Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = terminal reservoir

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 459 KB  
Article
Single-Phase Earth-Fault Protection of Power Cable of a Salt-Producing Floating Platform
by Aleksandr Novozhilov, Zhanat Issabekov, Timofey Novozhilov, Bibigul Issabekova and Lyazzat Tyulyugenova
Energies 2025, 18(19), 5234; https://doi.org/10.3390/en18195234 - 2 Oct 2025
Viewed by 197
Abstract
In this paper, a method to improve the protection of a four-core power cable of a salt-producing floating platform equipped with an automatic breaker with an independent tripping mechanism is suggested. The use of this automatic breaker in combination with a suggested protection [...] Read more.
In this paper, a method to improve the protection of a four-core power cable of a salt-producing floating platform equipped with an automatic breaker with an independent tripping mechanism is suggested. The use of this automatic breaker in combination with a suggested protection device ensures reliable protection of not only the power cables of the platform against all faults but also the personnel of the platform and animals on the reservoir banks against electric shock in the event of a single-phase ground fault in reservoir water. This would be possible due to a voltage sensor made in the form of a metal ring on the power cable and a relay; one terminal of the relay winding is connected to the voltage sensor by a single-core control cable, and the other to the neutral of a power source on the platform. The typically open contacts of this relay are connected to an electric circuit which includes a power source and a coil for an independent tripping mechanism of the automatic breaker. This design ensures reliable operation of the suggested protection device in the event of a single-phase ground fault in the power cable of the platform when underwater cable insulation is damaged. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

18 pages, 3365 KB  
Article
Assessing Multiple Risks in Regulating Reservoirs: Perspectives on Heavy Metal Contamination
by Hui Zhou, Zhiping Li, Anming Wang, Jiawei Zhu, Zongyuan Han, Yalin Zhang and Dongdong Chen
Toxics 2025, 13(9), 762; https://doi.org/10.3390/toxics13090762 - 8 Sep 2025
Viewed by 507
Abstract
As the terminal reservoir of the South-to-North Water Diversion’s Eastern Route, Dongping Lake is critical for safeguarding the northern water supply. Analysis of 33 water–sediment sites revealed the following. (1) Waterborne heavy metals (HMs) below WHO limits, confirming the good water quality. (2) [...] Read more.
As the terminal reservoir of the South-to-North Water Diversion’s Eastern Route, Dongping Lake is critical for safeguarding the northern water supply. Analysis of 33 water–sediment sites revealed the following. (1) Waterborne heavy metals (HMs) below WHO limits, confirming the good water quality. (2) Sediment HM enrichment exceeding background levels, with Cd posing high ecological risk (mean Er = 135), and moderate overall pollution. (3) Speciation showed V, Cr, Co, Ni, Cu, Zn, and Pb predominantly in residual fractions, while Cd exhibited high bioavailability and Pb was in reducible state. Ecological risk assessment indicated that V and Cr tend not to cause environmental pollution; Co, Ni, Cu, Zn, and Pb only cause slight pollution; and Cd causes serious point-source pollution. The carcinogenic risk of surface sediments to children is not negligible. (4) Source apportionment identified industrial emissions as the primary HM contributors, with Cd deriving from agricultural runoff (phosphate fertilizers) and industrial discharges. This study offers valuable baseline information for water quality management in mega-water-transfer projects, directly supporting the Jiaodong Main Line and Yellow River Crossing operations. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

15 pages, 3587 KB  
Article
The Role of the Aogula Fault in the Migration of Hydrocarbon Along the Sartu, Putaohua, and Gaotaizi Reservoirs and Its Relationship with Accumulation in the Songliao Basin
by Xiaomei Li, Liang Yang, Lidong Sun, Jiajun Liu, Guozheng Li, Zhuang Cai, Bo Hu, Ying Du, Bowei Zhang, Fei Jiang, Jiao Zhang and Qicai Wu
Energies 2025, 18(16), 4325; https://doi.org/10.3390/en18164325 - 14 Aug 2025
Viewed by 302
Abstract
To elucidate hydrocarbon enrichment characteristics within the Sartu (S), Putaohua (P), and Gaotaizi (G) reservoirs near the Aogula Fault in the northern Songliao Basin, this study systematically analyzes the fault’s influence on hydrocarbon migration and accumulation, based on an investigation of migration pathways [...] Read more.
To elucidate hydrocarbon enrichment characteristics within the Sartu (S), Putaohua (P), and Gaotaizi (G) reservoirs near the Aogula Fault in the northern Songliao Basin, this study systematically analyzes the fault’s influence on hydrocarbon migration and accumulation, based on an investigation of migration pathways along fault zones and sandstone bodies. The results demonstrate that, except at its northern terminus, the Aogula Fault terminates hydrocarbon migration within the S reservoir sandstones, thereby promoting hydrocarbon accumulation near the fault zone. This is a primary reason for the prevalence of productive drilling targets in this region. Six vertical diversion zones are identified along the fault trace, uniformly spaced from southwest to northeast. These zones facilitate vertical migration of hydrocarbons from the G and P reservoirs into the overlying S reservoir, accounting for the significantly greater hydrocarbon enrichment observed in the S reservoir compared to the underlying formations. Furthermore, excluding the eastern and western extremities, lateral diversion zones characterize the remainder of the fault. These zones enhance lateral hydrocarbon migration from the southwestern segment towards the northeastern segment, resulting in significantly higher accumulation in the northeastern section relative to the southwestern section. Full article
(This article belongs to the Special Issue Petroleum Exploration, Development and Transportation)
Show Figures

Figure 1

21 pages, 17766 KB  
Article
Contrastive Analysis of Deep-Water Sedimentary Architectures in Central West African Passive Margin Basins During Late-Stage Continental Drift
by Futao Qu, Xianzhi Gao, Lei Gong and Jinyin Yin
J. Mar. Sci. Eng. 2025, 13(8), 1533; https://doi.org/10.3390/jmse13081533 - 10 Aug 2025
Viewed by 571
Abstract
The Lower Congo Basin (LCB) and the Niger Delta Basin (NDB), two end-member deep-water systems along the West African passive margin, exhibit contrasting sedimentary architectures despite shared geodynamic settings. The research comprehensively utilizes seismic reflection structure, root mean square amplitude slices, drilling lithology, [...] Read more.
The Lower Congo Basin (LCB) and the Niger Delta Basin (NDB), two end-member deep-water systems along the West African passive margin, exhibit contrasting sedimentary architectures despite shared geodynamic settings. The research comprehensively utilizes seismic reflection structure, root mean square amplitude slices, drilling lithology, changes in logging curves, and previous research achievements to elucidate the controlling mechanisms behind these differences. Key findings include: (1) Stark depositional contrast: Since the Eocene, the LCB developed retrogradational narrow-shelf systems dominated by erosional channels and terminal lobes, whereas the NDB formed progradational broad-shelf complexes with fan lobes and delta-fed turbidites. (2) Primary controls: Diapir-driven topographic features and basement uplift govern architectural variability, whereas shelf-slope break configuration and oceanic relief constitute subordinate controls. (3) Novel mechanism: First quantification of how diapir-induced seafloor relief redirects sediment pathways and amplifies facies heterogeneity. These insights establish a tectono-sedimentary framework for predicting deep-water reservoirs in diapir-affected passive margins, refine the conventional “source-to-sink” model by emphasizing salt-geomorphic features coupling as the primary driver. By analyzing the differences in lithofacies assemblages and sedimentary configurations among the above-mentioned different basins, this study can provide beneficial insights for the research on related deep-water turbidity current systems and also offer guidance for deep-water oil and gas exploration and development in the West African region and other similar areas. Full article
Show Figures

Figure 1

20 pages, 1558 KB  
Review
Managing Japanese Encephalitis Virus as a Veterinary Infectious Disease Through Animal Surveillance and One Health Control Strategies
by Jae-Yeon Park and Hye-Mi Lee
Life 2025, 15(8), 1260; https://doi.org/10.3390/life15081260 - 7 Aug 2025
Viewed by 1351
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus that circulates primarily within animal populations and occasionally spills over to humans, causing severe neurological disease. While humans are terminal hosts, veterinary species such as pigs and birds play essential roles in viral amplification [...] Read more.
Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus that circulates primarily within animal populations and occasionally spills over to humans, causing severe neurological disease. While humans are terminal hosts, veterinary species such as pigs and birds play essential roles in viral amplification and maintenance, making JEV fundamentally a veterinary infectious disease with zoonotic potential. This review summarizes the current understanding of JEV transmission dynamics from a veterinary and ecological perspective, emphasizing the roles of amplifying hosts and animal surveillance in controlling viral circulation. Recent genotype shifts and viral evolution have raised concerns regarding vaccine effectiveness and regional emergence. National surveillance systems and animal-based monitoring strategies are examined for their predictive value in detecting outbreaks early. Veterinary and human vaccination strategies are also reviewed, highlighting the importance of integrated One Health approaches. Advances in modeling and climate-responsive surveillance further underscore the dynamic and evolving landscape of JEV transmission. By managing the infection in animal reservoirs, veterinary interventions form the foundation of sustainable zoonotic disease control. Full article
Show Figures

Figure 1

19 pages, 25227 KB  
Article
Sedimentary Model of Sublacustrine Fans in the Shahejie Formation, Nanpu Sag
by Zhen Wang, Zhihui Ma, Lingjian Meng, Rongchao Yang, Hongqi Yuan, Xuntao Yu, Chunbo He and Haiguang Wu
Appl. Sci. 2025, 15(15), 8674; https://doi.org/10.3390/app15158674 - 5 Aug 2025
Viewed by 397
Abstract
The Shahejie Formation in Nanpu Sag is a crucial region for deep-layer hydrocarbon exploration in the Bohai Bay Basin. To address the impact of faults on sublacustrine fan formation and spatial distribution within the study area, this study integrated well logging, laboratory analysis, [...] Read more.
The Shahejie Formation in Nanpu Sag is a crucial region for deep-layer hydrocarbon exploration in the Bohai Bay Basin. To address the impact of faults on sublacustrine fan formation and spatial distribution within the study area, this study integrated well logging, laboratory analysis, and 3D seismic data to systematically analyze sedimentary characteristics of sandbodies from the first member of the Shahejie Formation (Es1) sublacustrine fans, clarifying their planar and cross-sectional distributions. Further research indicates that Gaoliu Fault activity during Es1 deposition played a significant role in fan development through two mechanisms: (1) vertical displacement between hanging wall and footwall reshaped local paleogeomorphology; (2) tectonic stresses generated by fault movement affected slope stability, triggering gravitational mass transport processes that remobilized fan delta sediments into the central depression zone as sublacustrine fans through slumping and collapse mechanisms. Core observations reveal soft-sediment deformation features, including slump structures, flame structures, and shale rip-up clasts. Seismic profiles show lens-shaped geometries with thick centers thinning laterally, exhibiting lateral pinch-out terminations. Inverse fault-step architectures formed by underlying faults control sandbody distribution patterns, restricting primary deposition locations for sublacustrine fan development. The study demonstrates that sublacustrine fans in the study area are formed by gravity flow processes. A new model was established, illustrating the combined control of the Gaoliu Fault and reverse stepover faults on fan development. These findings provide valuable insights for gravity flow exploration and reservoir prediction in the Nanpu Sag, offering important implications for hydrocarbon exploration in similar lacustrine rift basins. Full article
Show Figures

Figure 1

21 pages, 18596 KB  
Article
Thermal Accumulation Mechanisms of Deep Geothermal Reservoirs in the Moxi Area, Sichuan Basin, SW China: Evidence from Temperature Measurements and Structural Characteristics
by Wenbo Yang, Weiqi Luo, Simian Yang, Wei Zheng, Luquan Zhang, Fang Lai, Shuang Yang and Zhongquan Li
Energies 2025, 18(15), 3901; https://doi.org/10.3390/en18153901 - 22 Jul 2025
Viewed by 464
Abstract
The Moxi area in the Sichuan Basin hosts abundant deep geothermal resources, but their thermal regime and accumulation mechanisms remain poorly understood. Using 2D/3D seismic data, drilling records, and temperature measurements (DST), we analyze deep thermal fields, reservoir–caprock systems, and structural features. The [...] Read more.
The Moxi area in the Sichuan Basin hosts abundant deep geothermal resources, but their thermal regime and accumulation mechanisms remain poorly understood. Using 2D/3D seismic data, drilling records, and temperature measurements (DST), we analyze deep thermal fields, reservoir–caprock systems, and structural features. The following are our key findings: (1) Heat transfer is conduction-dominated, with thermal anomalies in Late Permian–Early Cambrian strata. Four mudstone/shale caprocks and three carbonate reservoirs occur, with the Longtan Formation as the key seal. Reservoir geothermal gradients (25.05–32.55 °C/km) exceed basin averages. (2) Transtensional strike-slip faults form E-W/NE/NW networks; most terminate at the Permian Longtan Formation, with few extending into the Lower Triassic while penetrating the Archean–Lower Proterozoic basement. (3) Structural highs positively correlate with higher geothermal gradients. (4) The deep geothermal reservoirs and thermal accumulation mechanisms in the Moxi area are jointly controlled by crustal thinning, basement uplift, and structural architecture. Mantle-derived heat converges at basement uplift cores, generating localized thermal anomalies. Fault networks connect these deep heat sources, facilitating upward fluid migration. Thick Longtan Formation shale seals these rising thermal fluids, causing anomalous heating in underlying strata and concentrated thermal accumulation in reservoirs—enhanced by thermal focusing effects from uplift structures. This study establishes a theoretical framework for target selection and industrial-scale geothermal exploitation in sedimentary basins, highlighting the potential for repurposing oil/gas infrastructure. Full article
Show Figures

Figure 1

22 pages, 498 KB  
Review
The XEC Variant: Genomic Evolution, Immune Evasion, and Public Health Implications
by Alaa A. A. Aljabali, Kenneth Lundstrom, Altijana Hromić-Jahjefendić, Nawal Abd El-Baky, Debaleena Nawn, Sk. Sarif Hassan, Alberto Rubio-Casillas, Elrashdy M. Redwan and Vladimir N. Uversky
Viruses 2025, 17(7), 985; https://doi.org/10.3390/v17070985 - 15 Jul 2025
Cited by 2 | Viewed by 1494
Abstract
Narrative review synthesizes the most current literature on the SARS-CoV-2 XEC variant, focusing on its genomic evolution, immune evasion characteristics, epidemiological dynamics, and public health implications. To achieve this, we conducted a structured search of the literature of peer-reviewed articles, preprints, and official [...] Read more.
Narrative review synthesizes the most current literature on the SARS-CoV-2 XEC variant, focusing on its genomic evolution, immune evasion characteristics, epidemiological dynamics, and public health implications. To achieve this, we conducted a structured search of the literature of peer-reviewed articles, preprints, and official surveillance data from 2023 to early 2025, prioritizing virological, clinical, and immunological reports related to XEC and its parent lineages. Defined by the distinctive spike protein mutations, T22N and Q493E, XEC exhibits modest reductions in neutralization in vitro, although current evidence suggests that mRNA booster vaccines, including those targeting JN.1 and KP.2, retain cross-protective efficacy against symptomatic and severe disease. The XEC strain of SARS-CoV-2 has drawn particular attention due to its increasing prevalence in multiple regions and its potential to displace other Omicron subvariants, although direct evidence of enhanced replicative fitness is currently lacking. Preliminary analyses also indicated that glycosylation changes at the N-terminal domain enhance infectivity and immunological evasion, which is expected to underpin the increasing prevalence of XEC. The XEC variant, while still emerging, is marked by a unique recombination pattern and a set of spike protein mutations (T22N and Q493E) that collectively demonstrate increased immune evasion potential and epidemiological expansion across Europe and North America. Current evidence does not conclusively associate XEC with greater disease severity, although additional research is required to determine its clinical relevance. Key knowledge gaps include the precise role of recombination events in XEC evolution and the duration of cross-protective T-cell responses. New research priorities include genomic surveillance in undersampled regions, updated vaccine formulations against novel spike epitopes, and long-term longitudinal studies to monitor post-acute sequelae. These efforts can be augmented by computational modeling and the One Health approach, which combines human and veterinary sciences. Recent computational findings (GISAID, 2024) point to the potential of XEC for further mutations in under-surveilled reservoirs, enhancing containment challenges and risks. Addressing the potential risks associated with the XEC variant is expected to benefit from interdisciplinary coordination, particularly in regions where genomic surveillance indicates a measurable increase in prevalence. Full article
(This article belongs to the Special Issue Translational Research in Virology)
Show Figures

Figure 1

12 pages, 1497 KB  
Article
Deriving Implicit Optimal Operation Rules for Reservoirs Based on TgLSTM
by Ran He, Wenhao Jia and Zhengzhe Qian
Water 2025, 17(14), 2059; https://doi.org/10.3390/w17142059 - 10 Jul 2025
Viewed by 429
Abstract
With the continuous improvement of reservoir projects and the advancement of digital twin basin initiatives in China, rapidly and accurately generating long-term practical reservoir operation schedules has become a key priority for stakeholders. This study proposes a Theory-guided Long Short-Term Memory (TgLSTM) model [...] Read more.
With the continuous improvement of reservoir projects and the advancement of digital twin basin initiatives in China, rapidly and accurately generating long-term practical reservoir operation schedules has become a key priority for stakeholders. This study proposes a Theory-guided Long Short-Term Memory (TgLSTM) model to extract optimal reservoir operation rules accurately and reliably. Concretely, TgLSTM integrates data-fitting accuracy with the physical constraints of an operation, e.g., water level constraints and minimal discharge constraints, to address the low credibility often observed in conventional LSTM networks. Using the Three Gorges Reservoir during the dry season as a case study, a multi-year hydrological series optimized by particle swarm optimization (PSO) was used to train the TgLSTM network and derive optimized operation rules. Results show that TgLSTM efficiently generates operation schemes close to the theoretical optimum, achieving power generations of 4.27 × 1010 kW·h and 4.19 × 1010 kW·h in two test years, with deviations of only 4.20% and 2.33%, respectively. Compared to traditional LSTM models, TgLSTM is more reliable as it captures key operational characteristics such as terminal water levels and water level fluctuations, maintaining an average ten-day drawdown depth below 1.5 m—significantly lower than the 7 m fluctuations observed with conventional LSTM. Furthermore, comparative analyses against SwR, BP–ANN, and SVM confirm that TgLSTM offers a moderate performance in absolute metrics but is the best to simulate the constrained reservoir operation. Full article
Show Figures

Figure 1

20 pages, 941 KB  
Review
HIV-1 Tat: Molecular Switch in Viral Persistence and Emerging Technologies for Functional Cure
by Kaixin Yu, Hanxin Liu and Ting Pan
Int. J. Mol. Sci. 2025, 26(13), 6311; https://doi.org/10.3390/ijms26136311 - 30 Jun 2025
Cited by 1 | Viewed by 1253
Abstract
HIV-1 Tat acts as a central molecular switch governing the transition between viral latency and active replication, making it a pivotal target for HIV-1 functional cure strategies. By binding to the viral long terminal repeat (LTR) and hijacking host transcriptional machinery, Tat dynamically [...] Read more.
HIV-1 Tat acts as a central molecular switch governing the transition between viral latency and active replication, making it a pivotal target for HIV-1 functional cure strategies. By binding to the viral long terminal repeat (LTR) and hijacking host transcriptional machinery, Tat dynamically regulates RNA polymerase II processivity to alter viral transcription states. Recent studies reveal its context-dependent variability: while Tat recruits chromatin modifiers and scaffolds non-coding RNAs to stabilize epigenetic silencing in latently infected cells, it also triggers rapid transcriptional amplification upon cellular activation. This review systematically analyzes the bistable regulatory mechanism of Tat and investigates advanced technologies for reprogramming this switch to eliminateviral reservoirs and achieve functional cures. Conventional approaches targeting Tat are limited by compensatory viral evolution and poor bioavailability. Next-generation interventions will employ precision-engineered tools, such as AI-optimized small molecules blocking Tat-P-TEFb interfaces and CRISPR-dCas9/Tat chimeric systems, for locus-specific LTR silencing or reactivation (“block and lock” or “shock and kill”). Advanced delivery platforms, including brain-penetrant lipid nanoparticles (LNPs), enable the targeted delivery of Tat-editing mRNA or base editors to microglial reservoirs. Single-cell multiomics elucidates Tat-mediated clonal heterogeneity, identifying “switchable” subpopulations for timed interventions. By integrating systems-level Tat interactomics, epigenetic engineering, and spatiotemporally controlled delivery, this review proposes a roadmap to disrupt HIV-1 persistence by hijacking the Tat switch, ultimately bridging mechanistic insights to clinical applications. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

21 pages, 4282 KB  
Article
Stability Assessment of Hazardous Rock Masses and Rockfall Trajectory Prediction Using LiDAR Point Clouds
by Rao Zhu, Yonghua Xia, Shucai Zhang and Yingke Wang
Appl. Sci. 2025, 15(12), 6709; https://doi.org/10.3390/app15126709 - 15 Jun 2025
Viewed by 678
Abstract
This study aims to mitigate slope-collapse hazards that threaten life and property at the Lujiawan resettlement site in Wanbi Town, Dayao County, Yunnan Province, within the Guanyinyan hydropower reservoir. It integrates centimeter-level point-cloud data collected by a DJI Matrice 350 RTK equipped with [...] Read more.
This study aims to mitigate slope-collapse hazards that threaten life and property at the Lujiawan resettlement site in Wanbi Town, Dayao County, Yunnan Province, within the Guanyinyan hydropower reservoir. It integrates centimeter-level point-cloud data collected by a DJI Matrice 350 RTK equipped with a Zenmuse L2 airborne LiDAR (Light Detection And Ranging) sensor with detailed structural-joint survey data. First, qualitative structural interpretation is conducted with stereographic projection. Next, safety factors are quantified using the limit-equilibrium method, establishing a dual qualitative–quantitative diagnostic framework. This framework delineates six hazardous rock zones (WY1–WY6), dominated by toppling and free-fall failure modes, and evaluates their stability under combined rainfall infiltration, seismic loading, and ambient conditions. Subsequently, six-degree-of-freedom Monte Carlo simulations incorporating realistic three-dimensional terrain and block geometry are performed in RAMMS::ROCKFALL (Rapid Mass Movements Simulation—Rockfall). The resulting spatial patterns of rockfall velocity, kinetic energy, and rebound height elucidate their evolution coupled with slope height, surface morphology, and block shape. Results show peak velocities ranging from 20 to 42 m s−1 and maximum kinetic energies between 0.16 and 1.4 MJ. Most rockfall trajectories terminate within 0–80 m of the cliff base. All six identified hazardous rock masses pose varying levels of threat to residential structures at the slope foot, highlighting substantial spatial variability in hazard distribution. Drawing on the preceding diagnostic results and dynamic simulations, we recommend a three-tier “zonal defense with in situ energy dissipation” scheme: (i) install 500–2000 kJ flexible barriers along the crest and upper slope to rapidly attenuate rockfall energy; (ii) place guiding or deflection structures at mid-slope to steer blocks and dissipate momentum; and (iii) deploy high-capacity flexible nets combined with a catchment basin at the slope foot to intercept residual blocks. This staged arrangement maximizes energy attenuation and overall risk reduction. This study shows that integrating high-resolution 3D point clouds with rigid-body contact dynamics overcomes the spatial discontinuities of conventional surveys. The approach substantially improves the accuracy and efficiency of hazardous rock stability assessments and rockfall trajectory predictions, offering a quantifiable, reproducible mitigation framework for long slopes, large rock volumes, and densely fractured cliff faces. Full article
(This article belongs to the Special Issue Emerging Trends in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

14 pages, 2648 KB  
Review
CSN-CRL Complexes: New Regulators of Adipogenesis
by Dawadschargal Dubiel, Michael Naumann and Wolfgang Dubiel
Biomolecules 2025, 15(3), 372; https://doi.org/10.3390/biom15030372 - 5 Mar 2025
Cited by 1 | Viewed by 1256
Abstract
Recent discoveries revealed mechanistic insights into the control of adipogenesis by the Constitutive Photomorphogenesis 9 Signalosome (CSN) and its variants, CSNCSN7A and CSNCSN7B, which differ in the paralog subunits, CSN7A and CSN7B. CSNCSN7A and CSNCSN7B variants form permanent [...] Read more.
Recent discoveries revealed mechanistic insights into the control of adipogenesis by the Constitutive Photomorphogenesis 9 Signalosome (CSN) and its variants, CSNCSN7A and CSNCSN7B, which differ in the paralog subunits, CSN7A and CSN7B. CSNCSN7A and CSNCSN7B variants form permanent complexes with cullin-RING-ubiquitin ligases 3 and 4A (CRL3 and CRL4A), respectively. These complexes can be found in most eukaryotic cells and represent a critical reservoir for cellular functions. In an early stage of adipogenesis, mitotic clonal expansion (MCE), CSN-CRL1, and CSNCSN7B-CRL4A are blocked to ubiquitinate the cell cycle inhibitor p27KIP, leading to cell cycle arrest. In addition, in MCE CSN-CRL complexes rearrange the cytoskeleton for adipogenic differentiation and CRL3KEAP1 ubiquitylates the inhibitor of adipogenesis C/EBP homologous protein (CHOP) for degradation by the 26S proteasome, an adipogenesis-specific proteolysis. During terminal adipocyte differentiation, the CSNCSN7A-CRL3 complex is recruited to a lipid droplet (LD) membrane by RAB18. Currently, the configuration of the substrate receptors of CSNCSN7A-CRL3 on LDs is unclear. CSNCSN7A-CRL3 is activated by neddylation on the LD membrane, an essential adipogenic step. Damage to CSN/CUL3/CUL4A genes is associated with diverse diseases, including obesity. Due to the tremendous impact of CSN-CRLs on adipogenesis, we need strategies for adequate treatment in the event of malfunctions. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 22287 KB  
Article
Deciphering Planktonic Bacterial Community Assembly in the Storage Reservoir of the Long-Distance Water Diversion Project
by Yingying Yang, Liguo Chen, Nianxin Wan, Ailing Xu, Ning Ding and Zhiwen Song
Microorganisms 2025, 13(2), 465; https://doi.org/10.3390/microorganisms13020465 - 19 Feb 2025
Cited by 1 | Viewed by 638
Abstract
Storage reservoirs are crucial components of long-distance water diversion projects, where water diversion may lead to changes in microbial diversity and community structure. Seasonal variations also drive alterations in microbial communities. However, the way that microbes assemble under the combined effects of water [...] Read more.
Storage reservoirs are crucial components of long-distance water diversion projects, where water diversion may lead to changes in microbial diversity and community structure. Seasonal variations also drive alterations in microbial communities. However, the way that microbes assemble under the combined effects of water diversion and seasonal variations in the storage reservoir has not been extensively studied. Jihongtan Reservoir is the terminal storage reservoir of the Yellow River to Qingdao Water Diversion Project (YQWD), which had an average annual water diversion period exceeding 290 days in recent years. In this study, 16S rDNA amplicon sequencing was used to investigate the seasonal dynamics and assembly of planktonic bacterial communities during the water diversion period in Jihongtan Reservoir. The results indicate that planktonic bacteria were able to maintain stable diversity across all four seasons, while the community structure underwent significant seasonal succession. Water temperature (WT) was found to be the primary driving environmental factor influencing the seasonal dynamic of planktonic bacterial communities. Co-occurrence network patterns of planktonic bacterial communities varied across different seasons, particularly in spring and winter. The spring network displayed the most complexity, showcasing the highest connectivity and greater stability. In contrast, the winter network was simpler, exhibiting lower local connectivity but higher global connectivity and lower stability. The analysis of the neutral community model and null model revealed that the relative importance of deterministic and stochastic processes in governing planktonic bacterial community assembly varies seasonally. Stochastic processes (dispersal limitation) are more prominent in spring, summer, and autumn, while deterministic processes (heterogeneous selection) play a greater role in winter. This study is essential for gaining a comprehensive understanding of the effects of water diversion projects and offers valuable references for the assessment of other similar projects. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

13 pages, 2616 KB  
Article
Ecological Traits of Three Species of Xiphydria Woodwasps from Japan: Host Tree Species and Eggs, Symbiotic Fungi, and Mucus in Their Bodies
by Ryu Takagi and Hisashi Kajimura
Forests 2025, 16(2), 264; https://doi.org/10.3390/f16020264 - 1 Feb 2025
Cited by 2 | Viewed by 1187
Abstract
Woodwasps (Siricidae and Xiphydriidae) inhabit living, weakened, or freshly dead trees and their larvae feed on sapwood. Siricidae have been intensively researched for pest management. In contrast, the ecology of Xiphydriidae remains largely unknown. In the present study, we collected xiphydriid woodwasp adults [...] Read more.
Woodwasps (Siricidae and Xiphydriidae) inhabit living, weakened, or freshly dead trees and their larvae feed on sapwood. Siricidae have been intensively researched for pest management. In contrast, the ecology of Xiphydriidae remains largely unknown. In the present study, we collected xiphydriid woodwasp adults and dissected female adults to elucidate the cornerstone ecology of this family and compared these findings with those of siricid woodwasps. The findings provide new host records for these species and indicate that their host ranges span multiple families. Notably, all Xiphydria species had female-biased sex ratios. All adult females had gourd-shaped eggs, similar to those found in gall wasps (Cynipidae), which contrast with the oval-shaped eggs of Siricidae. Slit-like mycangia were located at the base of the ovipositor, with pairs of fungal masses composed of hyphal fragments or spores directly positioned below the seventh sternum, differing structurally from the pouch-like mycangia in Siricidae. Mucus reservoirs and secretory glands were found in the terminal abdominal segments, similar to Siricidae. Mucus in X. annulitibia and X. ogasawarai was colorless and transparent, as reported in Siricidae, whereas X. eborata exhibited deep wine-red mucus, which is the world’s first discovery in all dissected species of Siricidae and Xiphydriidae. Full article
(This article belongs to the Special Issue Biodiversity and Ecology of Organisms Associated with Woody Plants)
Show Figures

Figure 1

32 pages, 13107 KB  
Article
Terminal Fan Deposition and Diagenetic Control in the Lower Paleogene of the Shahejie Formation, Bonan Sag, Bohai Basin, China: Insights into Reservoir Quality
by Arthur Paterne Mioumnde, Liqiang Zhang, Yiming Yan, Jonathan Atuquaye Quaye, Kevin Mba Zebaze, Victor Sedziafa, Carole Laouna Bapowa, Zeeshan Zafar and Shahab Aman e Room
Minerals 2025, 15(2), 99; https://doi.org/10.3390/min15020099 - 21 Jan 2025
Viewed by 1021
Abstract
In the Bonan area, the lower fourth member of the Shahejie Formation (Es4x) is buried beneath a sedimentary pile ranging from 2500 to 5000 m. Understanding the impact of diagenetic alterations on these deeply buried reservoirs is crucial for effective hydrocarbon exploration and [...] Read more.
In the Bonan area, the lower fourth member of the Shahejie Formation (Es4x) is buried beneath a sedimentary pile ranging from 2500 to 5000 m. Understanding the impact of diagenetic alterations on these deeply buried reservoirs is crucial for effective hydrocarbon exploration and production. This study employs a terminal fan sedimentation model, encompassing depositional environments such as feeder channels, distributary channels, floodplains, and basinal zones, to provide insights into the spatial distribution of reservoir properties and their influence on the localization of optimal reservoirs within the sag. The analysis integrates diagenetic facies with well log responses, subsurface porosity trends, and permeability variations across the formation. The petrographic analysis indicates that the sandstone is composed primarily of litharenite, feldspathic litharenite, lithic arkose, and minor amounts of arkose. The dominant clay cement is illite, accompanied by mixed-layer smectite/illite, chlorite, and kaolinite. Thin section observations reveal secondary porosity formed through the dissolution of quartz grains, volcanic rock fragments, and feldspar, along with their associated cements. These sandstones exhibit relatively good sorting, with average porosity and air permeability values of 14.01% and 12.73 mD, respectively. Diagenetic alterations are categorized into three processes: porosity destruction, preservation, and generation. Key diagenetic mechanisms include compaction, cementation, replacement, and dissolution, with compaction exerting the most significant control on reservoir porosity reduction. Statistical analysis indicates that the average porosity loss due to compaction is approximately 13.3%, accounting for about 38% of the original porosity. The detrital rock cement predominantly comprises quartz (42%), feldspar (32%), clay minerals (14%), and carbonate (12%). Under the prevailing depositional conditions, porosity is enhanced by dissolution and fracturing, while late-stage diagenetic cementation by clay and carbonate minerals—excluding chlorite—adversely affects reservoir quality. Consequently, the distributary zone is identified as the primary target for exploration. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

Back to TopTop