Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,396)

Search Parameters:
Keywords = tensile fracture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1715 KB  
Article
Fracture Resistance of 3D-Printed Hybrid Abutment Crowns Made from a Tooth-Colored Ceramic Filled Hybrid Composite: A Pilot Study
by Josef Schweiger, Kurt-Jürgen Erdelt, Isabel Lente, Daniel Edelhoff, Tobias Graf and Oliver Schubert
J. Funct. Biomater. 2025, 16(10), 375; https://doi.org/10.3390/jfb16100375 - 8 Oct 2025
Abstract
The aim of this pilot in vitro study is to investigate the fracture strength of hybrid abutment crowns (HACs) made of a 3D-printable, tooth-colored, ceramic-reinforced composite (CRC). Based on an upper first premolar, a crown was designed, and specimens were additively fabricated from [...] Read more.
The aim of this pilot in vitro study is to investigate the fracture strength of hybrid abutment crowns (HACs) made of a 3D-printable, tooth-colored, ceramic-reinforced composite (CRC). Based on an upper first premolar, a crown was designed, and specimens were additively fabricated from a composite material (VarseoSmile Crown plus) (N = 32). The crowns were bonded to standard abutments using a universal resin cement. Half (n = 16) of the samples were subjected to artificial aging, during which three samples suffered minor damage. All specimens were mechanically loaded at an angle of 30° to the implant axis. In addition, an FEM simulation was computed. Statistical analysis was performed at a significance level of p < 0.05. The mean fracture load without aging was 389.04 N (SD: 101.60 N). Two HACs suffered screw fracture, while the crowns itself failed in all other specimens. In the aged specimens, the mean fracture load was 391.19 N (SD: 143.30 N). The failure mode was predominantly catastrophic crown fracture. FEM analysis showed a maximum compressive stress of 39.79 MPa, a maximum tensile stress of 173.37 MPa and a shear stress of 60.29 MPa when loaded with 389 N. Within the limitations of this pilot study, the tested 3D-printed hybrid abutment crowns demonstrated fracture resistance above a clinically acceptable threshold, suggesting promising potential for clinical application. However, further investigations with larger sample sizes, control groups, and clinical follow-up are required. Full article
26 pages, 21665 KB  
Article
Fabrication of PLA–Date Fiber Biocomposite via Extrusion Filament Maker for 3D Printing and Its Characterization for Eco-Friendly and Sustainable Applications
by Syed Hammad Mian, Abdulrahman bin Jumah, Mustafa Saleh and Jabair Ali Mohammed
Polymers 2025, 17(19), 2707; https://doi.org/10.3390/polym17192707 - 8 Oct 2025
Abstract
Biocomposites incorporating bio-based polymers and natural fibers hold great promise due to their environmental and economic benefits, though their commercial use is still limited by production challenges. This study reports the development of polylactic acid (PLA) composite filament reinforced with 5 wt% date [...] Read more.
Biocomposites incorporating bio-based polymers and natural fibers hold great promise due to their environmental and economic benefits, though their commercial use is still limited by production challenges. This study reports the development of polylactic acid (PLA) composite filament reinforced with 5 wt% date palm fibers for fused deposition modeling (FDM)-based 3D Printing. The biocomposite is fabricated through extrusion and 3D Printing, and its mechanical, thermal, and water absorption properties are characterized in this work. Fiber dispersion is examined using a scanning electron microscope (SEM), while tensile testing evaluates yield strength, tensile strength, and elongation at break. Fracture behavior and failure mechanisms are further analyzed through optical microscopy and SEM. The biocomposite shows higher yield strength (36.75 MPa) and tensile strength (53.69 MPa), representing improvements of 10.12% and 6.53%, respectively, compared to in-house extruded pure PLA. However, it exhibits lower ductility, as indicated by reduced elongation at break. Water absorption is also higher in the biocomposite (0.58%) than in pure PLA (0.10%). Both materials display similar thermal behavior and brittle fracture characteristics. These results highlight the reinforcing effect of date palm fibers and the role of processing on the behavior/performance of the biocomposite. Reinforcing PLA with a small fraction of date palm fibers, an abundant natural resource, offers a cost-effective and eco-friendly material, particularly suited for single-use plastic products where biodegradability and sustainability are essential. This study also confirms the suitability of PLA/date palm fiber filament for FDM-based 3D Printing. Full article
(This article belongs to the Special Issue Latest Research on 3D Printing of Polymer and Polymer Composites)
Show Figures

Figure 1

13 pages, 2827 KB  
Article
The Mechanism of Casing Perforation Erosion Under Fracturing-Fluid Flow: An FSI and Strength Criteria Study
by Hui Zhang and Chengwen Wang
Modelling 2025, 6(4), 121; https://doi.org/10.3390/modelling6040121 - 4 Oct 2025
Viewed by 80
Abstract
High-pressure, high-volume fracturing in unconventional reservoirs often induces perforation erosion damage, endangering operational safety. This paper employs fluid–solid coupling theory to analyze the flow characteristics of fracturing fluid inside the casing during fracturing. Combined with strength theory, the stress distribution and variation law [...] Read more.
High-pressure, high-volume fracturing in unconventional reservoirs often induces perforation erosion damage, endangering operational safety. This paper employs fluid–solid coupling theory to analyze the flow characteristics of fracturing fluid inside the casing during fracturing. Combined with strength theory, the stress distribution and variation law are investigated, revealing the mechanical mechanism of casing perforation erosion damage. The results indicate that the structural discontinuity at the entrance of the perforation tunnel causes an increase in fracturing-fluid velocity, and this is where the most severe erosion happens. The stress around the perforation is symmetrically distributed along the perforation axis. The casing inner wall experiences a combined tensile–compressive stress state, while non-perforated regions are under pure tensile stress, with the maximum amplitudes occurring in the 90° and 270° directions. Although the tensile and compressive stress do not exceed the material’s allowable stress, the shear stress exceeds the allowable shear stress, indicating that shear stress failure is likely to initiate at the perforation, inducing erosion. Moreover, under the impact of fracturing fluid, the contact forces at the first and second interfaces of the casing are unevenly distributed, reducing cement bonding capability and compromising casing integrity. The findings provide a theoretical basis for optimizing casing selection. Full article
14 pages, 2909 KB  
Article
Research on Intermittent Tensile Deformation to Improve the Properties of Austenitic Stainless Steel
by Huimin Tao, Yafang Cai, Yong Huang, Xiaoliang Wu, Zeqi Tong and Mingming Ding
Coatings 2025, 15(10), 1158; https://doi.org/10.3390/coatings15101158 - 4 Oct 2025
Viewed by 222
Abstract
This article conducts intermittent tensile deformation on 304 stainless steel; observes the microstructure, mechanical properties, and corrosion performance evolution of stainless steel under different deformation conditions; and reveals its mechanisms. The results indicate that the performance of 304 stainless steel is significantly affected [...] Read more.
This article conducts intermittent tensile deformation on 304 stainless steel; observes the microstructure, mechanical properties, and corrosion performance evolution of stainless steel under different deformation conditions; and reveals its mechanisms. The results indicate that the performance of 304 stainless steel is significantly affected by the degree of intermittent deformation. Small intermittent deformation can produce a good microstructure with uniform distribution, low martensite content, and weak texture, optimizing comprehensive mechanical properties by improving ductility, yield strength, and tensile strength. On the contrary, excessive intermittent deformation increases martensitic transformation and enhances texture, leading to a transition from ductile fracture to brittle fracture. In addition, small intermittent deformations improve corrosion resistance by promoting the formation of a stable passivation film. The microstructural changes affect the deformation mechanism and surface passivation film of stainless steel, making its mechanical strength and corrosion resistance superior to larger intermittent deformation amounts. Small intermittent deformation can improve the mechanical and corrosion properties of 304 stainless steel. This study provides a reference for the formation and performance control of metal materials and has certain practical value. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

24 pages, 11789 KB  
Article
Mechanical Performance Degradation and Microstructural Evolution of Grout-Reinforced Fractured Diorite Under High Temperature and Acidic Corrosion Coupling
by Yuxue Cui, Henggen Zhang, Tao Liu, Zhongnian Yang, Yingying Zhang and Xianzhang Ling
Buildings 2025, 15(19), 3547; https://doi.org/10.3390/buildings15193547 - 2 Oct 2025
Viewed by 205
Abstract
The long-term stability of grout-reinforced fractured rock masses in acidic groundwater environments after tunnel fires is critical for the safe operation of underground engineering. In this study, grouting reinforcement tests were performed on fractured diorite specimens using a high-strength fast-anchoring agent (HSFAA), and [...] Read more.
The long-term stability of grout-reinforced fractured rock masses in acidic groundwater environments after tunnel fires is critical for the safe operation of underground engineering. In this study, grouting reinforcement tests were performed on fractured diorite specimens using a high-strength fast-anchoring agent (HSFAA), and their mechanical degradation and microstructural evolution mechanisms were investigated under coupled high-temperature (25–1000 °C) and acidic corrosion (pH = 2) conditions. Multi-scale characterization techniques, including uniaxial compression strength (UCS) tests, X-ray computed tomography (CT), scanning electron microscopy (SEM), three-dimensional (3D) topographic scanning, and X-ray diffraction (XRD), were employed systematically. The results indicated that the synergistic thermo-acid interaction accelerated mineral dissolution and induced structural reorganization, resulting in surface whitening of specimens and decomposition of HSFAA hydration products. Increasing the prefabricated fracture angles (0–60°) amplified stress concentration at the grout–rock interface, resulting in a reduction of up to 69.46% in the peak strength of the specimens subjected to acid corrosion at 1000 °C. Acidic corrosion suppressed brittle disintegration observed in the uncorroded specimens at lower temperature (25–600 °C) by promoting energy dissipation through non-uniform notch formation, thereby shifting the failure modes from shear-dominated to tensile-shear hybrid modes. Quantitative CT analysis revealed a 34.64% reduction in crack volume (Vca) for 1000 °C acid-corroded specimens compared to the control specimens at 25 °C. This reduction was attributed to high-temperature-induced ductility, which transformed macroscale crack propagation into microscale coalescence. These findings provide critical insights for assessing the durability of grouting reinforcement in post-fire tunnel rehabilitation and predicting the long-term stability of underground structures in chemically aggressive environments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 2373 KB  
Article
Numerical Investigation of Fracture Behavior and Current-Carrying Capability Degradation in Bi2212/Ag Composite Superconducting Wires Subjected to Mechanical Loads Using Phase Field Method
by Feng Xue and Kexin Zhou
Modelling 2025, 6(4), 119; https://doi.org/10.3390/modelling6040119 - 1 Oct 2025
Viewed by 211
Abstract
Bi2Sr2CaCu2O8+x (Bi2212) high-temperature superconductor exhibits broad application prospects in strong magnetic fields, superconducting magnets, and power transmission due to its exceptional electrical properties. However, during practical applications, Bi2212 superconducting round wires are prone to mechanical [...] Read more.
Bi2Sr2CaCu2O8+x (Bi2212) high-temperature superconductor exhibits broad application prospects in strong magnetic fields, superconducting magnets, and power transmission due to its exceptional electrical properties. However, during practical applications, Bi2212 superconducting round wires are prone to mechanical loading effects, leading to crack propagation and degradation of superconducting performance, which severely compromises their reliability and service life. To elucidate the damage mechanisms under mechanical loading and their impact on critical current, this study establishes a two-dimensional model with existing cracks based on phase field fracture theory, simulating crack propagation behaviors under varying conditions. The results demonstrate that crack nucleation and propagation paths are predominantly governed by stress concentration zones. The transition zone width of cracks is controlled by the phase field length scale parameter. By incorporating electric fields into the phase field model, coupled mechanical-electrical simulations reveal that post-crack penetration causes significant current shunting, resulting in a marked decline in current density. The research quantitatively explains the mechanism of critical current degradation in Bi2212 round wires under tensile strain from a mechanical perspective. Full article
Show Figures

Graphical abstract

21 pages, 1735 KB  
Article
Optimization of Mechanical Properties Using Fused Deposition Manufacturing Technique: A Systematic Investigation of Polycarbonate and Polylactic Acid Specimens
by Faisal Khaled Aldawood, Hussain F. Abualkhair, Muhammed Anaz Khan and Mohammed Alquraish
Polymers 2025, 17(19), 2659; https://doi.org/10.3390/polym17192659 - 1 Oct 2025
Viewed by 302
Abstract
This exploratory study investigates preliminary trends in the optimization of mechanical properties in 3D-printed components produced via Fused Deposition Modeling (FDM) using polycarbonate (PC) and polylactic acid (PLA). Through a systematic full factorial experimental design, three critical parameters were examined: material types (PC [...] Read more.
This exploratory study investigates preliminary trends in the optimization of mechanical properties in 3D-printed components produced via Fused Deposition Modeling (FDM) using polycarbonate (PC) and polylactic acid (PLA). Through a systematic full factorial experimental design, three critical parameters were examined: material types (PC and PLA), layer thickness (0.2 mm and 0.4 mm), and build orientation (horizontal and vertical). Preliminary trends suggest that vertically oriented specimens showed up to 64.7% higher tensile strength compared to horizontal builds, though with significantly reduced ductility. Contributing to growing evidence regarding layer thickness effects, thicker layers (0.4 mm) showed improved ultimate strength by up to 36.2% while simultaneously reducing production time by 50%. However, statistical power analysis revealed insufficient sample size (n = 1 per condition) to establish significance for orientation effects, despite large practical differences observed. PC specimens demonstrated superior strength (maximum 67.5 MPa) and fracture energy, while PLA offered better ductility (up to 22.4% strain). These exploratory findings provide promising directions for future adequately powered investigations for tailored parameter selection according to specific application requirements. Full article
(This article belongs to the Special Issue Polymeric Materials for 3D Printing)
Show Figures

Figure 1

13 pages, 3728 KB  
Article
Al and Cu Effect on the Microstructure and Mechanical Properties of HEA Based on the AlCoCuFeNi System
by Konrad Chrzan, Barbara Kalandyk, Małgorzata Grudzień-Rakoczy, Łukasz Rakoczy, Kamil Cichocki, Robert Żuczek, Filip Kateusz, Aleksandra Bętkowska, Adelajda Polkowska and Justyna Kasińska
Materials 2025, 18(19), 4564; https://doi.org/10.3390/ma18194564 - 30 Sep 2025
Viewed by 300
Abstract
Three variants of high-entropy alloys (HEAs) from the AlCoCuFeNi group, containing different amounts of Al and Cu, were developed and produced via induction melting and casting into ceramic moulds. The ingots were homogenized at 1000 °C for 10 h. Analyses revealed that variations [...] Read more.
Three variants of high-entropy alloys (HEAs) from the AlCoCuFeNi group, containing different amounts of Al and Cu, were developed and produced via induction melting and casting into ceramic moulds. The ingots were homogenized at 1000 °C for 10 h. Analyses revealed that variations in Al and Cu concentrations led to significant changes in the material’s microstructure, hardness, strength, and impact strength. In the equiatomic variant, differential scanning calorimetry revealed a peak associated with the phase transformation, indicating that this alloy’s microstructure consists of two distinct phases. In contrast, when the concentrations of Al and Cu are reduced, a single-phase microstructure is observed. The equiatomic variant (used as a reference) is characterized by its hardness and brittleness, exhibiting slight ductility, with a tensile strength of 80 MPa, a hardness of 400 HV5, and an impact strength of 1.9 J/cm2. However, with adjusted Al contents of 1/2 and Cu contents of 1/4, the alloy displays exceptional strength combined with good plasticity, achieving a tensile strength of up to 450 MPa with 60% elongation, and an impact strength of 215 J/cm2. The non-equiatomic variants exhibit a comparatively more straightforward microstructure and enhanced ductility, which may facilitate easier processing of these alloys. Fractography investigation revealed a ductile mode of fracture in the samples. Full article
Show Figures

Figure 1

19 pages, 1850 KB  
Article
Investigating the Frost Cracking Mechanisms of Water-Saturated Fissured Rock Slopes Based on a Meshless Model
by Chunhui Guo, Feixiang Zeng, Han Shao, Wenbing Zhang, Bufan Zhang, Wei Li and Shuyang Yu
Water 2025, 17(19), 2858; https://doi.org/10.3390/w17192858 - 30 Sep 2025
Viewed by 153
Abstract
In global cold regions and seasonal frozen soil areas, frost heave failure of rock slopes severely endangers infrastructure safety, particularly along China’s Sichuan–Tibet and Qinghai–Tibet Railways. To address this, a meshless numerical model based on the smoothed particle hydrodynamics (SPH) method was developed [...] Read more.
In global cold regions and seasonal frozen soil areas, frost heave failure of rock slopes severely endangers infrastructure safety, particularly along China’s Sichuan–Tibet and Qinghai–Tibet Railways. To address this, a meshless numerical model based on the smoothed particle hydrodynamics (SPH) method was developed to simulate progressive frost heave and fracture of water-saturated fissured rock masses—its novelty lies in avoiding grid distortion and artificial crack path assumptions of FEM as well as complex parameter calibration of DEM by integrating the maximum tensile stress criterion (with a binary fracture marker for particle failure), thermodynamic phase change theory (classifying fissure water into water, ice-water mixed, and ice particles), and the equivalent thermal expansion coefficient method to quantify frost heave force. Systematic simulations of fissure parameters (inclination angle, length, number, and row number) revealed that these factors significantly shape failure modes: longer fissures and more rows shift failure from strip-like to tree-like/network-like, more fissures accelerate crack coalescence, and larger inclination angles converge stress to fissure tips. This study clarifies key mechanisms and provides a theoretical/numerical reference for cold region rock slope stability control. Full article
Show Figures

Figure 1

14 pages, 4473 KB  
Article
Research on Microstructure and Corrosion Behavior of Aluminum Alloy Laser-Welded Joints Assisted by Ultrasonic Vibration
by Di Bai, Ao Li, Jia Liu, Yan Shi, Hong Zhang and Li Yang
Micromachines 2025, 16(10), 1118; https://doi.org/10.3390/mi16101118 - 29 Sep 2025
Viewed by 205
Abstract
Laser welding of 6061 aluminum alloy often results in coarse microstructures and inferior corrosion resistance due to rapid solidification. This study introduces ultrasonic vibration as an auxiliary technique to address these limitations. The paper systematically investigates the influence of laser weld ultrasonic assistance [...] Read more.
Laser welding of 6061 aluminum alloy often results in coarse microstructures and inferior corrosion resistance due to rapid solidification. This study introduces ultrasonic vibration as an auxiliary technique to address these limitations. The paper systematically investigates the influence of laser weld ultrasonic assistance on the microstructure and corrosion behavior of a 6061-T6 aluminum alloy welded joint. The results demonstrate that ultrasonic assistance refined the grain structure and reduced the corrosion current density by 19.1% compared to conventional laser welding, achieving 73.6% of the base metal’s corrosion resistance. The enhancement is attributed to ultrasonic-induced acoustic streaming and cavitation, which promote equiaxed grain formation and impede corrosive penetration. The enhancement is attributed to ultrasonic-induced acoustic streaming and cavitation, which promote equiaxed grain formation and impede corrosive penetration. Under the ultrasonic effect, the number of dimples in the weld fracture increased and the depth was significant, which enhanced the tensile strength of the 6061 Aluminum alloy weld. This work provides a reliable and efficient strategy for producing high-performance aluminum alloy welded structures in industrial applications. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing, 2nd Edition)
Show Figures

Figure 1

16 pages, 2423 KB  
Article
Numerical Simulation Study and Stress Prediction of Lithium-Ion Batteries Based on an Electrochemical–Thermal–Mechanical Coupled Model
by Juanhua Cao and Yafang Zhang
Batteries 2025, 11(10), 360; https://doi.org/10.3390/batteries11100360 - 29 Sep 2025
Viewed by 354
Abstract
In lithium-ion batteries, the fracture of active particles that are under stress is a key cause of battery aging, which leads to a reduction in active materials, an increase in internal resistance, and a decay in battery capacity. A coupled electrochemical–thermal–mechanical model was [...] Read more.
In lithium-ion batteries, the fracture of active particles that are under stress is a key cause of battery aging, which leads to a reduction in active materials, an increase in internal resistance, and a decay in battery capacity. A coupled electrochemical–thermal–mechanical model was established to study the concentration and stress distributions of negative electrode particles under different charging rates and ambient temperatures. The results show that during charging, the maximum lithium-ion concentration occurs on the particle surface, while the minimum concentration appears at the particle center. Moreover, as the temperature decreases, the concentration distribution of negative electrode active particles becomes more uneven. Stress analysis indicates that when charging at a rate of 1C and 0 °C, the maximum stress of particles at the negative electrode–separator interface reaches 123.7 MPa, while when charging at 30 °C, the maximum particle stress is 24.3 MPa. The maximum shear stress occurs at the particle center, presenting a tensile stress state, while the minimum shear stress is located on the particle surface, showing a compressive stress state. Finally, to manage the stress of active materials in lithium-ion batteries while charging for health maintenance, this study uses a DNN (Deep Neural Network) to predict the maximum shear stress of particles based on simulation results. The predicted indicators, MAE (Mean Absolute Error) and RMSE (Root Mean Square Error), are 0.034 and 0.046, respectively. This research is helpful for optimizing charging strategies based on the stress of active materials in lithium-ion batteries during charging, inhibiting battery aging and improving safety performance. Full article
Show Figures

Figure 1

13 pages, 4167 KB  
Article
Time-Dependent Failure Mechanisms of Metals: The Role of Bifilms in Precipitation Cleavage
by John Campbell
Metals 2025, 15(10), 1084; https://doi.org/10.3390/met15101084 - 29 Sep 2025
Viewed by 182
Abstract
This account is an exploration of concepts exploring the widespread damage to liquid metals caused by poor current liquid metal handling and casting technology. The defects introduced in the liquid state are suggested to affect many properties of our engineering metals, especially tensile [...] Read more.
This account is an exploration of concepts exploring the widespread damage to liquid metals caused by poor current liquid metal handling and casting technology. The defects introduced in the liquid state are suggested to affect many properties of our engineering metals, especially tensile elongation and Charpy toughness, but also time-dependent degradation processes, which can result in failure by fracture, and which can be significantly aided by hydrogen, leading to hydrogen embrittlement (HE), and invasive corrosion, leading to stress corrosion cracking (SCC). The new phenomenon of ‘precipitation cleavage’ is introduced, explaining the sensitization of alloys by certain heat treatments. Direct visual evidence for precipitation cleavage is provided by the previously unexplained phenomenon of ‘fisheyes’ observed frequently on the fracture surfaces of steels, and more recently also in light alloys. Full article
(This article belongs to the Special Issue Fracture Mechanics of Metals (2nd Edition))
Show Figures

Figure 1

21 pages, 3956 KB  
Article
Optimization of Parameters in Multi-Spot Projection Welding of Thin Aluminized Steel Sheets
by Alexandru Vladut Oprea, Robert Catalin Ciocoiu, George Constantin, Carmen Catalina Rusu and Ionelia Voiculescu
Appl. Sci. 2025, 15(19), 10530; https://doi.org/10.3390/app151910530 - 29 Sep 2025
Viewed by 260
Abstract
Welding is a technological variant of the electric resistance spot-welding process in which the machined protrusion on the surface is heated and rapidly deformed, and the small molten zone formed at the interface is then forged to form the weld spot. The paper [...] Read more.
Welding is a technological variant of the electric resistance spot-welding process in which the machined protrusion on the surface is heated and rapidly deformed, and the small molten zone formed at the interface is then forged to form the weld spot. The paper analyses the effects of projection welding parameter values for thin, low-carbon aluminized steel sheets. Two sets of 16 welded samples having three or five protrusions were performed and analyzed using the Taguchi method. The microstructural aspects were analyzed in cross sections made through the welded points, highlighting the expulsion or accumulated effects of the Al-Si alloy protective layer and the formation of intermetallic compounds. To estimate the effect of welding parameters, the samples were subjected to tensile strength tests, and the fracture mode was evaluated. It was found that the values of the breaking forces were close for the two types of samples analyzed, for identical values of the welding regime parameters, but the elongation at break was double in the case of samples with five protrusions. The breaking force increased from 10.9 kN for samples with three protrusions to 11.4 kN for samples with five protrusions, for the same values of welding parameters. Full article
(This article belongs to the Topic Welding Experiment and Simulation)
Show Figures

Figure 1

17 pages, 4189 KB  
Article
Effect of Fiber Characteristics on Cracking Resistance Properties of Stone Mastic Asphalt (SMA) Mixture
by Kai Yang, Wenyuan Huang, Mutian Sun, Zhixian Zheng and Hongwei Lin
Polymers 2025, 17(19), 2623; https://doi.org/10.3390/polym17192623 - 28 Sep 2025
Viewed by 256
Abstract
Cracking is a critical distress that reduces an asphalt pavement’s service life, and fiber reinforcement is an effective strategy to enhance anti-cracking capacity. However, the effects of fiber type, morphology, and length on key cracking modes remain insufficiently understood, limiting rational fiber selection [...] Read more.
Cracking is a critical distress that reduces an asphalt pavement’s service life, and fiber reinforcement is an effective strategy to enhance anti-cracking capacity. However, the effects of fiber type, morphology, and length on key cracking modes remain insufficiently understood, limiting rational fiber selection in practice. This study systematically evaluated the influence of four representative fiber types on the anti-cracking performance of Stone Mastic Asphalt (SMA) mixture, combining mechanical testing and microstructural analysis. The fibers included lignin fiber (LF); polyester fiber (PF); chopped basalt fiber (CBF) with lengths of 3 mm, 6 mm, 9 mm; and flocculent basalt fiber (FBF). Key mechanical tests assessed specific cracking behaviors: three-point bending (low-temperature cracking), indirect tensile (tensile cracking), pre-cracked semi-circular bending (crack propagation), overlay (reflective cracking), and four-point bending (fatigue resistance) tests. A scanning electron microscopy (SEM) test characterized fiber morphology and fiber–asphalt interface interactions, revealing microstructural mechanisms underlying performance improvements. The results showed that all fibers improved anti-cracking performance, but their efficacy varied with fiber type, appearance, and length. PF exhibited the best low-temperature cracking resistance, with a 26.8% increase in bending strength and a 16.6% increase in maximum bending strain. For tensile and crack propagation resistance, 6 mm CBF and FBF outperformed the other fibers, with fracture energy increases of up to 53.2% (6 mm CBF) and CTindex improvements of 72.8% (FBF). FBF optimized reflective cracking resistance, increasing the loading cycles by 48.0%, while 6 mm CBF achieved the most significant fatigue life improvement (36.9%) by balancing rigidity and deformation. Additionally, SEM analysis confirmed that effective fiber dispersion and strong fiber–asphalt bonding were critical for enhancing stress transfer and inhibiting crack initiation/propagation. These findings provide quantitative insights into the relationship between fiber characteristics (type, morphology, length) and anti-cracking performance, offering practical guidance for rational fiber selection to improve pavement durability. Full article
(This article belongs to the Special Issue Polymer Materials for Pavement Applications)
Show Figures

Graphical abstract

14 pages, 11487 KB  
Article
The Role of Voids in the Cracking of Single-Crystalline Composites with Quasicrystal Phase Fraction
by Jacek Krawczyk
Materials 2025, 18(19), 4506; https://doi.org/10.3390/ma18194506 - 28 Sep 2025
Viewed by 280
Abstract
The novel fibrous composites of Al61Cu27Fe12 alloy with a single-crystalline matrix and quasi-crystal phase fraction obtained in situ by directional solidification by the Bridgman method were studied to characterize the voids and their role in composites cracking. The [...] Read more.
The novel fibrous composites of Al61Cu27Fe12 alloy with a single-crystalline matrix and quasi-crystal phase fraction obtained in situ by directional solidification by the Bridgman method were studied to characterize the voids and their role in composites cracking. The voids were analyzed using light-optical and scanning electron microscopy to study their nature before and after uniaxial tensile tests. Tension tests were performed on plate-like samples up to rupture. The tensile fracture surfaces were also observed and analyzed. The single-crystallinity and crystalographic parameters of composites were studied using the X-ray Laue diffraction method. It was stated that such new type of composite is characterized by a relatively high void content with a ratio of approximately 2.6%. The composite’s cracking is initiated at voids and progress through the voids and stair steps in the matrix and the reinforcing fibers. Full article
Show Figures

Figure 1

Back to TopTop