Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (628)

Search Parameters:
Keywords = temperature-sensitive polymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4003 KB  
Article
Research and Development of New Conductive Cement-Based Grouting Materials and Performance Studies
by Shen Zuo, Meisheng Shi, Junwei Bi, Menghan Zhang and Qingluan Li
Coatings 2025, 15(10), 1119; https://doi.org/10.3390/coatings15101119 - 25 Sep 2025
Abstract
In this study, cement, short-cut carbon fibers, and polymer water-absorbing resin were used as the main materials, with high-performance water-reducing polycarboxylic acid agent as the modified material. A new conductive cement-based grouting material was developed by incorporating functional additives. Its mix design was [...] Read more.
In this study, cement, short-cut carbon fibers, and polymer water-absorbing resin were used as the main materials, with high-performance water-reducing polycarboxylic acid agent as the modified material. A new conductive cement-based grouting material was developed by incorporating functional additives. Its mix design was optimized based on initial setting time, fluidity, bleeding rate, and compressive strength. The optimal ratio of the grouting material was determined as follows: 0.4 wt% of high water-absorbent resin, 0.25 wt% of high-efficiency water reducer, 0.8 wt% of short-cut carbon fibers, and a water–cement ratio of 0.8:1. The electrical conductivity of the grouting material was studied in depth under different dosages of short-cut carbon fibers, considering factors such as curing age, temperature, and pressure conditions. The results show that with the increase in curing age, the volume resistivity of the specimen gradually increases; the resistivity of the conductive cementitious grouting material decreases with the rise in temperature, showing a negative temperature coefficient effect; additionally, the doping of an appropriate amount of short-cut carbon fibers enables the conductive cementitious grouting specimen to exhibit good pressure-sensitive properties. Field test verification indicates that the new cementitious conductive grouting material has excellent conductive properties, and the grouting quality can be effectively evaluated via high-density electrical testing. Full article
(This article belongs to the Special Issue Advanced Functional Cement-Based Materials for Smart Applications)
Show Figures

Figure 1

17 pages, 2112 KB  
Article
Highly Sensitive Optical Fiber Pb2+ Concentration Sensor Based on HEMA/AM/SA Interpenetrating Polymer Network (IPN) Hydrogel
by Ning Wang, Ming He, Longjiao Wang, Chuanjie Lei, Linyufan Xiao, Yingjie Li and Shuan Liu
Gels 2025, 11(10), 766; https://doi.org/10.3390/gels11100766 - 23 Sep 2025
Viewed by 84
Abstract
An optical fiber sensor based on a HEMA/AM/SA interpenetrating polymer network (IPN) hydrogel is proposed for monitoring the concentration of Pb2+. The Fabry–Perot interference cavity is constructed from a single-mode fiber, a ceramic ferrule, and an IPN hydrogel layer. P (HEMA [...] Read more.
An optical fiber sensor based on a HEMA/AM/SA interpenetrating polymer network (IPN) hydrogel is proposed for monitoring the concentration of Pb2+. The Fabry–Perot interference cavity is constructed from a single-mode fiber, a ceramic ferrule, and an IPN hydrogel layer. P (HEMA co AM)/SA IPN hydrogel films were prepared by a step-by-step crosslinking method, which had good mechanical properties, swelling properties, and Pb2+ adsorption capacity. The Pb2+ concentration changes cause the interference spectrum shift of the sensor. By monitoring the wavelength shift under different Pb2+ concentrations, the sensor sensitivity in the range of 0~1 ppm Pb2+ concentration in solution is 5.0743 nm/ppm with 0.994 linearity. The influence of different proportions of IPN hydrogel on the performance of the sensor was studied. In the range of 10–90% HEMA, higher sensitivity is obtained by a small weight ratio of HEMA/AM. The sensor stability, repeatability, selectivity, dynamic response, and temperature response are also investigated in experiments. Experimental results demonstrate that the proposed sensor exhibits good stability, sensitivity, repeatability, and selectivity. Owing to its compact structure, straightforward fabrication, low cost, and good sensing performance, this sensor shows strong potential for application in monitoring Pb2+ concentrations. Full article
Show Figures

Figure 1

22 pages, 4623 KB  
Article
Performance and Characteristics of Low-Molecular-Weight Cross-Linked Grafting Terpolymers as Thickening Agents in Reservoir Fracturing Processes
by Kai Wang, Chenye Guo, Qisen Gong, Gen Li, Cuilan Zhang and Teng Jiang
Processes 2025, 13(10), 3032; https://doi.org/10.3390/pr13103032 - 23 Sep 2025
Viewed by 144
Abstract
A novel fracture fluid based on a grafting polymer, PAM-co-PAMS-g-PEG (PAM-AMS-AEG), cross-linked by an organic Zr reagent was successfully produced via free-radical polymerization and an in situ cross-linking reaction with a high conversion rate of 96%, resulting in a low molecular weight of [...] Read more.
A novel fracture fluid based on a grafting polymer, PAM-co-PAMS-g-PEG (PAM-AMS-AEG), cross-linked by an organic Zr reagent was successfully produced via free-radical polymerization and an in situ cross-linking reaction with a high conversion rate of 96%, resulting in a low molecular weight of 250 kg·mol−1. The effect of fluid constitution on the rheological behavior demonstrates that the P(AM10-AMS2-AEG1.4)/[Zr]0.35/TBAC0.1 (PASG/[Zr]) aqueous solution has the best comprehensive performance. The PASG/[Zr] solution with a low critical associating concentration (CAC) of 0.15 wt% showed faster and steadier disassociation–reassociation processes. The synergy of ionic hydrogen bonds between sulfonic and amine groups and Zr4+-coordination results in steady interactions and fast reconstitution of association, leading to remarkable temperature resistance from 30 to 120 °C and a fast response during thixotropic processes. The PASG/[Zr] solution reduces the damage under high pressure based on the rheological characteristics and compatibility with sand, leading to a low filtration loss of the artificial cores. The PASG/[Zr] solution exhibits a good sand-carrying ability based on the rheological and interfacial performance, resulting in slow settlement and fast suspension. The filtration performance of the PASG/[Zr] fracturing fluid showed that it is not sensitive to the shearing rate, core permeability, or pressure. The comprehensive performance of the PASG/[Zr] fracture fluid is better than that of traditional guar fluid, suggesting that it can be used under various conditions for stratum protection and shale gas extraction. Full article
Show Figures

Figure 1

13 pages, 3502 KB  
Article
Improvements to Unsteady Pressure-Sensitive Paint Formulations
by Sarah M. Peak, Daniel T. Reese, Kyle Z. Goodman and A. Neal Watkins
Sensors 2025, 25(18), 5892; https://doi.org/10.3390/s25185892 - 20 Sep 2025
Viewed by 199
Abstract
Improvements to unsteady pressure-sensitive paint (uPSP) formulations have been realized by judicious selection of titanium dioxide (TiO2) particles and dispersant. Traditionally, uPSP formulations based on polymer/ceramic coating have been used in many wind tunnel test campaigns but suffer from photodegradation and [...] Read more.
Improvements to unsteady pressure-sensitive paint (uPSP) formulations have been realized by judicious selection of titanium dioxide (TiO2) particles and dispersant. Traditionally, uPSP formulations based on polymer/ceramic coating have been used in many wind tunnel test campaigns but suffer from photodegradation and changes in pressure sensitivity during the testing window. As such, this paper details the investigation of employing different grades of TiO2 particles and dispersants to achieve desirable characteristics such as coating properties, pressure sensitivity, frequency response and overall degradation. Employing hydrophobic TiO2 particles along with a high-molecular-weight acrylic co-polymer generated uPSP coatings with many desirable features, including smoothness, thickness, and pressure sensitivity. In addition, the pressure sensitivity of the coatings exhibited linear behavior, having very little dependence on temperature. Finally, the frequency response was characterized qualitatively, and all uPSP formulations tested exhibited response to pressure fluctuations up to 12 kHz. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Graphical abstract

36 pages, 3444 KB  
Review
Next-Generation Smart Carbon–Polymer Nanocomposites: Advances in Sensing and Actuation Technologies
by Mubasshira, Md. Mahbubur Rahman, Md. Nizam Uddin, Mukitur Rhaman, Sourav Roy and Md Shamim Sarker
Processes 2025, 13(9), 2991; https://doi.org/10.3390/pr13092991 - 19 Sep 2025
Viewed by 446
Abstract
The convergence of carbon nanomaterials and functional polymers has led to the emergence of smart carbon–polymer nanocomposites (CPNCs), which possess exceptional potential for next-generation sensing and actuation systems. These hybrid materials exhibit unique combinations of electrical, thermal, and mechanical properties, along with tunable [...] Read more.
The convergence of carbon nanomaterials and functional polymers has led to the emergence of smart carbon–polymer nanocomposites (CPNCs), which possess exceptional potential for next-generation sensing and actuation systems. These hybrid materials exhibit unique combinations of electrical, thermal, and mechanical properties, along with tunable responsiveness to external stimuli such as strain, pressure, temperature, light, and chemical environments. This review provides a comprehensive overview of recent advances in the design and synthesis of CPNCs, focusing on their application in multifunctional sensors and actuator technologies. Key carbon nanomaterials including graphene, carbon nanotubes (CNTs), and MXenes were examined in the context of their integration into polymer matrices to enhance performance parameters such as sensitivity, flexibility, response time, and durability. The review also highlights novel fabrication techniques, such as 3D printing, self-assembly, and in situ polymerization, that are driving innovation in device architectures. Applications in wearable electronics, soft robotics, biomedical diagnostics, and environmental monitoring are discussed to illustrate the transformative impact of CPNCs. Finally, this review addresses current challenges and outlines future research directions toward scalable manufacturing, environmental stability, and multifunctional integration for the real-world deployment of smart sensing and actuation systems. Full article
(This article belongs to the Special Issue Polymer Nanocomposites for Smart Applications)
Show Figures

Figure 1

14 pages, 7832 KB  
Article
Self-Adaptive Polymer Fabry–Pérot Thermometer for High-Sensitivity and Wide-Linear-Range Sensing
by Yifan Cheng, Maolin Yu, Junjie Liu, Yingling Tan and Jinhui Chen
Biosensors 2025, 15(9), 602; https://doi.org/10.3390/bios15090602 - 12 Sep 2025
Viewed by 351
Abstract
Fiber-optic temperature sensors with advantages such as simplicity, low cost, and high sensitivity have attracted increasing attention. In this work, we propose a self-adaptive polymer Fabry–Pérot interferometer (PFPI) sensor for ultrasensitive and wide-linear-range thermal sensing. This design achieves a temperature sensitivity of 0.95 [...] Read more.
Fiber-optic temperature sensors with advantages such as simplicity, low cost, and high sensitivity have attracted increasing attention. In this work, we propose a self-adaptive polymer Fabry–Pérot interferometer (PFPI) sensor for ultrasensitive and wide-linear-range thermal sensing. This design achieves a temperature sensitivity of 0.95 nm/°C, representing an enhancement of two orders of magnitude compared to conventional fiber Bragg gratings. To address the challenge of spectral shifts exceeding the free spectral range due to the high sensitivity, a local cross-correlation algorithm is introduced for accurate wavelength tracking. We demonstrate ultrahigh-resolution (0.025 °C) scanning thermal field imaging and sensitive human physiological monitoring, including precise body temperature and respiratory rate detection. These results highlight the dual capability of our PFPI sensor for both microscopic thermal mapping and non-invasive healthcare applications. Full article
Show Figures

Figure 1

17 pages, 2868 KB  
Article
Study on the Influence of ZM Modifier on the Rheological Properties and Microstructural Characteristics of Asphalt
by Yining Wang, Zhen Zang and Wenyuan Xu
Coatings 2025, 15(9), 1069; https://doi.org/10.3390/coatings15091069 - 11 Sep 2025
Viewed by 308
Abstract
As traffic load continuously rises and climatic conditions increasingly vary, the performance of conventional base asphalt can no longer satisfy the needs of modern road engineering in low-temperature cracking resistance, high-temperature stability, and long-term durability. Therefore, the development of novel and efficient asphalt [...] Read more.
As traffic load continuously rises and climatic conditions increasingly vary, the performance of conventional base asphalt can no longer satisfy the needs of modern road engineering in low-temperature cracking resistance, high-temperature stability, and long-term durability. Therefore, the development of novel and efficient asphalt modifiers holds significant engineering value and practical importance. In this study, modified asphalt was prepared using varying dosages of ZM modifier (direct-injection asphalt mixture modified polymer additive). A series of experiments was executed to assess its influence on asphalt properties. First, fundamental property tests were implemented to determine the regulating effect of the ZM modifier on basic physical performances, like the softening point and penetration of the base asphalt. Penetration tests at different temperatures were performed to calculate the penetration index, thereby assessing the material’s temperature sensitivity. Subsequently, focusing on temperature as a key factor, tests on temperature sweep, and multiple stress creep recovery (MSCR) were implemented to delve into the deformation resistance and creep recovery behavior of the modified asphalt under high-temperature conditions. In addition, bending beam rheometer (BBR) experiments were introduced to attain stiffness modulus and creep rate indices, which were applied to appraise the low-temperature rheological performance. Aside from Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) was utilized to explore the mechanism by which the ZM modifier influences the asphalt’s functional group composition and microstructure. Our findings reveal that the ZM modifier significantly increases the asphalt’s softening point and penetration index, reduces penetration and temperature sensitivity, and enhances high-temperature stability. Under high-temperature conditions, the ZM modifier adjusts the viscoelastic balance of asphalt, hence enhancing its resistance to flow deformation and its capacity for creep recovery. In low-temperature environments, the modifier increases the stiffness modulus of asphalt and improves its crack resistance. FTIR analyses reveal that the ZM modifier does not introduce new functional groups, indicating a physical modification process. However, by enhancing the cross-linked structure and increasing the hydrocarbon content within the asphalt, it strengthens the adhesion between the asphalt and aggregates. Overall, the asphalt’s performance improvement positively relates to the dosage of the ZM modifier, providing both theoretical basis and experimental support for its application in road engineering. Full article
(This article belongs to the Special Issue Surface Treatments and Coatings for Asphalt and Concrete)
Show Figures

Figure 1

23 pages, 5238 KB  
Article
A Proposed System for Temperature Measurement During Tensile Testing
by Marius Andrei Mihalache, Vasile Merticaru, Vasile Ermolai, Liviu Andrusca, Nicanor Cimpoesu and Florin Negoescu
Sensors 2025, 25(17), 5494; https://doi.org/10.3390/s25175494 - 4 Sep 2025
Viewed by 813
Abstract
Integration of thermographic imaging with in situ scanning electron microscopy (SEM) analysis may aid in quantifying thermal–mechanical behavior during tensile testing of 3D-printed polymers, which gives information about fracture mechanics, including the associated thermal phenomena. Upon fracture, samples exhibit changes in the thermal [...] Read more.
Integration of thermographic imaging with in situ scanning electron microscopy (SEM) analysis may aid in quantifying thermal–mechanical behavior during tensile testing of 3D-printed polymers, which gives information about fracture mechanics, including the associated thermal phenomena. Upon fracture, samples exhibit changes in the thermal field, which is interesting because temperature fluctuations can affect material integrity. The paper introduces printing parameters to demonstrate a thermal measurement system’s sensitivity in detecting variations in mechanical response due to controlled changes in the process. Employing scientific methods, one can extrapolate results to a wider class of materials such as thermoplastics. Analysis of variance (ANOVA) is key in the design of experiments (DOE) if one wants to analyze the effect of factors and interactions. It has been used with the purpose of reducing the risk of type I errors (i.e., false positives). The finite element method (FEM) highlights temperature distribution in the area of interest and confirms recorded data. The particularly developed research experiments are carried out in a laboratory environment. Different samples are subjected to tensile tests under the evaluation of changes in the thermal field. SEM analysis is also widely used in fracture analysis to understand failure modes (ductile vs. brittle, crazing, delamination, and others). Thus, the paper aims to present a custom setup comprised a thermal camera pointed at samples during tensile testing that would serve as a reliable assessment system that accounts for the substitution of a sensor-based environment but is still fully capable of validating the measurement approach. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 3389 KB  
Article
Preparation, Performance Research and Field Application Practice of Temperature-Sensitive Lost Circulation Material for Shale Oil Wells
by Wenzhe Zhang, Jinsheng Sun, Feng Shen, Wei Li, Xianbin Huang, Kaihe Lv, Meichun Li, Shaofei Xue, Shiyu Wang and Hongmei Li
Polymers 2025, 17(17), 2395; https://doi.org/10.3390/polym17172395 - 2 Sep 2025
Viewed by 661
Abstract
Drilling fluid losses into formation voids are among the major issues that lead to increases in the costs and nonproductive time of operations. Lost circulation materials have been widely used to stop or mitigate losses. In most cases, the size of the loss [...] Read more.
Drilling fluid losses into formation voids are among the major issues that lead to increases in the costs and nonproductive time of operations. Lost circulation materials have been widely used to stop or mitigate losses. In most cases, the size of the loss zone is not known, making conventional lost circulation materials unsuitable for plugging the loss zone. In this study, novel temperature-sensitive LCM (TS-LCM) particles composed of diglycidyl ether of bisphenol A (DGEBA) and 4,4′-diaminodiphenyl methane were prepared. It is a thermal-response shape-memory polymer. The molecular structure was analyzed by Fourier transform infrared spectroscopy. The glass transition temperature (Tg) was tested by Different scanning calorimetry (DSC). The shape-memory properties were evaluated by a bend-recovery test instrument. The expansion and mechanical properties of particles were investigated under high temperature and high pressure. Fracture sealing testing apparatus was used to evaluate sealing performance. The mechanism of sealing fracture was discussed. Research results indicated that the Tg of the TS-LCM was 70.24 °C. The shape fixation ratio was more than 99% at room temperature, and the shape recovery ratio was 100% above the Tg. The particle was flaky before activation. It expanded to a cube shape, and the thickness increased when activated. The rate of particle size increase for D90 was more than 60% under 120 °C and 20 MPa. The activated TS-LCM particles had high crush strength. The expansion of the TS-LCM particles could self-adaptively bridge and seal the fracture without knowing the width. The addition of TS-LCM particles could seal the tapered slot with entrance widths of 2 mm, 3 mm and 4 mm without changing the lost circulation material formulation. The developed TS-LCM has good compatibility with local saltwater-based drilling fluid. In field tests in the Yan’an area of the Ordos Basin, 15 shale oil horizontal wells were plugged with excellent results. The equivalent circulating density of drilling fluid leakage increased by an average of 0.35 g/cm3, and the success rate of plugging malignant leakage increased from 32% to 82.5%. The drilling cycle was shortened by an average of 14.3%, and the effect of enhancing the pressure-bearing capacity of the well wall was significant. The prepared TS-LCM could cure fluid loss in a fractured formation efficiently. It has good prospects for promotion. Full article
Show Figures

Figure 1

21 pages, 3262 KB  
Article
An Artificial Intelligence-Based Melt Flow Rate Prediction Method for Analyzing Polymer Properties
by Mohammad Anwar Parvez and Ibrahim M. Mehedi
Polymers 2025, 17(17), 2382; https://doi.org/10.3390/polym17172382 - 31 Aug 2025
Viewed by 899
Abstract
The polymer industry gained increasing importance due to the ability of polymers to replace traditional materials such as wood, glass, and metals in various applications, offering advantages such as high strength-to-weight ratio, corrosion resistance, and ease of fabrication. Among key performance indicators, melt [...] Read more.
The polymer industry gained increasing importance due to the ability of polymers to replace traditional materials such as wood, glass, and metals in various applications, offering advantages such as high strength-to-weight ratio, corrosion resistance, and ease of fabrication. Among key performance indicators, melt flow rate (MFR) plays a crucial role in determining polymer quality and processability. However, conventional offline laboratory methods for measuring MFR are time-consuming and unsuitable for real-time quality control in industrial settings. To address this challenge, the study proposes a leveraging artificial intelligence with machine learning-based melt flow rate prediction for polymer properties analysis (LAIML-MFRPPPA) model. A dataset of 1044 polymer samples was used, incorporating six input features such as reactor temperature, pressure, hydrogen-to-propylene ratio, and catalyst feed rate, with MFR as the target variable. The input features were normalized using min–max scaling. Two ensemble models—kernel extreme learning machine (KELM) and random vector functional link (RVFL)—were developed and optimized using the pelican optimization algorithm (POA) for improved predictive accuracy. The proposed method outperformed traditional and deep learning models, achieving an R2 of 0.965, MAE of 0.09, RMSE of 0.12, and MAPE of 3.4%. A SHAP-based sensitivity analysis was conducted to interpret the influence of input features, confirming the dominance of melt temperature and molecular weight. Overall, the LAIML-MFRPPPA model offers a robust, accurate, and deployable solution for real-time polymer quality monitoring in manufacturing environments. Full article
(This article belongs to the Special Issue Scientific Machine Learning for Polymeric Materials)
Show Figures

Figure 1

32 pages, 5781 KB  
Article
Mechanistic Insights into 5-Fluorouracil Adsorption on Clinoptilolite Surfaces: Optimizing DFT Parameters for Natural Zeolites, Part II
by Lobna Saeed and Michael Fischer
Appl. Sci. 2025, 15(17), 9535; https://doi.org/10.3390/app15179535 - 29 Aug 2025
Viewed by 540
Abstract
Even though clinoptilolite mineral is the most important natural zeolite for technical applications, the molecular-level insights and detailed knowledge of their true local structures and adsorption behavior are largely lacking. An experimental determination of their surface structures, in particular, could be very challenging [...] Read more.
Even though clinoptilolite mineral is the most important natural zeolite for technical applications, the molecular-level insights and detailed knowledge of their true local structures and adsorption behavior are largely lacking. An experimental determination of their surface structures, in particular, could be very challenging due to the sensitivity of some facets to temperature and impurities. In this study, we present a robust multiscale modeling framework to investigate the adsorption of 5-fluorouracil, an anticancer drug, on dispersion-corrected density functional theory (DFT-D3)-optimized Na-clinoptilolite surfaces. Using a combination of interface force field and polymer consistent force field-based molecular dynamics with simulated annealing and parallel replica sampling, followed by DFT-D3 optimizations, we explore a wide configurational space of surface–molecule interactions. Our results show that Na-clinoptilolite surfaces support very strong adsorption, with adsorption energies ranging from −430.0 to −174.4 kJ/mol. Surface models with exposed Na cations consistently exhibit stronger binding, in contrast to their known steric hindrance effects in bulk environments. Furthermore, cation-free surfaces displayed relatively weaker interactions, yet configurations exposing the 8-membered rings (8 MR) demonstrated more favorable adsorption than those exposing 10 MR channels due to enhanced hydrogen bonding and spatial and entropic confinement effects. These findings reveal the importance of surface composition, local geometry, and configurational sampling in determining adsorption performance and lay the groundwork for future studies on cation-specific and multicationic clinoptilolite systems. Full article
(This article belongs to the Special Issue Development and Application of Computational Chemistry Methods)
Show Figures

Figure 1

17 pages, 2754 KB  
Article
Effect of Relaxation Properties on the Bonding Durability of Polyisobutylene Pressure-Sensitive Adhesives
by Anna V. Vlasova, Nina M. Smirnova, Viktoria Y. Melekhina, Sergey V. Antonov and Sergey O. Ilyin
Polymers 2025, 17(17), 2297; https://doi.org/10.3390/polym17172297 - 25 Aug 2025
Viewed by 745
Abstract
Pressure-sensitive adhesion arises at a specific rheological behavior of polymer systems, which should correlate with their relaxation properties, making them potentially useful for predicting and altering adhesive performance. This work systematically studied the rheology of eco-friendly pressure-sensitive adhesives based on non-crosslinked polyisobutylene ternary [...] Read more.
Pressure-sensitive adhesion arises at a specific rheological behavior of polymer systems, which should correlate with their relaxation properties, making them potentially useful for predicting and altering adhesive performance. This work systematically studied the rheology of eco-friendly pressure-sensitive adhesives based on non-crosslinked polyisobutylene ternary blends free of solvents and byproducts, which serve for reversible adhesive bonding. The ratio between individual polymer components differing in molecular weight affected the rheological, relaxation, and adhesion properties of the constituted adhesive blends, allowing for their tuning. The viscosity and viscoelasticity of the adhesives were studied using rotational rheometry, while their adhesive bonds with steel were examined by probe tack and shear lap tests at different temperatures. The adhesive bond durability at shear and pull-off detachments depended on the adhesive composition, temperature, and contact time under pressure. The double differentiation of the continuous relaxation spectra of the adhesives enabled the accurate determination of their characteristic relaxation times, which controlled the durability of the adhesive bonds. A universal linear correlation between the reduced failure time of adhesive bonds and their reduced formation time enabled the prediction of their durability with high precision (Pearson correlation coefficient = 0.958, p-value < 0.001) over at least a four-order-of-magnitude time range. The reduction in the formation/failure times of adhesive bonds was most accurately achieved using the longest relaxation time of the adhesives, associated with their highest-molecular-weight polyisobutylene component. Thus, the highest-molecular-weight polymer played a dominant role in adhesive performance, determining both the stress relaxation during the formation of adhesive bonds and their durability under applied load. In turn, this finding enables the prediction and improvement of adhesive bond durability by increasing the bond formation time (a durability rise by up to 10–100 times) and extending the adhesive’s longest relaxation time through elevating the molecular weight or proportion of its highest-molecular-weight component (a durability rise by 100–350%). Full article
Show Figures

Figure 1

14 pages, 2382 KB  
Article
Research on Viscous Dissipation Index Assessment of Polymer Materials Using High-Frequency Focused Ultrasound
by Zeqiu Yang, Yuebing Wang and Zhenwei Lu
Appl. Sci. 2025, 15(17), 9267; https://doi.org/10.3390/app15179267 - 22 Aug 2025
Viewed by 600
Abstract
Polymer viscoelasticity is crucial for mechanical performance, but conventional low-frequency methods struggle to isolate viscous loss—a key viscosity indicator. This study introduces a high-frequency ultrasonic method to differentiate the polymer viscous dissipation index by analyzing acoustic phase shifts. We employ ultrasonic phase-shift thermometry [...] Read more.
Polymer viscoelasticity is crucial for mechanical performance, but conventional low-frequency methods struggle to isolate viscous loss—a key viscosity indicator. This study introduces a high-frequency ultrasonic method to differentiate the polymer viscous dissipation index by analyzing acoustic phase shifts. We employ ultrasonic phase-shift thermometry to measure localized temperature increases resulting from minute variations in sound velocity during controlled heating. This allows for the quantification of viscous loss, which is then used to distinguish between different polymer formulations. Experimental and simulation results on a series of polyurethane specimens with varying Shore hardness levels demonstrate that decawatt-range (10–20 W) ultrasonic irradiation enables sensitive and precise differentiation. Notably, the Shore A70 polyurethane sample exhibited a significantly higher viscous dissipation index, evidenced by the largest temperature rise (27.5 °C) and the highest proportion of viscous heating to total power dissipation (93.1%) under 17 W acoustic irradiation. While this study focuses on commercially available polymers, the method can be extended to evaluate key performance parameters, such as tensile modulus and glass transition temperature, in polymers fabricated under various processing conditions, thereby offering a powerful tool for material quality assessment. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

26 pages, 4059 KB  
Review
Instability Mechanisms and Wellbore-Stabilizing Drilling Fluids for Marine Gas Hydrate Reservoirs: A Review
by Qian Liu, Bin Xiao, Guanzheng Zhuang, Yun Li and Qiang Li
Energies 2025, 18(16), 4392; https://doi.org/10.3390/en18164392 - 18 Aug 2025
Viewed by 709
Abstract
The safe exploitation of marine natural gas hydrates, a promising cleaner energy resource, is hindered by reservoir instability during drilling. The inherent temperature–pressure sensitivity and cementation of hydrate-bearing sediments leads to severe operational risks, including borehole collapse, gas invasion, and even blowouts. This [...] Read more.
The safe exploitation of marine natural gas hydrates, a promising cleaner energy resource, is hindered by reservoir instability during drilling. The inherent temperature–pressure sensitivity and cementation of hydrate-bearing sediments leads to severe operational risks, including borehole collapse, gas invasion, and even blowouts. This review synthesizes the complex instability mechanisms and evaluates the state of the art in inhibitive, wellbore-stabilizing drilling fluids. The analysis first deconstructs the multiphysics-coupled failure process, where drilling-induced disturbances trigger a cascade of thermodynamic decomposition, kinetic-driven gas release, and geomechanical strength degradation. Subsequently, current drilling fluid strategies are critically assessed. This includes evaluating the limitations of conventional thermodynamic inhibitors (salts, alcohols, and amines) and the advancing role of kinetic inhibitors and anti-agglomerants. Innovations in wellbore reinforcement using nanomaterials and functional polymers to counteract mechanical failure are also highlighted. Finally, a forward-looking perspective is proposed, emphasizing the need for multiscale predictive models that bridge molecular interactions with macroscopic behavior. Future research should prioritize the development of “smart”, multifunctional, and green drilling fluid materials, integrated with real-time monitoring and control systems. This integrated approach is essential for unlocking the potential of marine gas hydrates safely and efficiently. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

32 pages, 5766 KB  
Review
Carbon Nanohorns and Their Nanohybrid/Nanocomposites as Sensing Layers for Humidity Sensors—A Review
by Bogdan-Catalin Serban, Octavian Buiu, Marius Bumbac, Niculae Dumbrăvescu, Mihai Brezeanu, Ursăchescu Matei-Gabriel, Vlad Diaconescu, Maria Ruxandra Sălăgean and Cornel Cobianu
Polymers 2025, 17(16), 2198; https://doi.org/10.3390/polym17162198 - 12 Aug 2025
Viewed by 604
Abstract
Carbon nanohorns (CNHs), along with their nanocomposites and nanohybrids, have shown significant potential for humidity (RH) monitoring at room temperature (RT) due to their exceptional physicochemical and electronic properties, such as high surface area, tunable porosity, and stability in nanocomposites. Resistive sensors incorporating [...] Read more.
Carbon nanohorns (CNHs), along with their nanocomposites and nanohybrids, have shown significant potential for humidity (RH) monitoring at room temperature (RT) due to their exceptional physicochemical and electronic properties, such as high surface area, tunable porosity, and stability in nanocomposites. Resistive sensors incorporating CNHs have demonstrated superior sensitivity compared to traditional carbon nanomaterials, such as carbon nanotubes and graphene derivatives, particularly in specific RH ranges. This review highlights recent advancements in CNH-based resistive RH sensors, discussing effective synthesis methods (e.g., arc discharge and laser ablation) and functionalization strategies, such as the incorporation of hydrophilic polymers or inorganic fillers like graphene oxide (GO) and metal oxides, which enhance sensitivity and stability. The inclusion of fillers, guided by Pearson’s Hard–Soft Acid–Base (HSAB) theory, enables tuning of CNH-based sensing layers for optimal interaction with water molecules. CNH-based nanocomposites exhibit competitive response and recovery times, making them strong candidates for commercial sensor applications. However, challenges remain, such as optimizing materials for operation across the full 0–100% RH range. This review concludes with proposed research directions to further enhance the adoption and utility of CNHs in sensing applications. Full article
Show Figures

Figure 1

Back to TopTop