. IgY was extracted from egg yolks using PEG. SDS-PAGE and spectrophotometry were used to evaluate purity and concentration. By ELISA, Western blot, and flow cytometry, the specificity of IgY was assessed against recombinant and endogenous, native, and denatured SAG1. Results: Purified IgY demonstrated strong recognition of both recombinant and native SAG1 in ELISA and Western blot, and against T. gondii tachyzoites by flow cytometry. Conclusions: SAG1-specific IgY was produced in a pure form; it could be helpful in research, diagnosis, and treatment at low costs on a larger production scale, with minimal animal harm. Full article
(This article belongs to the Section Antibody Discovery and Engineering)
Show Figures

Figure 1

13 pages, 886 KB  
Article
The Acute Immune Response in Sheep Following Immunization with Toxoplasma gondii Tachyzoites or Parasite-Derived Glycoconjugates
by Patrícia Oliveira Meira-Santos, Gabriela Cruz Piedade, Maria Tereza Guedes, Dan Loureiro, José Tadeu Raynal, Roberto Meyer, Letícia Vicentini, Luiz Soares, Blima Fux and Ricardo Wagner Portela
Vet. Sci. 2025, 12(10), 928; https://doi.org/10.3390/vetsci12100928 - 24 Sep 2025
Viewed by 344
Abstract
Toxoplasmosis is a relevant parasitic infection in sheep, with ovine meat an important source of human exposure. Accurate detection of the early immune response to Toxoplasma gondii is essential for preventing reproductive losses and improving diagnostic strategies. This study evaluated the kinetics of [...] Read more.
Toxoplasmosis is a relevant parasitic infection in sheep, with ovine meat an important source of human exposure. Accurate detection of the early immune response to Toxoplasma gondii is essential for preventing reproductive losses and improving diagnostic strategies. This study evaluated the kinetics of the acute immune response in eighteen sheep experimentally exposed to live tachyzoites or immunized with parasite-derived glycoconjugates (GlyC). Animals were divided into three groups and injected with saline solution, tachyzoites, or glycoconjugates combined with an adjuvant. Infected sheep developed specific IgM antibodies against both lysate and glycoconjugate antigens from day 4, and IgG against glycoconjugates from day 12 post-infection. Glycoconjugate-immunized sheep produced IgM against lysate antigens from day 4, and IgG against both antigens from day 12. Flow cytometry revealed a significant increase in circulating CD8+ T cells and a reduction in MHC class II+ cells on day 60 in the infected group. These findings demonstrate the early humoral and cellular immune response profiles following infection or GlyC immunization. This supports their future application in diagnostic tests or as vaccine candidates against toxoplasmosis in sheep. Full article
(This article belongs to the Special Issue Detection of Parasitic Diseases in Livestock)
Show Figures

Graphical abstract

17 pages, 3416 KB  
Article
GRA86 Is a Novel Dense Granule Protein Important for Virulence and Bradyzoite Differentiation in Toxoplasma gondii
by Xiao-Nan Zheng, Jing Li, Xin-Sheng Lu, Hany M. Elsheikha and Xing-Quan Zhu
Animals 2025, 15(17), 2591; https://doi.org/10.3390/ani15172591 - 3 Sep 2025
Viewed by 593
Abstract
Toxoplasma gondii is a globally prevalent parasite capable of establishing lifelong infections, which can have severe consequences in immunocompromised individuals and developing fetuses. GRAs are essential secretory effectors that facilitate nutrient acquisition, modulate host immune responses, and support intracellular survival. In this study, [...] Read more.
Toxoplasma gondii is a globally prevalent parasite capable of establishing lifelong infections, which can have severe consequences in immunocompromised individuals and developing fetuses. GRAs are essential secretory effectors that facilitate nutrient acquisition, modulate host immune responses, and support intracellular survival. In this study, we characterized four putative GRAs (GRA85–88) that co-localize with GRA12 in both tachyzoite and bradyzoite stages. Using CRISPR-Cas9-mediated homologous recombination, we successfully generated knockout strains in both type I RH and type II Pru backgrounds. Phenotypic analysis revealed that GRA85, GRA87, and GRA88 were not individually required for parasite replication, invasion, or virulence. However, deletion of gra86 (PruΔgra86) resulted in a significant reduction in virulence and fewer brain cysts in chronically infected mice, although in vitro growth remained unaffected. Transcriptomic profiling of PruΔgra86 revealed downregulation of bradyzoite–related genes and upregulation of GRAs involved in host interaction. Additionally, in vitro differentiation assays showed impaired bradyzoite development in the absence of GRA86. These findings from murine models and in vitro phenotypic assays highlight GRA86 as a regulator of chronic infection and stage conversion, positioning it as an important player in T. gondii pathogenesis and a promising target for therapeutic intervention. Full article
(This article belongs to the Special Issue Coccidian Parasites: Epidemiology, Control and Prevention Strategies)
Show Figures

Figure 1

13 pages, 1794 KB  
Article
Ribosome-Associated Quality Control Mediated by Rqc2 Contributes to the Lytic Cycle and Stage Conversion of Toxoplasma gondii
by Yuxue Li, Keqin Huang, Honglin Jia, Xu Gao and Huanping Guo
Microorganisms 2025, 13(9), 2041; https://doi.org/10.3390/microorganisms13092041 - 31 Aug 2025
Viewed by 688
Abstract
The conversion from fast-growing tachyzoites to slow-growing bradyzoites is the key factor in establishing the chronic infection and long-term persistence of Toxoplasma gondii. Environmental stressors, such as amino acid starvation and alkaline medium, can trigger the transformation of tachyzoites into bradyzoites. Under [...] Read more.
The conversion from fast-growing tachyzoites to slow-growing bradyzoites is the key factor in establishing the chronic infection and long-term persistence of Toxoplasma gondii. Environmental stressors, such as amino acid starvation and alkaline medium, can trigger the transformation of tachyzoites into bradyzoites. Under such stress conditions, ribosomes slow down, potentially leading to stalling, and ribosomal collisions typically activate ribosome-associated quality control (RQC) pathways. In this study, we investigated the role of T. gondii ribosome quality control complex subunit 2 (TgRqc2), which contains both NFACT and coiled-coil domains, in the parasite’s survival and stage conversion. NFACT represents the “domain” found in the central players involved in RQC, human NEMF and its orthologs FbpA (known as RqcH), Caliban, and Tae2 (known as Rqc2). Phylogenetic analyses revealed that TgRqc2 formed a distinct clade with its orthologs in apicomplexan parasites. The deletion of TgRqc2 impaired T. gondii’s invasion and replication. The Rqc2-knockout strain showed defects in plaque formation and bradyzoite development. Our findings demonstrate that TgRqc2 is essential for T. gondii’s lytic cycle and the conversion of tachyzoites into bradyzoites. RNA-seq analysis further showed that the depletion of TgRqc2 significantly disrupted global transcriptional activity. However, the detailed molecular mechanisms involved remain to be elucidated. In conclusion, our results proved valuable insights that may aid in the development of therapeutic strategies to prevent chronic infection. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

21 pages, 2457 KB  
Article
BthTX-II, an Asp49 PLA2 from Bothrops jararacussu, Impairs Toxoplasma gondii Infection: In Vitro and Ex Vivo Approaches
by Vinícius Queiroz Oliveira, Emanuelle Lorrayne Ferreira, Lorena Pinheiro Morais, Leonardo Alves Garcia, Gabriel de Oliveira Sousa, Marcos Paulo Oliveira Almeida, Guilherme de Souza, Joed Pires de Lima Júnior, Natália Carine Lima dos Santos, Rafael Martins de Oliveira, Tássia Rafaela Costa, Andreimar Martins Soares, Luísa Carregosa Santos, Daiana Silva Lopes, Emidio Beraldo-Neto, Angelica Oliveira Gomes, Jovita Eugênia Gazzinelli Cruz Madeira, Bellisa Freitas Barbosa, Eloisa Amália Vieira Ferro, Samuel Cota Teixeira and Veridiana de Melo Rodrigues Ávilaadd Show full author list remove Hide full author list
Pharmaceuticals 2025, 18(9), 1260; https://doi.org/10.3390/ph18091260 - 25 Aug 2025
Viewed by 816
Abstract
Background/Objectives: Toxoplasma gondii, an obligate intracellular parasite, poses a major global health concern owing to its potential for congenital transmission, particularly during pregnancy. Current pharmacological treatments, including spiramycin and pyrimethamine, exhibit limitations in both efficacy and safety, underscoring the need for [...] Read more.
Background/Objectives: Toxoplasma gondii, an obligate intracellular parasite, poses a major global health concern owing to its potential for congenital transmission, particularly during pregnancy. Current pharmacological treatments, including spiramycin and pyrimethamine, exhibit limitations in both efficacy and safety, underscoring the need for novel therapeutic strategies. In this study, we investigated the antiparasitic potential of BthTX-II, an Asp49 phospholipase A2 (PLA2) isolated from Bothrops jararacussu venom, in human trophoblast cells (BeWo) and third-trimester human placental explants infected with T. gondii. Methods: In vitro assays were performed using BeWo cells infected with T. gondii tachyzoites and treated with non-cytotoxic concentrations of BthTX-II (3.125, 1.56, and 0.78 µg/mL). An ex vivo model employing third-trimester human placental villous explants was used under similar conditions. Parasite proliferation, adhesion, and invasion were assessed alongside host immune response modulation. Results: Our findings demonstrate that BthTX-II reduces T. gondii proliferation in BeWo cells at all tested non-cytotoxic concentrations. The toxin also significantly impaired parasite adhesion and invasion while modulating host immune response by upregulating interleukin (IL)-6, IL-8, and macrophage migration inhibitory factor (MIF), and downregulating vascular endothelial growth factor—potentially disrupting parasite proliferation. In placental villous explants, BthTX-II (1.56 μg/mL) reduced T. gondii proliferation and modulated IL-8, MIF, and tumour necrosis factor-alpha levels without compromising tissue viability. Conclusions: These findings highlight BthTX-II as a potential candidate in toxoplasmosis treatment. Further investigation should focus on its dual role in limiting parasite development and modulating immune responses at the maternal–fetal interface. Full article
(This article belongs to the Special Issue Recent Research in Therapeutic Potentials of Venoms)
Show Figures

Figure 1

13 pages, 1570 KB  
Article
The Distribution of Neospora caninum Secretory Proteins in Mouse and Calf Brains
by Nanako Ushio-Watanabe, Rio Fujihara, Kenichi Watanabe, Manabu Yamada, Yoshiyasu Kobayashi and Yoshifumi Nishikawa
Microorganisms 2025, 13(9), 1970; https://doi.org/10.3390/microorganisms13091970 - 22 Aug 2025
Viewed by 488
Abstract
Neospora caninum, as well as Toxoplasma gondii, secrete proteins that facilitate the invasion of host cells and the regulation of host immune response and metabolism. However, the localization of the secretory proteins in infected animal brains has not been studied in [...] Read more.
Neospora caninum, as well as Toxoplasma gondii, secrete proteins that facilitate the invasion of host cells and the regulation of host immune response and metabolism. However, the localization of the secretory proteins in infected animal brains has not been studied in detail. Here, we investigate the brain and intracellular distribution of the secretory proteins in experimentally infected mice and naturally infected calves through histopathology and immunohistochemistry (IHC) to detect surface antigen 1 (NcSAG1), cyclophilin (NcCYP), profilin (NcPF), dense granule protein 6 (NcGRA6), and NcGRA7. These methods revealed that numerous tachyzoites positive for NcSAG1, NcCYP, NcPF, NcGRA6, and NcGRA7 were localized in and around the animals’ necrotic lesions, and NcGRA7 was diffusely observed in the necrotic lesions of the infected mice. Moreover, IHC revealed that NcGRA6 and NcGRA7 were distributed in the cytoplasm of infected neurons around the parasites in the infected mice and calves. This suggests that NcGRA6 and NcGRA7 might be directly related to the alteration of neuronal metabolism and activity, and that NcGRA7 might be related to the formation of necrotic lesions. Full article
(This article belongs to the Special Issue Advances in Veterinary Microbiology)
Show Figures

Figure 1

18 pages, 1464 KB  
Article
Killer Peptide-Containing Polyelectrolytic Nanocomplexes to Fight Toxoplasma gondii Infection
by Arianna Bucella, Manuela Semeraro, Laura Giovati, Lorenza Artesani, Ruggero Bettini, Annalisa Bianchera and Alice Vismarra
Pharmaceutics 2025, 17(8), 1075; https://doi.org/10.3390/pharmaceutics17081075 - 20 Aug 2025
Viewed by 634
Abstract
Background/Objectives: Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, typically is asymptomatic in immunocompetent individuals but causes severe complications in immunocompromised subjects and during pregnancy. Current treatments such as pyrimethamine and sulfadiazine are effective for acute infections but cannot eliminate encysted bradyzoites [...] Read more.
Background/Objectives: Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, typically is asymptomatic in immunocompetent individuals but causes severe complications in immunocompromised subjects and during pregnancy. Current treatments such as pyrimethamine and sulfadiazine are effective for acute infections but cannot eliminate encysted bradyzoites and have significant side effects. The antimicrobial killer peptide (KP) has interesting therapeutic potential, but its intracellular delivery is challenging; hyaluronate-based nanoparticles loaded with KP (KP-NPs) were evaluated to target T. gondii-infected cells that overexpress CD44. Methods: KP-NPs made of chitosan and hyaluronate were produced by microfluidics and were characterized for size, surface charge, encapsulation efficiency, and stability under stress conditions. After excluding their toxicity, their activity was tested in vitro against Candida albicans and T. gondii as free tachyzoite or in infected human foreskin fibroblasts (HFFs). Results: KP was efficiently encapsulated in nanoparticles and protected from harsh acidic conditions at high temperature. Preliminary in vitro testing against C. albicans showed that, at the lowest candidacidal concentration of KP (2.5 μg/mL), KP-NPs killed 90.97% of yeast cells. KP itself proved to be non-toxic for HFFs as host cells and effective against T. gondii. Comparable results were obtained for KP-NPs and blank nanoparticles (BLK-NPs), with no observed toxicity to host cells, confirming that encapsulation did not alter peptide efficacy. The parasiticidal effect of KP alone, as well as KP-NPs at 250 µg/mL and BLK-NPs, was confirmed through tests on free T. gondii tachyzoites. Reduction rates for the number of infected cells ranged from 66% to 90% with respect to control, while the reduction in the number of intracellular tachyzoites ranged from 66% to 80%. Interestingly, KP alone was not effective against intracellular tachyzoite, while KP-NPs maintained an efficacy comparable to the extracellular model, suggesting that particles helped the internalization of the peptide. Conclusions: Encapsulation of KP into hyaluronate/chitosan nanoparticles does not alter its activity and improves its efficacy against the intracellular parasite. Notably, BLK-NPs appeared to exhibit efficacy against the parasite on its own, without the presence of KP. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

14 pages, 2099 KB  
Article
Immunogenicity and Protective Efficacy of a Recombinant Toxoplasma gondii GRA12 Vaccine in Domestic Cats
by Jinru Yang, Linchong Nie, Yining Song, Zipeng Yang, Liulu Yang, Hongjie Ren, Wenhao Li, Yasser Mahmmod, Xiu-Xiang Zhang, Ziguo Yuan, Hao Yuan and Yan Zhang
Vaccines 2025, 13(8), 851; https://doi.org/10.3390/vaccines13080851 - 11 Aug 2025
Viewed by 663
Abstract
Background: Toxoplasma gondii (T. gondii) is a significant opportunistic zoonotic protozoan, presenting a substantial risk to human health and livestock. Consequently, the development of an effective vaccine against toxoplasmosis is imperative. This study focuses on the GRA12 protein as a [...] Read more.
Background: Toxoplasma gondii (T. gondii) is a significant opportunistic zoonotic protozoan, presenting a substantial risk to human health and livestock. Consequently, the development of an effective vaccine against toxoplasmosis is imperative. This study focuses on the GRA12 protein as a target for developing a recombinant protein vaccine, with its efficacy evaluated through immunization trials in cats. Methods: We expressed recombinant GRA12 protein in E. coli and immunized cats with the purified antigen. The cats were categorized into four groups: G1 (PBS control), G2 (ISA 201 adjuvant alone), G3 (rGRA12 vaccine), and G4 (rGRA12 combined with ISA 201 adjuvant). All cats underwent subcutaneous immunizations on days 0, 14, and 28. Subsequently, serum levels of IgG (including IgG1 and IgG2a subclasses) and cytokines (IFN-γ, IL-2, TNF-α, IL-4, IL-10) were measured by enzyme-linked immunosorbent assay (ELISA). Two weeks after the third immunization (42 DPI), each cat was intraperitoneally infected with 1 × 106T. gondii RH tachyzoites. Oocyst shedding, survival duration, and T. gondii burden were monitored to assess vaccine-induced immunity. Results: The results indicate that immunization with recombinant rGRA12 protein significantly elevated IgG, IgG1, and IgG2a antibody levels in cats. G4 displayed elevated IgG levels post-immunization compared to G1 and G2, with an IgG1/IgG2a ratio > 1, indicating a mixed Th1/Th2 immune response. G4 also showed significantly increased IFN-γ, IL-2, TNF-α, and IL-4 levels compared to G1 (p < 0.05), while IL-10 remained unchanged. After T. gondii infection, total oocyst counts were 4.61 × 106 (G1), 4.49 × 106 (G2), 3.58 × 106 (G3), and 2.59 × 106 (G4), with G3/G4 showing 20.1–27.9% reduction relative to G1 (p < 0.05). Survival analysis revealed that groups G3 and G4 exhibited significantly longer median survival times (38 and 60 days, respectively; G4 with no mortality) compared to G1 and G2 (19 and 26 days, respectively). Additionally, parasite burdens in the brain, heart, lungs, liver, and spleen were significantly reduced in G3/G4 compared to G1/G2 (p < 0.01). Conclusions: In summary, the recombinant GRA12 vaccine significantly enhanced host survival and reduced parasite burden, demonstrating its potential as an effective toxoplasmosis vaccine candidate. These findings provide valuable data for future toxoplasmosis vaccine development. Full article
(This article belongs to the Special Issue The Development of Vaccine Against Parasite Infection)
Show Figures

Figure 1

10 pages, 1764 KB  
Brief Report
Cathelicidins Limit Intracellular Neospora caninum-Infection in Macrophages
by Franco Fiorani, Priyoshi Lahiri, Rodrigo Puentes, Peter John Bradley, Dadin Prando Moore and Eduardo Ruben Cobo
Pathogens 2025, 14(7), 663; https://doi.org/10.3390/pathogens14070663 - 5 Jul 2025
Viewed by 1008
Abstract
Infections with the protozoan Neospora caninum cause abortion in cattle, likely due to the parasite’s replication and excessive inflammation in the placenta. Cathelicidins are host defense peptides known for their antimicrobial and immunomodulatory functions, but their role in N. caninum infections remains elusive. [...] Read more.
Infections with the protozoan Neospora caninum cause abortion in cattle, likely due to the parasite’s replication and excessive inflammation in the placenta. Cathelicidins are host defense peptides known for their antimicrobial and immunomodulatory functions, but their role in N. caninum infections remains elusive. Using bone marrow-derived macrophages (BMDMs) isolated from mice expressing (wild-type, Camp+/+) and lacking (Camp/−) cathelicidins, we investigated the role of endogenous cathelicidin in infections with N. caninum. We show that Camp/− macrophages primed with lipopolysaccharide (LPS) had an increased number of intracellular N. caninum tachyzoites, and these macrophages released higher amounts of IL-1β and lactate dehydrogenase (LDH), a marker of cytotoxicity. These findings indicate that cathelicidins contribute to intracellular N. caninum control and inflammation by limiting the activation of the inflammasome, particularly under LPS-induced conditions. This insight reveals the immunomodulatory role of cathelicidins in controlling N. caninum-associated pathologies. Full article
(This article belongs to the Special Issue Genetics and Molecular Evolution of Parasitic Protozoa)
Show Figures

Figure 1

12 pages, 1673 KB  
Article
Low Tenacity of Toxoplasma gondii Tachyzoites In Vitro
by Thomas Grochow, Mirjam Kalusa, Pauline Tonndorf-Martini, Nicole Röhrmann, Simone A. Fietz and Lea-Christina Murnik
Microorganisms 2025, 13(7), 1517; https://doi.org/10.3390/microorganisms13071517 - 29 Jun 2025
Viewed by 3431
Abstract
Toxoplasma gondii, an obligate intracellular protozoan, poses significant risks to public health due to its widespread distribution and potential for severe congenital and neurological complications. The fast-replicating tachyzoite stage is crucial for acute infection and laboratory studies, yet effective inactivation methods remain [...] Read more.
Toxoplasma gondii, an obligate intracellular protozoan, poses significant risks to public health due to its widespread distribution and potential for severe congenital and neurological complications. The fast-replicating tachyzoite stage is crucial for acute infection and laboratory studies, yet effective inactivation methods remain inadequately explored. This study evaluates various chemical and physical approaches to inactivate T. gondii tachyzoites in vitro. Using a combination of GFP fluorescence and viability assays, we demonstrated the complete inactivation of tachyzoites with ethanol (≥30%), hydrogen peroxide (≥3%), o-hydroxydiphenyl fatty acid eutectic with peracetic acid (≥1%), and heat treatment at 60 °C for 30 min. Our findings highlight the importance of concentration, solvent choice, and exposure time in disinfection efficacy, providing a framework for improving laboratory safety protocols. These results contribute to the refinement of inactivation strategies, supporting safer handling and research on T. gondii in vitro while reducing reliance on animal models. Full article
Show Figures

Figure 1

20 pages, 7340 KB  
Article
PTPA Governs Stress-Responsive Differentiation and Metabolic Homeostasis in Toxoplasma gondii
by Zhu Ying, Yuntong Wu, Yanqun Pei, Zheng Shang, Jing Liu and Qun Liu
Cells 2025, 14(11), 835; https://doi.org/10.3390/cells14110835 - 3 Jun 2025
Viewed by 795
Abstract
The protozoan parasite Toxoplasma gondii transitions between acute (tachyzoite) and chronic (bradyzoite) stages, enabling lifelong persistence in hosts. Iron depletion triggers bradyzoite differentiation, with the phosphotyrosyl phosphatase activator (PTPA) identified as a key regulator. Here, we define PTPA’s role in T. gondii pathogenesis. [...] Read more.
The protozoan parasite Toxoplasma gondii transitions between acute (tachyzoite) and chronic (bradyzoite) stages, enabling lifelong persistence in hosts. Iron depletion triggers bradyzoite differentiation, with the phosphotyrosyl phosphatase activator (PTPA) identified as a key regulator. Here, we define PTPA’s role in T. gondii pathogenesis. PTPA forms a ternary complex with PP2A A/C subunits, validated by reciprocal pull-down assays. Depleting PTPA impaired tachyzoite proliferation, invasion, and gliding motility, while stress-induced bradyzoites exhibited defective cyst formation and vacuolar swelling. Metabolic dysregulation included amylopectin accumulation and lipid droplet proliferation. The PP2A inhibitor LB-100 phenocopied PTPA depletion, suppressing tachyzoite growth and bradyzoite differentiation. TgPTPA emerges as a linchpin coordinating PP2A activity, metabolic flux, and lifecycle transitions. Its dual roles in acute virulence and chronic persistence, combined with LB-100’s efficacy, position the PTPA–PP2A axis as a promising target for antitoxoplasmosis strategies. Full article
Show Figures

Figure 1

13 pages, 5500 KB  
Article
Piceatannol Induces Mitochondrial Dysfunction in Toxoplasma gondii
by Zhenhe Liu, Haolong Qiu, Yucong Jiang, Yuxi Mo, Linlin Lu, Yan Wang, Dandan Hu and Xingju Song
Microorganisms 2025, 13(6), 1203; https://doi.org/10.3390/microorganisms13061203 - 25 May 2025
Viewed by 812
Abstract
Toxoplasma gondii, an obligate intracellular protozoan parasite infecting nucleated cells of warm-blooded vertebrates, causes severe complications in immunocompromised hosts. Current therapies remain limited by suboptimal efficacy and toxicity, necessitating novel anti-toxoplasmic agents. Piceatannol (PIC), a natural stilbenoid, demonstrates multifaceted bioactivity including antimicrobial [...] Read more.
Toxoplasma gondii, an obligate intracellular protozoan parasite infecting nucleated cells of warm-blooded vertebrates, causes severe complications in immunocompromised hosts. Current therapies remain limited by suboptimal efficacy and toxicity, necessitating novel anti-toxoplasmic agents. Piceatannol (PIC), a natural stilbenoid, demonstrates multifaceted bioactivity including antimicrobial and anti-parasitic effects, suggesting therapeutic potential against T. gondii. Our previous study revealed PIC’s potent anti-parasitic activity, selectively inhibiting T. gondii proliferation and altering parasite morphology without host cytotoxicity. In this study, mechanistic analyses indicated that PIC disrupts mitochondrial integrity in tachyzoites, reducing mitochondrial membrane potential and ATP production while elevating ROS levels. Transcriptomic profiling identified significant suppression of oxidative phosphorylation-related genes, consistent with mitochondrial dysfunction. These findings establish PIC as a promising candidate targeting T. gondii through the mechanism of mitochondrial impairment. Full article
Show Figures

Figure 1

21 pages, 4074 KB  
Article
A Structural In Silico Analysis of Novel Epitopes from Toxoplasma gondii Proteins for the Serodiagnosis of Toxoplasmosis
by Angelis del Valle Benitez Betancourt, Tamires Lopes Silva, Débora Karolla de Freitas Oliveira, Nilson Nicolau-Junior, João Luis Garcia, Ricardo Toshio Fujiwara, Tiago Wilson Patriarca Mineo and José Roberto Mineo
Int. J. Mol. Sci. 2025, 26(10), 4689; https://doi.org/10.3390/ijms26104689 - 14 May 2025
Viewed by 768
Abstract
Toxoplasmosis is a widely spread zoonosis worldwide, considered one of the most important parasitic infections that affect global public health, and usually, it is not correctly diagnosed. Serological tests for the diagnosis of Toxoplasma gondii infection have limitations in differentiating acute from chronic [...] Read more.
Toxoplasmosis is a widely spread zoonosis worldwide, considered one of the most important parasitic infections that affect global public health, and usually, it is not correctly diagnosed. Serological tests for the diagnosis of Toxoplasma gondii infection have limitations in differentiating acute from chronic infection, which is important to determine the appropriate clinical management and treatment, mainly in pregnant women and immunocompromised individuals infected by this parasite. The present study aimed to characterize immunogenic epitopes from T. gondii immunodominant antigens, as SAG1(SRS29B), SAG2A (SRS34A), GRA1, GRA2, GRA3, GRA5, GRA6, GRA7, MAG1, BSR4, and CCp5A, by investigating if these parasite components might emerge as alternatives to improve the diagnosis of toxoplasmosis. A detailed comparative in silico analysis was used for this purpose. Once the protein sequences were retrieved from the ToxoDB database, different parameters were calculated, including physicochemical characteristics, accessibility values, and antigenicity. Multiple sequence alignment, 3D structures modeling, and the validation of 3D structures were also performed among all 11 peptides. Considering the results from the combination of all parameters analyzed, it can be hypothesized that the linear epitopes from SAG1, GRA3, and BSR4 proteins were found to be stable and hydrophilic, with a significant antigenicity score, and accessibility on the protein surface. Also, these three selected peptides were able to detect anti-T. gondii antibodies in serum samples from pigs infected by tachyzoites, when compared with control serum samples, obtained from the same naïve animals and tested by ELISA, demonstrating remarkable difference in terms of reactivity. Taken together, as our study addresses a critical challenge in the serodiagnosis of toxoplasmosis, particularly in gestational and congenital infections, where false-positive and false-negative results often arise from the use of native or recombinant antigens of T. gondii, our findings highlight the potential of synthetic peptides derived from novel epitopes of this parasite as alternative tools for the development of more accurate immunodiagnostic assays for toxoplasmosis. Full article
(This article belongs to the Special Issue Parasite Biology and Host-Parasite Interactions: 2nd Edition)
Show Figures

Figure 1

12 pages, 2896 KB  
Article
AP2X-8 Is Important for Tachyzoite Growth and Bradyzoite Differentiation of Toxoplasma gondii
by Li-Xiu Sun, Meng Wang, Hany M. Elsheikha, Shi-Chen Xie, Bao-Quan Fu, Xing-Quan Zhu and Guo-Hua Liu
Animals 2025, 15(9), 1349; https://doi.org/10.3390/ani15091349 - 7 May 2025
Viewed by 1340
Abstract
Toxoplasma gondii is a protozoan parasite capable of establishing chronic infections, with potential reactivation in immunocompromised individuals. However, the molecular mechanisms governing tachyzoite-to-bradyzoite differentiation remain incompletely understood. Previous studies have identified AP2 transcription factors as key regulators of this developmental switch. In this [...] Read more.
Toxoplasma gondii is a protozoan parasite capable of establishing chronic infections, with potential reactivation in immunocompromised individuals. However, the molecular mechanisms governing tachyzoite-to-bradyzoite differentiation remain incompletely understood. Previous studies have identified AP2 transcription factors as key regulators of this developmental switch. In this study, we investigated the role of the AP2 factor AP2X-8. Immunofluorescence analysis revealed that AP2X-8 is constitutively expressed in the nucleus of both tachyzoite and bradyzoite stages. Using CRISPR-Cas9-mediated homologous recombination, we successfully generated an ap2X-8 knockout strain. Phenotypic assays including plaque formation, invasion, replication, and egress, and bradyzoite differentiation assays, were then performed to assess the impact of ap2X-8 deletion. Our analyses showed that the loss of ap2X-8 significantly impaired plaque formation and intracellular replication, while invasion and egress were unaffected. Furthermore, ap2X-8 knockout enhanced bradyzoite differentiation in vitro. Despite these changes, deletion of ap2X-8 did not alter parasite virulence in a mouse infection model. These findings demonstrate that AP2X-8 is an important regulator of T. gondii tachyzoite growth and bradyzoite differentiation, offering new insights into the parasite’s developmental regulation. Full article
(This article belongs to the Special Issue Coccidian Parasites: Epidemiology, Control and Prevention Strategies)
Show Figures

Figure 1

18 pages, 3988 KB  
Article
Role of Toxoplasma gondii p24δ in Regulating the Transition from Tachyzoite to Bradyzoite Development
by Zifu Zhu, Zhu Ying, Yanqun Pei, Zhili Shan, Jing Peng, Ming Sun, Qun Liu and Jing Liu
Int. J. Mol. Sci. 2025, 26(7), 3331; https://doi.org/10.3390/ijms26073331 - 3 Apr 2025
Viewed by 1195
Abstract
Toxoplasma gondii is an obligate intracellular parasite capable of infecting warm-blooded vertebrates, including humans. In its intermediate hosts, T. gondii can transition between two life stages: the rapidly replicating tachyzoite and the quiescent bradyzoite. In Saccharomyces cerevisiae, the p24 protein acts as [...] Read more.
Toxoplasma gondii is an obligate intracellular parasite capable of infecting warm-blooded vertebrates, including humans. In its intermediate hosts, T. gondii can transition between two life stages: the rapidly replicating tachyzoite and the quiescent bradyzoite. In Saccharomyces cerevisiae, the p24 protein acts as a cargo receptor, cycling between the ER and Golgi in the early secretory pathway to recruit cargo proteins into nascent vesicles. However, the function of p24 in T. gondii remains undefined. In this study, we identified four p24 proteins in T. gondii, with Tgp24δ specifically localizing to the ER–Golgi system. Loss of p24δ in a type Ι strain (RHΔku80) significantly reduced proliferation and virulence in mice. Transcriptome and proteomic analyses showed that TgΔp24δ tachyzoites expressed high levels of bradyzoite-specific genes, including bag1, ldh2, and bpk1, under standard culture conditions. Additional data indicate that TgΔp24δ tachyzoites can differentiate and form bradyzoites in vitro. This suggests that Tgp24δ is important for the parasite’s growth. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop