Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = talose

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2323 KiB  
Article
Metabolomic Analyses to Identify Candidate Biomarkers of Cystinosis
by Emirhan Nemutlu, Fatih Ozaltin, Samiye Yabanoglu-Ciftci, Bora Gulhan, Cemil Can Eylem, İpek Baysal, Elif Damla Gök-Topak, Kezban Ulubayram, Osman Ugur Sezerman, Gulberk Ucar, Sedef Kır and Rezan Topaloglu
Int. J. Mol. Sci. 2023, 24(3), 2603; https://doi.org/10.3390/ijms24032603 - 30 Jan 2023
Cited by 2 | Viewed by 3253
Abstract
Cystinosis is a rare, devastating hereditary disease secondary to recessive CTNS gene mutations. The most commonly used diagnostic method is confirmation of an elevated leukocyte cystine level; however, this method is expensive and difficult to perform. This study aimed to identify candidate biomarkers [...] Read more.
Cystinosis is a rare, devastating hereditary disease secondary to recessive CTNS gene mutations. The most commonly used diagnostic method is confirmation of an elevated leukocyte cystine level; however, this method is expensive and difficult to perform. This study aimed to identify candidate biomarkers for the diagnosis and follow-up of cystinosis based on multiomics studies. The study included three groups: newly-diagnosed cystinosis patients (patient group, n = 14); cystinosis patients under treatment (treatment group, n = 19); and healthy controls (control group, n = 30). Plasma metabolomics analysis identified 10 metabolites as candidate biomarkers that differed between the patient and control groups [L-serine, taurine, lyxose, 4-trimethylammoniobutanoic acid, orotic acid, glutathione, PE(O-18:1(9Z)/0:0), 2-hydroxyphenyl acetic acid, acetyl-N-formil-5-metoxikinuramine, 3-indoxyl sulphate]. As compared to the healthy control group, in the treatment group, hypotaurine, phosphatidylethanolamine, N-acetyl-d-mannosamine, 3-indolacetic acid, p-cresol, phenylethylamine, 5-aminovaleric acid, glycine, creatinine, and saccharic acid levels were significantly higher, and the metabolites quinic acid, capric acid, lenticin, xanthotoxin, glucose-6-phosphate, taurine, uric acid, glyceric acid, alpha-D-glucosamine phosphate, and serine levels were significantly lower. Urinary metabolomic analysis clearly differentiated the patient group from the control group by means of higher allo-inositol, talose, glucose, 2-hydroxybutiric acid, cystine, pyruvic acid, valine, and phenylalanine levels, and lower metabolite (N-acetyl-L-glutamic acid, 3-aminopropionitrile, ribitol, hydroquinone, glucuronic acid, 3-phosphoglycerate, xanthine, creatinine, and 5-aminovaleric acid) levels in the patient group. Urine metabolites were also found to be significantly different in the treatment group than in the control group. Thus, this study identified candidate biomarkers that could be used for the diagnosis and follow-up of cystinosis. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1818 KiB  
Article
Acinetobacter baumannii K106 and K112: Two Structurally and Genetically Related 6-Deoxy-l-talose-Containing Capsular Polysaccharides
by Anastasiya A. Kasimova, Nikolay P. Arbatsky, Jacob Tickner, Johanna J. Kenyon, Ruth M. Hall, Michael M. Shneider, Alina A. Dzhaparova, Alexander S. Shashkov, Alexander O. Chizhov, Anastasiya V. Popova and Yuriy A. Knirel
Int. J. Mol. Sci. 2021, 22(11), 5641; https://doi.org/10.3390/ijms22115641 - 26 May 2021
Cited by 11 | Viewed by 3417
Abstract
Whole genome sequences of two Acinetobacter baumannii clinical isolates, 48-1789 and MAR24, revealed that they carry the KL106 and KL112 capsular polysaccharide (CPS) biosynthesis gene clusters, respectively, at the chromosomal K locus. The KL106 and KL112 gene clusters are related to the previously [...] Read more.
Whole genome sequences of two Acinetobacter baumannii clinical isolates, 48-1789 and MAR24, revealed that they carry the KL106 and KL112 capsular polysaccharide (CPS) biosynthesis gene clusters, respectively, at the chromosomal K locus. The KL106 and KL112 gene clusters are related to the previously described KL11 and KL83 gene clusters, sharing genes for the synthesis of l-rhamnose (l-Rhap) and 6-deoxy-l-talose (l-6dTalp). CPS material isolated from 48-1789 and MAR24 was studied by sugar analysis and Smith degradation along with one- and two-dimensional 1H and 13C NMR spectroscopy. The structures of K106 and K112 oligosaccharide repeats (K units) l-6dTalp-(1→3)-D-GlcpNAc tetrasaccharide fragment share the responsible genes in the respective gene clusters. The K106 and K83 CPSs also have the same linkage between K units. The KL112 cluster includes an additional glycosyltransferase gene, Gtr183, and the K112 unit includes α l-Rhap side chain that is not found in the K106 structure. K112 further differs in the linkage between K units formed by the Wzy polymerase, and a different wzy gene is found in KL112. However, though both KL106 and KL112 share the atr8 acetyltransferase gene with KL83, only K83 is acetylated. Full article
Show Figures

Figure 1

18 pages, 1665 KiB  
Article
Excretory/Secretory Metabolome of the Zoonotic Roundworm Parasite Toxocara canis
by Phurpa Wangchuk, Owen Lavers, David S. Wishart and Alex Loukas
Biomolecules 2020, 10(8), 1157; https://doi.org/10.3390/biom10081157 - 6 Aug 2020
Cited by 14 | Viewed by 4238
Abstract
Toxocariasis is a zoonotic disease affecting humans that is predominantly caused by Toxocara canis and T. cati, primarily parasites of dogs and cats, respectively. Toxocara generally establishes long-term infections by co-opting its host’s physiological processes, while at the same time exploiting the [...] Read more.
Toxocariasis is a zoonotic disease affecting humans that is predominantly caused by Toxocara canis and T. cati, primarily parasites of dogs and cats, respectively. Toxocara generally establishes long-term infections by co-opting its host’s physiological processes, while at the same time exploiting the nutritional environment. Adult stage T. canis reside in the gut of the definitive canine host where they employ a suite of strategies to combat intestinal immune responses by actively producing and releasing excretory-secretory products (ESPs). The protein component of T. canis ESPs has been widely studied, but characterisation of the non-protein ESP complement remains neglected. To characterize the secreted metabolome of Toxocara ESPs and to shed light on the parasite’s metabolic processes, we profiled the ESPs of T. canis using both gas chromatography (GC) and liquid chromatography (LC) mass spectrometry approaches. We successfully identified 61 small molecules, including 41 polar metabolites, 14 medium-long chain fatty acids (MLCFAs) and six short chain fatty acids (SCFAs). We identified talose, stearic acid and isovalerate as the major compounds belonging to the polar, MLCFA and SCFA chemical classes, respectively. Most of the 61 identified metabolites appear to have been produced by T. canis via three distinct metabolic pathways - fatty acid, amino acid and carbohydrate metabolism. The majority of the identified ESPs have known biological properties, especially as immunomodulators. However, there is limited/no information on the biological roles or applications of 31 ESP biomolecules, suggesting that these may have novel activities that merit further investigation. Full article
Show Figures

Figure 1

15 pages, 2754 KiB  
Article
Converting Galactose into the Rare Sugar Talose with Cellobiose 2-Epimerase as Biocatalyst
by Stevie Van Overtveldt, Ophelia Gevaert, Martijn Cherlet, Koen Beerens and Tom Desmet
Molecules 2018, 23(10), 2519; https://doi.org/10.3390/molecules23102519 - 1 Oct 2018
Cited by 19 | Viewed by 5933
Abstract
Cellobiose 2-epimerase from Rhodothermus marinus (RmCE) reversibly converts a glucose residue to a mannose residue at the reducing end of β-1,4-linked oligosaccharides. In this study, the monosaccharide specificity of RmCE has been mapped and the synthesis of d-talose from [...] Read more.
Cellobiose 2-epimerase from Rhodothermus marinus (RmCE) reversibly converts a glucose residue to a mannose residue at the reducing end of β-1,4-linked oligosaccharides. In this study, the monosaccharide specificity of RmCE has been mapped and the synthesis of d-talose from d-galactose was discovered, a reaction not yet known to occur in nature. Moreover, the conversion is industrially relevant, as talose and its derivatives have been reported to possess important antimicrobial and anti-inflammatory properties. As the enzyme also catalyzes the keto-aldo isomerization of galactose to tagatose as a minor side reaction, the purity of talose was found to decrease over time. After process optimization, 23 g/L of talose could be obtained with a product purity of 86% and a yield of 8.5% (starting from 4 g (24 mmol) of galactose). However, higher purities and concentrations can be reached by decreasing and increasing the reaction time, respectively. In addition, two engineering attempts have also been performed. First, a mutant library of RmCE was created to try and increase the activity on monosaccharide substrates. Next, two residues from RmCE were introduced in the cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) (S99M/Q371F), increasing the kcat twofold. Full article
(This article belongs to the Special Issue Molecules for Biotechnologies)
Show Figures

Graphical abstract

21 pages, 922 KiB  
Article
Structural and Immunochemical Studies of the Lipopolysaccharide from the Fish Pathogen, Aeromonas bestiarum Strain K296, Serotype O18
by Anna Turska-Szewczuk, Buko Lindner, Iwona Komaniecka, Alicja Kozinska, Agnieszka Pekala, Adam Choma and Otto Holst
Mar. Drugs 2013, 11(4), 1235-1255; https://doi.org/10.3390/md11041235 - 17 Apr 2013
Cited by 17 | Viewed by 7638
Abstract
Chemical analyses and mass spectrometry were used to study the structure of the lipopolysaccharide (LPS) isolated from Aeromonas bestiarum strain K296, serotype O18. ESI-MS revealed that the most abundant A. bestiarum LPS glycoforms have a hexa-acylated or tetra-acylated lipid A with conserved architecture [...] Read more.
Chemical analyses and mass spectrometry were used to study the structure of the lipopolysaccharide (LPS) isolated from Aeromonas bestiarum strain K296, serotype O18. ESI-MS revealed that the most abundant A. bestiarum LPS glycoforms have a hexa-acylated or tetra-acylated lipid A with conserved architecture of the backbone, consisting of a 1,4′-bisphosphorylated β-(1→6)-linked d-GlcN disaccharide with an AraN residue as a non-stoichiometric substituent and a core oligosaccharide composed of Kdo1Hep6Hex1HexN1P1. 1D and 2D NMR spectroscopy revealed that the O-specific polysaccharide (OPS) of A. bestiarum K296 consists of a branched tetrasaccharide repeating unit containing two 6-deoxy-l-talose (6dTalp), one Manp and one GalpNAc residues; thus, it is similar to that of the OPS of A. hydrophila AH-3 (serotype O34) in both the sugar composition and the glycosylation pattern. Moreover, 3-substituted 6dTalp was 2-O-acetylated and additional O-acetyl groups were identified at O-2 and O-4 (or O-3) positions of the terminal 6dTalp. Western blots with polyclonal rabbit sera showed that serotypes O18 and O34 share some epitopes in the LPS. The very weak reaction of the anti-O34 serum with the O-deacylated LPS of A. bestiarum K296 might have been due to the different O-acetylation pattern of the terminal 6dTalp. The latter suggestion was further confirmed by NMR. Full article
(This article belongs to the Special Issue Marine Lipopolysaccharides)
Show Figures

Graphical abstract

13 pages, 297 KiB  
Article
Synthesis of Disaccharides Containing 6-Deoxy-a-L-talose as Potential Heparan Sulfate Mimetics
by Jon K. Fairweather, Ligong Liu, Tomislav Karoli and Vito Ferro
Molecules 2012, 17(8), 9790-9802; https://doi.org/10.3390/molecules17089790 - 15 Aug 2012
Cited by 10 | Viewed by 8808
Abstract
A 6-deoxy-a-L-talopyranoside acceptor was readily prepared from methyl a-L-rhamnopyranoside and glycosylated with thiogalactoside donors using NIS/TfOH as the promoter to give good yields of the desired a-linked disaccharide (69–90%). Glycosylation with a 2-azido-2-deoxy-D-glucosyl trichloroacetimidate donor was not completely stereoselective (a:b = 6:1), but [...] Read more.
A 6-deoxy-a-L-talopyranoside acceptor was readily prepared from methyl a-L-rhamnopyranoside and glycosylated with thiogalactoside donors using NIS/TfOH as the promoter to give good yields of the desired a-linked disaccharide (69–90%). Glycosylation with a 2-azido-2-deoxy-D-glucosyl trichloroacetimidate donor was not completely stereoselective (a:b = 6:1), but the desired a-linked disaccharide could be isolated in good overall yield (60%) following conversion into its corresponding tribenzoate derivative. The disaccharides were designed to mimic the heparan sulfate (HS) disaccharide GlcN(2S,6S)-IdoA(2S). However, the intermediates readily derived from these disaccharides were not stable to the sulfonation/deacylation conditions required for their conversion into the target HS mimetics. Full article
(This article belongs to the Special Issue Advances in Carbohydrate Chemistry 2012)
Show Figures

Figure 1

13 pages, 477 KiB  
Article
A Further Contribution to the Study of Sagittamide A: Synthesis of a Pivotal Intermediate Belonging to a Rare L-Series
by Anne Humbert, Karen Plé, Dominique Harakat, Agathe Martinez and Arnaud Haudrechy
Molecules 2012, 17(7), 7709-7721; https://doi.org/10.3390/molecules17077709 - 25 Jun 2012
Cited by 3 | Viewed by 4509
Abstract
A key saggitamide intermediate corresponding to a rare sugar framework has been obtained. This approach should help to establish the overall configuration of more complex structures of the sagittamide family. Full article
(This article belongs to the Special Issue Stereoselective Synthesis)
Show Figures

Figure 1

11 pages, 583 KiB  
Article
HPLC Separation of All Aldopentoses and Aldohexoses on an Anion-Exchange Stationary Phase Prepared from Polystyrene-Based Copolymer and Diamine: The Effect of NaOH Eluent Concentration
by Kadumi Inoue, Kei-ichi Kitahara, Yoshihiro Aikawa, Sadao Arai and Takako Masuda-Hanada
Molecules 2011, 16(7), 5905-5915; https://doi.org/10.3390/molecules16075905 - 14 Jul 2011
Cited by 17 | Viewed by 7803
Abstract
To investigate the separations of all aldopentoses (ribose, arabinose, xylose and lyxose) and aldohexoses (glucose, galactose, allose, altrose, mannose, gulose, idose and talose) on the D6 stationary phase prepared by the reaction of chloromethylated styrene-divinylbenzene copolymer and N,N,N [...] Read more.
To investigate the separations of all aldopentoses (ribose, arabinose, xylose and lyxose) and aldohexoses (glucose, galactose, allose, altrose, mannose, gulose, idose and talose) on the D6 stationary phase prepared by the reaction of chloromethylated styrene-divinylbenzene copolymer and N,N,N’,N’-tetramethyl-1,6-diaminohexane, we examined the effect of varying the concentration of the NaOH eluent on the elution orders. Separations of these aldoses were achieved using a 20 mM NaOH eluent. The elution behaviors of the aldoses were probably due to not only the individual pKa values, but also the chemical structures of the cyclic aldoses. Full article
Show Figures

Graphical abstract

16 pages, 236 KiB  
Article
Synthesis and Anti-Fungal Activity of Seven Oleanolic Acid Glycosides
by Hanqing Zhao, Guanghui Zong, Jianjun Zhang, Daoquan Wang and Xiaomei Liang
Molecules 2011, 16(2), 1113-1128; https://doi.org/10.3390/molecules16021113 - 26 Jan 2011
Cited by 13 | Viewed by 8741
Abstract
In order to develop potential anti-fungal agents, seven glycoconjugates composed of a-L-rhamnose, 6-deoxy-a-L-talose, b-D-galactose, a-D-mannose, b-D-xylose-(1®4)-6-deoxy-a-L-talose, b-D-galactose-(1®4)-a-L-rhamnose, b-D-galactose-(1®3)-b-D-xylose-(1®4)-6-deoxy-a-L-talose as the glycone and oleanolic acid as the aglycone were synthesized in an efficient and practical way using glycosyl trichloroacetimidates as donors. The structures of [...] Read more.
In order to develop potential anti-fungal agents, seven glycoconjugates composed of a-L-rhamnose, 6-deoxy-a-L-talose, b-D-galactose, a-D-mannose, b-D-xylose-(1®4)-6-deoxy-a-L-talose, b-D-galactose-(1®4)-a-L-rhamnose, b-D-galactose-(1®3)-b-D-xylose-(1®4)-6-deoxy-a-L-talose as the glycone and oleanolic acid as the aglycone were synthesized in an efficient and practical way using glycosyl trichloroacetimidates as donors. The structures of the new compounds were confirmed by MS, 1H-NMR and 13C- NMR. Preliminary studies based on means of mycelium growth rate, indicated that all the compounds possess certain fungicidal activity against Sclerotinia sclerotiorum (Lib.) de Bary, Rhizoctonia solani Kuhn, Botrytis cinerea Pers and Phytophthora parasitica Dast. Full article
(This article belongs to the Special Issue Glycosides)
Show Figures

Figure 1

Back to TopTop