Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,789)

Search Parameters:
Keywords = take-off phase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2089 KB  
Article
A Phase-Coded FMCW-Based Integrated Sensing and Communication System Design for Maritime Search and Rescue
by Delong Xing, Chi Zhang and Yongwei Zhang
Sensors 2025, 25(17), 5403; https://doi.org/10.3390/s25175403 (registering DOI) - 1 Sep 2025
Abstract
Maritime search and rescue (SAR) demands reliable sensing and communication under sea clutter. Emerging integrated sensing and communication (ISAC) technology provides new opportunities for the development and modernization of maritime radio communication, particularly in relation to search and rescue. This study investigated the [...] Read more.
Maritime search and rescue (SAR) demands reliable sensing and communication under sea clutter. Emerging integrated sensing and communication (ISAC) technology provides new opportunities for the development and modernization of maritime radio communication, particularly in relation to search and rescue. This study investigated the dual-function capability of a phase-coded frequency modulated continuous wave (FMCW) system for search and rescue at sea, in particular for life signs detection in the presence of sea clutter. The detection capability of the FMCW system was enhanced by applying phase-modulated codes on chirps, and radar-centric communication function is supported simultaneously. Various phase-coding schemes including Barker, Frank, Zadoff-Chu (ZC), and Costas were assessed by adopting the peak sidelobe level and integrated sidelobe level of the ambiguity function of the established signals. The interplay of sea waves was represented by a compound K-distribution model. A multiple-input multiple-output (MIMO) architecture with the ZC code was adopted to detect multiple objects with a high resolution for micro-Doppler determination by taking advantage of spatial coherence with beamforming. The effectiveness of the proposed method was validated on the 4-transmit, 4-receive (4 × 4) MIMO system with ZC coded FMCW signals. Monte Carlo simulations were carried out incorporating different combinations of targets and user configurations with a wide range of signal-to-noise ratio (SNR) settings. Extensive simulations demonstrated that the mean squared error (MSE) of range estimation remained low across the evaluated SNR setting, while communication performance was comparable to that of a baseline orthogonal frequency-division multiplexing (OFDM)-based system. The high performance demonstrated by the proposed method makes it a suitable maritime search and rescue solution, in particular for vision-restricted situations. Full article
(This article belongs to the Section Radar Sensors)
20 pages, 6391 KB  
Article
Elastic Time-Lapse FWI for Anisotropic Media: A Pyrenees Case Study
by Yanhua Liu, Ilya Tsvankin, Shogo Masaya and Masanori Tani
Appl. Sci. 2025, 15(17), 9553; https://doi.org/10.3390/app15179553 (registering DOI) - 30 Aug 2025
Viewed by 45
Abstract
In the context of reservoir monitoring, time-lapse (4D) full-waveform inversion (FWI) of seismic data can potentially estimate reservoir changes with high resolution. However, most existing field-data applications are carried out with isotropic, and often acoustic, FWI algorithms. Here, we apply a time-lapse FWI [...] Read more.
In the context of reservoir monitoring, time-lapse (4D) full-waveform inversion (FWI) of seismic data can potentially estimate reservoir changes with high resolution. However, most existing field-data applications are carried out with isotropic, and often acoustic, FWI algorithms. Here, we apply a time-lapse FWI methodology for transversely isotropic (TI) media with a vertical symmetry axis (VTI) to offshore streamer data acquired at Pyrenees field in Australia. We explore different objective functions, including those based on global correlation (GC) and designed to mitigate errors in the source signature (SI, or source-independent). The GC objective function, which utilizes mostly phase information, produces the most accurate inversion results by mitigating the difficulties associated with amplitude matching of the synthetic and field data. The SI FWI algorithm is generally more robust in the presence of distortions in the source wavelet than the other two methods, but its application to field data is hampered by reliance on amplitude matching. Taking anisotropy into account provides a better fit to the recorded data, especially at far offsets. In addition, the application of the anisotropic FWI improves the flatness of the major reflection events in the common-image gathers (CIGs). The 4D response obtained by FWI reveals time-lapse parameter variations likely caused by the reservoir gas coming out of solution and by the replacement of gas with oil. Full article
(This article belongs to the Special Issue Applied Geophysical Imaging and Data Processing)
24 pages, 9151 KB  
Article
Spatio-Temporal Relationship and Transition Patterns of Ecosystem Service Value and Land-Use Carbon Emissions on the Loess Plateau
by Yaxuan Yang, Hongliang Wang, Yining Gao, Chang Ge and Jiansheng Wu
Land 2025, 14(9), 1764; https://doi.org/10.3390/land14091764 - 30 Aug 2025
Viewed by 41
Abstract
Ecosystem services play a vital role in human well-being, with land-use changes exerting substantial influence on ecosystem service value (ESV) and land-use carbon emissions (LUCEs). Understanding the spatio-temporal relationship and transition dynamics between ESV and LUCEs is essential for promoting high-quality ecological development [...] Read more.
Ecosystem services play a vital role in human well-being, with land-use changes exerting substantial influence on ecosystem service value (ESV) and land-use carbon emissions (LUCEs). Understanding the spatio-temporal relationship and transition dynamics between ESV and LUCEs is essential for promoting high-quality ecological development aligned with the “dual carbon” objective. This study takes the Loess Plateau as the research object. Based on five-phase land-use data from 2000 to 2020, the ESV and LUCEs are calculated. Exploratory spatio-temporal data analysis is used to explore their spatio-temporal relationship and transition paths, and the quadrant model is introduced to analyze the transition patterns from the perspective of ecological quality. The results indicate the following: (1) From 2000 to 2020, the ESV of the Loess Plateau increased from CNY 579.032 billion to CNY 582.470 billion, with an overall increase of only 0.15%. Among the changes in land use, changes in forest and grassland significantly affected the ESV. (2) The LUCEs from land use on the Loess Plateau increased from 137.15 Mt to 458.43 Mt, with an average annual growth rate of 6.22%. Affected by industrialization and urbanization, the LUCEs showed significant spatial differences at the provincial and county scales. (3) There was a certain positive spatial correlation between ESV and LUCEs. The distribution of significantly correlated areas did not change significantly from 2000 to 2020, and the relationship characteristics were mainly characterized by Type IV transitions. (4) At the county scale, ESV and LUCEs exhibited temporal stability, with most counties situated in the general ecological category, indicating substantial potential for enhancing regional ecological quality. These research outcomes offer a foundational framework for devising tailored regional carbon emission reduction strategies. Full article
Show Figures

Figure 1

15 pages, 3828 KB  
Article
Simulation Study on the Single-Phase Immersion Cooling Performance of Lithium-Ion Battery Packs
by Jiajun Hu, Bin Yu, Zhenshan Chen, Shuaikang Chen, Shuo Wang and Fengxiang Li
Appl. Sci. 2025, 15(17), 9531; https://doi.org/10.3390/app15179531 (registering DOI) - 29 Aug 2025
Viewed by 146
Abstract
With the continuous development and innovation of thermal management technology for lithium-ion batteries, the advantages of direct immersion liquid cooling technology have become increasingly prominent. However, at present, there is relatively little research on immersion liquid cooling systems, and current research is still [...] Read more.
With the continuous development and innovation of thermal management technology for lithium-ion batteries, the advantages of direct immersion liquid cooling technology have become increasingly prominent. However, at present, there is relatively little research on immersion liquid cooling systems, and current research is still mainly focused on small-capacity battery systems. Therefore, taking a large-capacity battery pack as the research object, a new type of single-phase immersion liquid cooling system was designed. The battery pack has a charge and discharge rate of 1C, consists of 52 cells, and has a total capacity of 52.249 kWh. It was compared with traditional liquid cooling and static immersion liquid cooling. Then, the effects of the aperture of the flow distributor, the inlet flow rate of the cooling liquid, and the type of cooling liquid on the cooling performance of the dynamic immersion battery pack were discussed. The holes on the flow distribution plate are primarily designed to facilitate a relatively uniform distribution of incoming liquid flow. Our research found that compared with traditional liquid cooling and static immersion liquid cooling, the overall cooling performance of the dynamic immersion cooling system was significantly improved, with the maximum temperature Tmax decreasing by 7.8 °C and 6.6 °C, the maximum temperature difference ΔTmax of the entire pack decreasing by 5.5 °C and 5.8 °C, and the maximum temperature difference U-DΔTmax between the top and bottom surfaces of the battery pack decreasing by 10.1 °C and 8.96 °C. An appropriate aperture had a positive impact on the cooling effect of the battery pack, with the best effect at a aperture of 4 mm. Tmax and ΔTmax gradually decreased with an increase in the flow rate of the cooling liquid, with Tmax decreasing from 42.3 °C to 31 °C and ΔTmax decreasing from 14.8 °C to 7.9 °C, but the rate of the temperature decrease gradually decreased. Deionized water in the cooling liquid had the best cooling effect, while ethyl silicone oil had the worst cooling effect. The novel single-phase immersion cooling system developed in this study serves as a valuable reference for the design of immersion liquid cooling systems in large-capacity battery packs, contributing to enhanced temperature uniformity and improved system safety. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

19 pages, 6163 KB  
Article
Aerodynamic Interference of Lift Surfaces During Transition Phase for VTOL Fixed-Wing UAVs with Canard Configuration
by Minglong Fan, Lei Wang, Yi Sun, Jinwu Xiang and Haiting Xia
Aerospace 2025, 12(9), 784; https://doi.org/10.3390/aerospace12090784 - 29 Aug 2025
Viewed by 88
Abstract
The compound lift and thrust Vertical Take-Off and Landing (VTOL) fixed-wing Unmanned Aerial Vehicle (UAV) has generated considerable interest in configuration research due to its unique application advantages. This investigation examines the aerodynamic phenomena between the rotors and the main wings, as well [...] Read more.
The compound lift and thrust Vertical Take-Off and Landing (VTOL) fixed-wing Unmanned Aerial Vehicle (UAV) has generated considerable interest in configuration research due to its unique application advantages. This investigation examines the aerodynamic phenomena between the rotors and the main wings, as well as canards, during the transition phase through numerical simulations, thereby advancing the understanding of canard configurations in such UAVs. Based on a systems engineering approach, a 6 kg canard-configured compound lift and thrust VTOL fixed-wing UAV was preliminarily designed for evaluation. Computational Fluid Dynamics (CFD) methods were employed to study the aerodynamic interference under various freestream velocities and rotor speeds during the transition phase. The reliability of the CFD methodology was validated through rotor thrust experiments. Simulations were conducted with freestream velocities ranging from 3 m/s to 15 m/s and rotor speeds from 4000 to 10,000 RPM. The results indicate that the interference of the rotating rotor during the transition phase initially reduces lift, then increases lift, and finally reduces lift again for the wing, while it increases lift for the canard. This phenomenon results from the coupled influence of freestream velocity and rotor-induced flow effects. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

32 pages, 3563 KB  
Article
Research on Flexible Operation Control Strategy of Motor Operating Mechanism of High Voltage Vacuum Circuit Breaker
by Dongpeng Han, Weidong Chen and Zhaoxuan Cui
Energies 2025, 18(17), 4593; https://doi.org/10.3390/en18174593 - 29 Aug 2025
Viewed by 90
Abstract
In order to solve the problem that it is difficult to take into account the performance constraints between the core functions of insulation, current flow and arc extinguishing of high-voltage vacuum circuit breakers at the same time, this paper proposes a flexible control [...] Read more.
In order to solve the problem that it is difficult to take into account the performance constraints between the core functions of insulation, current flow and arc extinguishing of high-voltage vacuum circuit breakers at the same time, this paper proposes a flexible control strategy for the motor operating mechanism of high-voltage vacuum circuit breakers. The relationship between the rotation angle of the motor and the linear displacement of the moving contact of the circuit breaker is analyzed, and the ideal dynamic curve is planned. The motor drive control device is designed, and the phase-shifted full-bridge circuit is used as the boost converter. The voltage and current double closed-loop sliding mode control strategy is used to simulate and verify the realization of multi-stage and stable boost. The experimental platform is built and the experiment is carried out. The results show that under the voltage conditions of 180 V and 150 V, the control range of closing speed and opening speed is increased by 31.7% and 25.9% respectively, and the speed tracking error is reduced by 51.2%. It is verified that the flexible control strategy can meet the ideal action curve of the operating mechanism, realize the precise control of the opening and closing process and expand the control range. The research provides a theoretical basis for the flexible control strategy of the high-voltage vacuum circuit breaker operating mechanism, and provides new ideas for the intelligent operation technology of power transmission and transformation projects. Full article
Show Figures

Figure 1

25 pages, 2339 KB  
Article
Projected Hydrological Regime Shifts in Kazakh Rivers Under CMIP6 Climate Scenarios: Integrated Modeling and Seasonal Flow Analysis
by Aliya Nurbatsina, Aisulu Tursunova, Lyazzat Makhmudova, Zhanat Salavatova and Fredrik Huthoff
Atmosphere 2025, 16(9), 1020; https://doi.org/10.3390/atmos16091020 - 29 Aug 2025
Viewed by 232
Abstract
The article presents an analysis of current (during the period 1985–2022) and projected (during the period 2025–2099) changes in the hydrological regime of the Buktyrma, Yesil, and Zhaiyk river basins in Kazakhstan under the conditions of global climate change. This study is based [...] Read more.
The article presents an analysis of current (during the period 1985–2022) and projected (during the period 2025–2099) changes in the hydrological regime of the Buktyrma, Yesil, and Zhaiyk river basins in Kazakhstan under the conditions of global climate change. This study is based on the integration of data from General Circulation Models (GCMs) of the sixth phase of the CMIP6 project, socio-economic development scenarios SSP2-4.5 and SSP5-8.5, as well as the results of hydrological modelling using the SWIM model. The studies were carried out with an integrated approach to hydrological change assessment, taking into account scenario modelling, uncertainty analysis and the use of bias correction methods for climate data. A calculation method was used to analyse the intra-annual distribution of runoff, taking into account climate change. Detailed forecasts of changes in runoff and intra-annual water distribution up to the end of the 21st century for key water bodies in Kazakhstan were obtained. While the projections of river flow and hydrological parameters under CMIP6 scenarios are actively pursued worldwide, few studies have explicitly focused on forecasting intra-annual flow distribution in Central Asia, calculated using a methodology appropriate for this region and using CMIP6 ensemble scenarios. There have been studies on changes in the intra-annual distribution of runoff for individual river basins or local areas, but for the historical period, there have also been studies on modelling runoff forecasts using CMIP6 climate models, but have been very few systematic publications on the distribution of predicted intra-annual runoff in Central Asia, and this issue has not been fully studied. The projections suggest an intensification of flow seasonality (1), earlier flood peaks (2), reduced summer discharges (3) and an increased likelihood of extreme hydrological events under future climatic conditions. Changes in the seasonal structure of river flow in Central Asia are caused by both climatic factors—temperature, precipitation and glacier degradation—and significant anthropogenic influences, including irrigation and water management structures. These changes directly affect the risks of flooding and water shortages, as well as the adaptive capacity of water management systems. Given the high level of water management challenges and interregional conflicts over water use, the intra-annual distribution of runoff is important for long-term planning, the development of adaptation measures, and the formulation of public policy on sustainable water management in the face of growing climate challenges. This is critically important for water, agricultural, energy, and environmental planning in a region that already faces annual water management challenges and conflicts due to the uneven seasonal distribution of resources. Full article
(This article belongs to the Special Issue The Water Cycle and Climate Change (3rd Edition))
Show Figures

Figure 1

18 pages, 3471 KB  
Article
Research on Combinations of Stator Poles and Rotor Teeth for Conventional Flux-Switching Brushless Machines with Composite Phase Numbers
by Lin Li, Yuexi Liu, Guishu Zhao, Yueheng Ding and Wei Hua
Electronics 2025, 14(17), 3405; https://doi.org/10.3390/electronics14173405 - 27 Aug 2025
Viewed by 185
Abstract
In this paper, a method for determining the optimal stator-rotor combinations of conventional flux-switching permanent magnet (FSPM) machines with composite phase numbers covering symmetrical and asymmetrical topologies is proposed by changing the equivalent number of coils per pole per phase (ENCPP) or the [...] Read more.
In this paper, a method for determining the optimal stator-rotor combinations of conventional flux-switching permanent magnet (FSPM) machines with composite phase numbers covering symmetrical and asymmetrical topologies is proposed by changing the equivalent number of coils per pole per phase (ENCPP) or the number of coil-pairs having complementarity (K) of the optimal stator-rotor combinations of the corresponding machines with prime phases. Taking composite phase machines such as four-phase, six-phase, nine-phase, and twelve-phase machines as examples, a detailed analysis is conducted on how the optimal stator-rotor combinations of four-phase machines are derived from the optimal stator-rotor combinations of the corresponding prime phase machines (i.e., two-phase machines) and how the optimal stator-rotor combinations of six-phase, nine-phase, and twelve-phase machines are derived from the optimal stator-rotor combinations of the corresponding prime phase machines (i.e., three-phase machines). Then, the winding factor of the conventional FSPM machines with composite phase numbers is calculated. Finally, taking a 24-slot/22-tooth (24/22) conventional FSPM topology as an example, the topology is connected into a standard six-phase machine (symmetrical topology) and a dual three-phase machine (asymmetrical topology), and a comparative study between them is conducted in terms of the phase back electromotive force (EMF) waveform, electromagnetic torque, torque ripple, and inductances. The results indicate that both machines have sufficiently large and symmetrical back-EMFs, as well as sufficiently large electromagnetic torque, which validates the correctness of the proposed method for determining the optimal stator-rotor combinations. Full article
Show Figures

Figure 1

15 pages, 1275 KB  
Article
Sex Differences in the High Jump Kinematics of U18 Adolescent Athletes
by Vassilios Panoutsakopoulos
Appl. Sci. 2025, 15(17), 9382; https://doi.org/10.3390/app15179382 - 26 Aug 2025
Viewed by 356
Abstract
Biomechanical analyses of technique are essential for performance improvement in athletic jumps, but scarce evidence exists for adolescent athletes in the literature. The purpose of this study was to examine the sex differences in the high jump biomechanics of U18 athletes. Twenty-one women [...] Read more.
Biomechanical analyses of technique are essential for performance improvement in athletic jumps, but scarce evidence exists for adolescent athletes in the literature. The purpose of this study was to examine the sex differences in the high jump biomechanics of U18 athletes. Twenty-one women (15.2 ± 1.0 yrs) and twenty-one men (15.2 ± 1.2 yrs) Greek U18 high jumpers were recorded in regional competitions using two cameras (sampling frequency: 60 fps). The kinematic parameters of the last step, the take-off, and the crossbar clearance were calculated using 3D-DLT analysis. The independent samples t-test was used to detect significant (p < 0.05) differences between groups. Results revealed that men had significantly (p < 0.05) better performance, with larger last step angle and length, body center of mass (BCM) height at the final touchdown and take-off, approach and vertical BCM take-off velocity, touchdown lateral inclination of the take-off leg, and swing leg knee angle at take-off. Women had significantly (p < 0.05) higher vertical BCM velocity at touchdown. No differences (p > 0.05) were observed for take-off angle, the support leg knee angle, the inclination of the torso at touchdown, or the vertical BCM displacement during the take-off phase. The anthropometric and physical conditioning differences between sexes contributed to the findings of the study. Coaches should consider the age and sex differences of adolescent athletes when designing training programs to optimize high jump performance. Full article
(This article belongs to the Special Issue Advances in Sports Science and Biomechanics)
Show Figures

Figure 1

15 pages, 392 KB  
Article
An Educational Conceptual Framework for Reducing Epilepsy-Related Stigma in Primary Schools of Limpopo and Mpumalanga Province, South Africa
by Thendo Gertie Makhado and Rachel Tsakani Lebese
Disabilities 2025, 5(3), 74; https://doi.org/10.3390/disabilities5030074 - 26 Aug 2025
Viewed by 401
Abstract
Education about epilepsy plays a vital role in reducing stigma, improving seizure response, and preventing school dropout among affected learners. Despite this importance, there is a lack of a structured conceptual framework guiding epilepsy education in primary schools, where children’s foundational learning and [...] Read more.
Education about epilepsy plays a vital role in reducing stigma, improving seizure response, and preventing school dropout among affected learners. Despite this importance, there is a lack of a structured conceptual framework guiding epilepsy education in primary schools, where children’s foundational learning and social development take place. This study aims to develop a conceptual framework that integrates epilepsy education into the life skills curriculum to reduce epilepsy-related stigma from an early age. A qualitative multi-methods approach was employed during the empirical phase, which was conducted in two stages using an exploratory–descriptive design. Data were collected from teachers, life skills education advisors (LEAs), and learners to explore their views on incorporating epilepsy education into the life skills curriculum of primary schools. The findings informed the development of a conceptual framework guided by the Three-Legged Stool Model and Dickoff’s Practice-Oriented Theory. This educational framework is tailored for primary school settings and highlights the roles of learners and teachers in promoting self-esteem through knowledge acquisition, value formation, and skill development, all underpinned by the Ubuntu philosophy. Full article
Show Figures

Figure 1

18 pages, 971 KB  
Article
Use of TLC and Computational Methods to Determine Lipophilicity Parameters of Selected Neuroleptics: Comparison of Experimental and Theoretical Studies
by Daria Klimoszek, Małgorzata Dołowy, Małgorzata Jeleń and Katarzyna Bober-Majnusz
Pharmaceuticals 2025, 18(9), 1255; https://doi.org/10.3390/ph18091255 - 24 Aug 2025
Viewed by 256
Abstract
Background: Compound lipophilicity is a fundamental physicochemical property for determining the pharmacokinetic and pharmacodynamic profiles of therapeutic substances. It is successfully used in the early stages of drug candidates’ design and development. Aim: Taking into account the importance of this parameter, we [...] Read more.
Background: Compound lipophilicity is a fundamental physicochemical property for determining the pharmacokinetic and pharmacodynamic profiles of therapeutic substances. It is successfully used in the early stages of drug candidates’ design and development. Aim: Taking into account the importance of this parameter, we aimed to assess and compare the utility of a hybrid procedure based on calculation methods and an experimental one for rapid and simple estimation of the lipophilicity of selected neuroleptics such as fluphenazine, triflupromazine, trifluoperazine, flupentixol and zuclopenthixol and their potential new derivatives. Methods: Log P values of the studied compounds were predicted by means of different platforms and algorithms: AlogPs, ilogP, XlogP3, WlogP, MlogP, milogP, logPsilicos-it, logPconsensus, logPchemaxon and logPACD/Labs. The experimental determination of lipophilicity was carried out by reverse-phase thin-layer chromatography (RP-TLC) using three types of stationary phases—RP-2F254, RP-8F254 and RP-18F254—and mobile phases consisted of acetone, acetonitrile and 1,4-dioxane as organic modifiers. Results: Our results provide a confident proposal of optimal chromatographic conditions to experimentally determine the lipophilicity of neuroleptic drugs, including new derivatives. Conclusions: Additionally, for the first time, the paper shows the application of selected topological indices in determining lipophilicity factors and other ADMET parameters of neuroleptics and, in the future, the newly synthesized quinoline derivatives of the studied compounds. Full article
Show Figures

Figure 1

22 pages, 10587 KB  
Article
Smoke Flow and Evacuation Safety in the Event of Fire in an Underground Rail Transit Transfer Station
by Jinbo Wang, Changqun Zuo, Qinghui Duan, Zhen Ma and Shenglong Gong
Buildings 2025, 15(17), 3008; https://doi.org/10.3390/buildings15173008 - 24 Aug 2025
Viewed by 362
Abstract
Underground rail transit transfer stations are large-scale, complex structures with high-passenger flows, making them more vulnerable to fires and rescue challenges than other stations. Taking Zhongnan Road Metro Transfer Station in Wuhan as a project example, this study simulates two typical fire scenarios—flammable [...] Read more.
Underground rail transit transfer stations are large-scale, complex structures with high-passenger flows, making them more vulnerable to fires and rescue challenges than other stations. Taking Zhongnan Road Metro Transfer Station in Wuhan as a project example, this study simulates two typical fire scenarios—flammable package ignition and equipment short circuits—using PyroSim to analyze changes in smoke movement, temperature, visibility, and CO concentration within the station. The required safety egress time (TRSET) was determined according to the critical threshold. Then, the critical evacuation phase time (tmove’) at each key evacuation node was calculated by working backward from TRSET. The threshold control of the open/close time nodes of the evacuation passages in the Pathfinder calculation was realized based on this time parameter. Based on the improved optimization algorithm method, personnel evacuation simulations are conducted to analyze evacuation characteristics, efficiency, and safety levels. Results show that the combustion characteristics of the fire source significantly affect the efficiency of passenger evacuation. The evacuation fails in Scenario 1 (flammable package) but succeeds in Scenario 2 (short circuit of an elevator circuit). Safety ratings for exits A–F are Level 1 (Good), Staircase 1 is Level 2 (Qualified), Staircases 2 and 3 are Level 3 (At Risk), and Staircase 4 is Level 4 (Poor). Finally, suggestions for improvement were proposed regarding size, quantity, and layout optimization of egress staircases. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

29 pages, 2044 KB  
Article
Gravity Wave Phase Shift in a Cold Quark Star with a Nonconvex QCD BZT Shock Wave Van Der Waals Equation of State
by Keith Andrew, Eric V. Steinfelds and Kristopher A. Andrew
Astronomy 2025, 4(3), 14; https://doi.org/10.3390/astronomy4030014 - 22 Aug 2025
Viewed by 234
Abstract
We investigate BZT shocks and the QCD phase transition in the dense core of a cold quark star in beta equilibrium subject to the multicomponent van der Waals (MvdW) equation of state (EoS) as a model of internal structure. When this system is [...] Read more.
We investigate BZT shocks and the QCD phase transition in the dense core of a cold quark star in beta equilibrium subject to the multicomponent van der Waals (MvdW) equation of state (EoS) as a model of internal structure. When this system is expressed in terms of multiple components, it can be used to explore the impact of a phase transition from a hadronic state to a quark plasma state with a complex clustering structure. The clustering can take the form of colored diquarks or triquarks and bound colorless meson, baryon, or hyperon states at the phase transition boundary. The resulting multicomponent EoS system is nonconvex, which can give rise to Bethe–Zel’dovich–Thompson (BZT) phase-changing shock waves. Using the BZT shock wave condition, we find constraints on the quark density and examine how this changes the tidal deformability of the compact core. These results are then combined with the TOV equations to find the resulting mass and radius relationship. These states are compared to recent astrophysical high-mass neutron star systems, which may provide evidence for a core that has undergone a quark gluon phase transition such as PSR 0943+10 or GW 190814. Full article
Show Figures

Figure 1

36 pages, 2647 KB  
Article
Mechanism and Kinetics of Non-Electroactive Chlorate Electroreduction via Catalytic Redox-Mediator Cycle Without Catalyst’s Addition (EC-Autocat Process)
by Mikhail A. Vorotyntsev, Pavel A. Zader, Olga A. Goncharova and Dmitry V. Konev
Molecules 2025, 30(16), 3432; https://doi.org/10.3390/molecules30163432 - 20 Aug 2025
Viewed by 536
Abstract
In the context of chlorate’s application as a cathodic reagent of power sources, the mechanism of its electroreduction has been studied in electrochemical cells under diffusion-limited current conditions with operando spectrophotometric analysis. Prior to electrolysis, the electrolyte is represented as an aqueous mixed [...] Read more.
In the context of chlorate’s application as a cathodic reagent of power sources, the mechanism of its electroreduction has been studied in electrochemical cells under diffusion-limited current conditions with operando spectrophotometric analysis. Prior to electrolysis, the electrolyte is represented as an aqueous mixed NaClO3 + H2SO4 solution (both components being non-electroactive within the potential range under study), without addition of any external electroactive catalyst. In the course of potentiostatic electrolysis, both the cathodic current and the ClO2 concentration demonstrate a temporal evolution clearly pointing to an autocatalytic mechanism of the process (regions of quasi-exponential growth and of rapid diminution, separated by a narrow maximum). It has been substantiated that its kinetic mechanism includes only one electrochemical step (chlorine dioxide reduction), coupled with two chemical steps inside the solution phase: comproportionation of chlorate anion and chlorous acid, as well as chlorous acid disproportionation via two parallel routes. The corresponding set of kinetic equations for the concentrations of Cl-containing solute components (ClO3, ClO2, HClO2, and Cl) has been solved numerically in a dimensionless form. Optimal values of the kinetic parameters have been determined via a fitting procedure with the use of non-stationary experimental data for the ClO2 concentration and for the current, taking into account the available information from the literature on the parameters of the chlorous acid disproportionation process. Predictions of the proposed kinetic mechanism agree quantitatively with these experimental data for both quantities within the whole time range, including the three characteristic regions: rapid increase, vicinity of the maximum, and rapid decrease. Full article
Show Figures

Graphical abstract

19 pages, 4115 KB  
Article
Research on Transformer Hot-Spot Temperature Inversion Method Under Three-Phase Unbalanced Conditions
by Mingming Xu, Bowen Shang, Ning Zhou, Wei Wang, Xuan Dong, Yunbo Li and Jiangjun Ruan
Energies 2025, 18(16), 4422; https://doi.org/10.3390/en18164422 - 19 Aug 2025
Viewed by 345
Abstract
When a transformer operates under three-phase unbalanced conditions, the location of the winding hot-spot temperature (HST) is no longer fixed on a certain phase. Taking an S13-M-100 kVA/10 kV transformer as the research object, this paper proposes a streamline inversion method for inverting [...] Read more.
When a transformer operates under three-phase unbalanced conditions, the location of the winding hot-spot temperature (HST) is no longer fixed on a certain phase. Taking an S13-M-100 kVA/10 kV transformer as the research object, this paper proposes a streamline inversion method for inverting the winding HST based on the analysis of oil flow morphology. The study employs the finite volume method for coupled calculations of a transformer’s thermal fluid field and combines a support vector regression (SVR) model for the HST inversion. An orthogonal experimental method is used to construct the training and testing sample sets, and the grid search method is utilized to optimize the parameters of the SVR model. In response to variations in hot-spot locations under three-phase unbalanced conditions, representative streamlines are reasonably selected, and a genetic algorithm-based dimensionality reduction optimization is performed on the feature quantities. The research results indicate that the established inversion model exhibits high inversion accuracy under three-phase unbalanced conditions, with a maximum temperature difference of 3.71 K, and the robustness check verifies the stability of the model. Full article
(This article belongs to the Special Issue Heat Transfer and Fluid Flows for Industry Applications)
Show Figures

Figure 1

Back to TopTop