Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (698)

Search Parameters:
Keywords = thermal–solar system design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 960 KB  
Article
Evaluation of a Hybrid Solar–Combined Heat and Power System for Off-Grid Winter Energy Supply
by Eduard Enasel and Gheorghe Dumitrascu
Solar 2025, 5(3), 41; https://doi.org/10.3390/solar5030041 (registering DOI) - 1 Sep 2025
Abstract
The study investigates a hybrid energy system integrating photovoltaic (PV) panels, micro-CHP units, battery storage, and thermal storage to meet the winter energy demands of a residential building in Bacău, Romania. Using real-world experimental data from amorphous, polycrystalline, and monocrystalline PV panels, C++ [...] Read more.
The study investigates a hybrid energy system integrating photovoltaic (PV) panels, micro-CHP units, battery storage, and thermal storage to meet the winter energy demands of a residential building in Bacău, Romania. Using real-world experimental data from amorphous, polycrystalline, and monocrystalline PV panels, C++ Model 1 simulates building energy needs and PV system performance under varying irradiance levels. The results show that PV systems alone cannot meet the total winter demand, with polycrystalline slightly outperforming monocrystalline, yet still falling short. A second computational model (C++ Model 2) simulates hybrid energy flow, demonstrating how the CHP unit and storage systems can ensure off-grid autonomy. The model dynamically manages energy between components based on daily irradiance scenarios. The findings reveal critical thresholds for PV surplus, optimal CHP sizing, and realistic battery and thermal storage needs. This paper provides a practical framework for designing efficient, data-driven hybrid solar–CHP systems for cold climates. The novelty lies in the integration of real-world PV efficiency data with a dynamic irradiance-driven simulation framework, enabling precise hybrid system sizing for winter-dominant regions. Full article
Show Figures

Figure 1

28 pages, 7342 KB  
Article
Numerical Analysis of Flow-Induced Resonance in Pilot-Operated Molten Salt Control Valves
by Shuxun Li, Yu Zhao, Jianzheng Zhang, Linxia Yang and Xinhao Liu
Energies 2025, 18(17), 4631; https://doi.org/10.3390/en18174631 (registering DOI) - 31 Aug 2025
Abstract
To address the problem of flow-induced resonance in the valve core assembly of a pilot-operated molten salt regulating valve in a concentrated solar thermal power generation molten salt energy storage system under high pressure differential and high flow rate conditions, the flow-induced vibration [...] Read more.
To address the problem of flow-induced resonance in the valve core assembly of a pilot-operated molten salt regulating valve in a concentrated solar thermal power generation molten salt energy storage system under high pressure differential and high flow rate conditions, the flow-induced vibration characteristics of the pilot-operated molten salt regulating valve were analyzed using computational fluid dynamics (CFD) and fluid–structure interaction modal analysis. The vibration characteristics of the valve core assembly under the excitation force of the molten salt medium were analyzed using the harmonic response method, and the influence of different parameters on the valve core assembly’s vibration characteristics was studied. The results show that under typical operating openings, the first six modal frequencies of the valve core motion assembly are not close to the fluid excitation frequency, indicating that flow-induced resonance does not occur. The maximum vibration stress and displacement of the valve core assembly decrease with increasing damping ratio. With increasing pressure differential, the maximum stress and maximum amplitude of the valve core assembly increase. By changing the valve stem constraint conditions, the vibration stress of the valve core assembly can be reduced. This study provides a reference for the design of flow-induced vibration suppression for pilot-operated molten salt regulating valves and provides guidance for the safe operation of concentrated solar thermal power generation molten salt regulating valves under high pressure differential and high flow rate conditions. Full article
Show Figures

Figure 1

32 pages, 8958 KB  
Review
An Overview of Natural Cooling and Ventilation in Vernacular Architectures
by Amineddin Salimi, Ayşegül Yurtyapan, Mahmoud Ouria, Zihni Turkan and Nuran K. Pilehvarian
Wind 2025, 5(3), 21; https://doi.org/10.3390/wind5030021 - 29 Aug 2025
Viewed by 106
Abstract
Natural cooling and ventilation have been fundamental principles in vernacular architecture for millennia, shaping sustainable building practices across diverse climatic regions. This paper examines the historical evolution, technological advancements, environmental benefits, and prospects of passive cooling strategies, with a particular focus on wind [...] Read more.
Natural cooling and ventilation have been fundamental principles in vernacular architecture for millennia, shaping sustainable building practices across diverse climatic regions. This paper examines the historical evolution, technological advancements, environmental benefits, and prospects of passive cooling strategies, with a particular focus on wind catchers. Originating in Mesopotamian, Egyptian, Caucasia, and Iranian architectural traditions, these structures have adapted over centuries to maximize air circulation, thermal regulation, and humidity control, ensuring comfortable indoor environments without reliance on mechanical ventilation. This study analyzes traditional wind catcher designs, highlighting their geometric configurations, airflow optimization, and integration with architectural elements such as courtyards and solar chimneys. Through a comparative assessment, this paper contrasts passive cooling systems with modern HVAC technologies, emphasizing their energy neutrality, low-carbon footprint, and long-term sustainability benefits. A SWOT analysis evaluates their strengths, limitations, opportunities for technological integration, and challenges posed by urbanization and regulatory constraints. This study adopts a comparative analytical method, integrating a literature-based approach with qualitative assessments and a SWOT analysis framework to evaluate passive cooling strategies against modern HVAC systems. Methodologically, the research combines historical review, typological classification, and sustainability-driven performance comparisons to derive actionable insights for climate-responsive design. The research is grounded in a comparative assessment of traditional and modern cooling strategies, supported by typological analysis and evaluative frameworks. Looking toward the future, the research explores hybrid adaptations incorporating solar energy, AI-driven airflow control, and retrofitting strategies for smart cities, reinforcing the enduring relevance of vernacular cooling techniques in contemporary architecture. By bridging historical knowledge with innovative solutions, this paper contributes to ongoing discussions on climate-responsive urban planning and sustainable architectural development. Full article
Show Figures

Figure 1

36 pages, 14469 KB  
Article
Multi-Objective Optimization Design Based on Prototype High-Rise Office Buildings: A Case Study in Shandong, China
by Hangyue Zhang and Zhi Zhuang
Buildings 2025, 15(17), 3071; https://doi.org/10.3390/buildings15173071 - 27 Aug 2025
Viewed by 186
Abstract
Urbanization in China and the proliferation of high-rise office buildings have led to increased demand for daylighting and thermal comfort. These requirements often result in reliance on active systems, including heating, cooling, and artificial lighting, which increase energy consumption. Existing studies have often [...] Read more.
Urbanization in China and the proliferation of high-rise office buildings have led to increased demand for daylighting and thermal comfort. These requirements often result in reliance on active systems, including heating, cooling, and artificial lighting, which increase energy consumption. Existing studies have often focused on individual cases or room-scale models, which makes it difficult to generalize findings to the design of various high-rise office building types. Therefore, in this study, parametric prototype building models for high-rise office buildings were developed based on surveys of completed and under-construction projects. These surveys reflected actual design practices and were used to support systematic performance evaluation and typology-level optimization. Building performance was simulated using Grasshopper and Honeybee to generate large-scale datasets, and stacking ensemble learning models were used as surrogate predictors for energy use, daylighting, and thermal comfort. Multi-objective optimization was conducted using the non-dominated sorting genetic algorithm III (NSGA-III), followed by strategy formulation. The results revealed the following: (1) the proposed prototype model establishes clear parameter ranges for geometry, envelope design, and thermal performance, offering reusable models and data; (2) the stacking ensemble model outperforms individual models, improving the coefficient of determination (R2) by 0.5–16.1%, with mean squared error (MSE) reductions of 4.4–70.6%, and mean absolute error (MAE) reductions of 2.8–45.8%; (3) space length, aspect ratio, usable area ratio, window U-value, and solar heat gain coefficient (SHGC) were identified as primary performance drivers; and (4) optimized solutions reduced energy use by 3.79–11.81% and enhanced daylighting comfort by 40.16–50.32% while maintaining thermal comfort. The proposed framework provides localized, data-driven guidance for early-stage performance optimization in high-rise office building design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

42 pages, 863 KB  
Review
Self-Sustaining Operations with Energy Harvesting Systems
by Peter Sevcik, Jan Sumsky, Tomas Baca and Andrej Tupy
Energies 2025, 18(17), 4467; https://doi.org/10.3390/en18174467 - 22 Aug 2025
Viewed by 538
Abstract
Energy harvesting (EH) is a rapidly evolving domain that is primarily focused on capturing and converting ambient energy sources into more convenient and usable forms. These sources, which range from traditional renewable sources such as solar or wind power to thermal gradients and [...] Read more.
Energy harvesting (EH) is a rapidly evolving domain that is primarily focused on capturing and converting ambient energy sources into more convenient and usable forms. These sources, which range from traditional renewable sources such as solar or wind power to thermal gradients and vibrations, present an alternative to typical power generation. The temptation to use energy harvesting systems is in their potential to power low-power devices, such as environment monitoring devices, without relying on conventional power grids or standard battery implementations. This improves the sustainability and self-sufficiency of IoT devices and reduces the environmental impact of conventional power systems. Applications of EH include wearable health monitors, wireless sensor networks, and remote structural sensors, where frequent battery replacement is impractical. However, these systems also face challenges such as intermittent energy availability, limited storage capacity, and low power density, which require innovative design approaches and efficient energy management. The paper provides a general overview of the subsystems present in the energy harvesting systems and a comprehensive overview of the energy transducer technologies used in energy harvesting systems. Full article
Show Figures

Figure 1

20 pages, 10047 KB  
Article
Thermal Environment for Lunar Orbiting Spacecraft Based on Non-Uniform Planetary Infrared Radiation Model
by Xinqi Li, Liying Tan, Jing Ma and Xuemin Qian
Aerospace 2025, 12(8), 737; https://doi.org/10.3390/aerospace12080737 - 19 Aug 2025
Viewed by 230
Abstract
Accurate computation of external heat flux is critical for spacecraft thermal analysis and thermal control system design. The traditional method, which adopted the uniform planetary infrared radiation model (UPIRM), is inadequate for lunar orbital missions due to the extreme planetary surface temperature variations. [...] Read more.
Accurate computation of external heat flux is critical for spacecraft thermal analysis and thermal control system design. The traditional method, which adopted the uniform planetary infrared radiation model (UPIRM), is inadequate for lunar orbital missions due to the extreme planetary surface temperature variations. This study proposes an external heat flux calculation method for lunar orbits by integrating a non-uniform lunar surface temperature model derived from Lunar Reconnaissance Orbiter (LRO) Diviner radiometric data. Specifically, the lunar surface temperature data were first fitted as functions of latitude (ψ) and position angles (ζ) through data regression analysis. Then, a comprehensive mathematical framework is established to analyze solar radiation, lunar albedo, and lunar infrared radiation components, incorporating orbital parameters such as beta angle (β), orbital inclination (i) and so on. Coordinate transformations and numerical integration techniques are employed to evaluate heat flux distributions across cuboidal orbiter surfaces. It is found that the lunar infrared radiation heat flux manifests pronounced fluctuation, peaking at 1023 W/m2 near the lunar noon region while plummeting to 20 W/m2 near the midnight region under the orbital parameters investigated in this study. This study demonstrates the essential role of the non-uniform planetary infrared radiation model (NUPIRM) in enhancing prediction accuracy by contrast, offering foundational references for thermal management in future lunar and deep-space exploration spacecraft. Full article
(This article belongs to the Special Issue Aerospace Human–Machine and Environmental Control Engineering)
Show Figures

Figure 1

30 pages, 7565 KB  
Article
Dynamic Optimization and Performance Analysis of Solar Thermal Storage Systems for Intermittent Heating in High-Altitude Cold Regions
by Xiaojia Hu, Pu Bai, Ying Wang and Menghua Du
Buildings 2025, 15(16), 2908; https://doi.org/10.3390/buildings15162908 - 17 Aug 2025
Viewed by 358
Abstract
Solar thermal technology is an important component of low-carbon energy systems, but its application potential is constrained by two key factors: the inherent limits of energy flux density and the temporal mismatch between supply and demand. This study examined efficiency losses in building [...] Read more.
Solar thermal technology is an important component of low-carbon energy systems, but its application potential is constrained by two key factors: the inherent limits of energy flux density and the temporal mismatch between supply and demand. This study examined efficiency losses in building heating systems in Northwest China caused by the mismatch between supply and demand in intermittent solar thermal storage systems. Three typical building heating models (Day–Night Intermittent Mode, Day–Night + Monthly Intermittent Mode, and Composite Intermittent Mode (Day–Night + Weekly + Monthly)) were constructed through SketchUp, integrating the Transient System Simulation Tool (TRNSYS) with improved calculation methods in an innovative way. The study first examined regional energy consumption patterns and the temporal characteristics of building occupancy and then proposed a collaborative optimization framework for thermal collection and storage, focused on improving the dynamic matching algorithm of the thermal collection area ratio and the tank volume ratio and establishing a tank capacity calculation model that considers the time-varying characteristics of heat demand and fluctuations in thermal collection efficiency during the intermittent heating cycle. The results show that compared with continuous operation, the intermittent strategy reduces the annual cumulative heat load by 13–33%, among which the Day–Night Intermittent Mode shows the daily peak load reaches 1.8 times the normal value during restart, while the daily fluctuation amplitude of the Day–Night + Monthly Intermittent Mode decreases by 42%. The corresponding solar energy guarantee rate reaches 86–88%, and the heat storage loss is reduced by 19–27%. The time-varying coupling design method established in this study provides an optimization path that takes into account both system efficiency and economy for intermittent heating scenarios. The proposed dynamic capacity configuration criterion has universal guiding value for the design of solar district heating systems. Full article
Show Figures

Figure 1

31 pages, 946 KB  
Article
Performance Analysis of a Floating Seawater Desalination Structure Based on Heat Pipes
by Juan J. Vallejo Tejero, María Martínez Gómez, Francisco J. Muñoz Gutiérrez and Alejandro Rodríguez Gómez
Inventions 2025, 10(4), 72; https://doi.org/10.3390/inventions10040072 - 14 Aug 2025
Viewed by 326
Abstract
This study presents a comprehensive numerical simulation and thermal performance analysis of a novel modular floating solar still system, featuring integrated heat-pipe vacuum tube collectors, designed for seawater desalination. This innovative system—subject of International Patent Application WO 2023/062261 A1—not only aims to enhance [...] Read more.
This study presents a comprehensive numerical simulation and thermal performance analysis of a novel modular floating solar still system, featuring integrated heat-pipe vacuum tube collectors, designed for seawater desalination. This innovative system—subject of International Patent Application WO 2023/062261 A1—not only aims to enhance efficiency and scalability beyond traditional solar stills, but also addresses the significant environmental challenge of concentrated brine discharge inherent in conventional desalination methods. The study evolved from an initial theoretical model to a rigorous dynamic thermal model, validated using real hourly meteorological data from Málaga, Andalusia, Spain. This modelling approach was developed to quantify heat transfer mechanisms and accurately predict system performance. The refined hourly simulation forecasts an annual freshwater production of approximately 174 L per unit. Notably, a preliminary economic assessment estimates the Cost of Produced Water per Litre (CPL) at 0.7509 EUR/litre, establishing a valuable baseline for future optimisation. These findings underscore the critical importance of dynamic hourly simulations for realistic performance prediction and validate the technical and preliminary economic feasibility of this novel approach. The system’s projected output, modular floating design, and significant environmental advantages position it as a promising and sustainable solution for freshwater production, particularly in coastal regions and sensitive marine ecosystems. This work provides a solid foundation for future experimental validation, cost optimisation, and scalable implementation of renewable energy-driven desalination. Full article
Show Figures

Figure 1

39 pages, 854 KB  
Article
A Hybrid MCDM Approach to Optimize Molten Salt Selection for Off-Grid CSP Systems
by Ghazi M. Magableh, Mahmoud Z. Mistarihi and Saba Abu Dalu
Energies 2025, 18(16), 4323; https://doi.org/10.3390/en18164323 - 14 Aug 2025
Viewed by 419
Abstract
Transitioning to sustainable energy systems demands the creation of innovative methods that deliver dependable and effective renewable energy technologies. CSP systems that integrate parabolic trough designs with thermal energy storage (TES) systems provide essential solutions to overcome energy intermittency challenges. Molten salts serve [...] Read more.
Transitioning to sustainable energy systems demands the creation of innovative methods that deliver dependable and effective renewable energy technologies. CSP systems that integrate parabolic trough designs with thermal energy storage (TES) systems provide essential solutions to overcome energy intermittency challenges. Molten salts serve dual functions as heat transfer fluids (HTFs) and thermal energy storage (TES) media, making them critical to CSP system performance improvements. The study introduces a hybrid MCDM framework that combines the CRITIC method for objective weighting with the SWARA approach for expert-adjusted weighting and utilizes an enhanced Lexicographic Goal Programming to evaluate molten salt options for off-grid parabolic trough systems. The evaluation process considered melting point alongside thermal stability while also assessing cost-effectiveness, recyclability, and safety requirements. The use of Pareto front analysis helped identify non-dominated salts, which then underwent a tiered optimization process emphasizing safety, performance, and sustainability features. Results confirm that the ternary nitrate composition Ca(NO3)2:NaNO3:KNO3 offers the best overall performance across all tested policy scenarios, driven by its superior thermophysical properties. Solar Salt (NaNO3-KNO3) consistently ranks as a robust second choice, excelling in economic and sustainability metrics. The proposed approach provides a flexible, policy-sensitive framework for material selection tailored to enhance the efficiency and sustainability of off-grid CSP systems and support the renewable energy objectives. Full article
Show Figures

Figure 1

35 pages, 4796 KB  
Article
Green Infrastructure and the Growth of Ecotourism at the Ollantaytambo Archeological Site, Urubamba Province, Peru, 2024
by Jesica Vilchez Cairo, Alison Narumi Rodriguez Chumpitaz, Doris Esenarro, Carmen Ruiz Huaman, Crayla Alfaro Aucca, Rosa Ruiz Reyes and Maria Veliz
Urban Sci. 2025, 9(8), 317; https://doi.org/10.3390/urbansci9080317 - 12 Aug 2025
Viewed by 485
Abstract
The lack of cultural spaces and the inadequate preservation of architectural heritage hinder the development of ecotourism in Ollantaytambo. This research aims to propose an architectural design for green infrastructure that supports the growth of ecotourism at the Ollantaytambo archeological site, located in [...] Read more.
The lack of cultural spaces and the inadequate preservation of architectural heritage hinder the development of ecotourism in Ollantaytambo. This research aims to propose an architectural design for green infrastructure that supports the growth of ecotourism at the Ollantaytambo archeological site, located in the Urubamba Province, Peru. The study consists of three main phases: a literature review; a site analysis focusing on climate, flora, and fauna; and the development of a comprehensive architectural proposal. The process is supported by digital tools, including Google Earth Pro 2024, OpenStreetMap 2024, SketchUp 2024, Lumion 2024, Photoshop 2024, and 3D Sun-Path 2024. The resulting design includes the implementation of a sustainable cultural center, conceived to ensure seasonal thermal comfort through the use of green roofs and walls, efficient irrigation systems, and native vegetation. The proposal incorporates elements of Cusco’s vernacular architecture by combining traditional earth-based construction techniques, such as rammed earth, adobe, and quincha, with contemporary materials, such as bamboo and timber, in order to improve the energy and environmental performance of the built environment. Furthermore, the project integrates a rainwater-harvesting system and a photovoltaic lighting system. It includes 30 solar-powered luminaires with an estimated monthly output of 72 kWh, and 135 photovoltaic panels capable of generating approximately 2673 kWh per month. In conclusion, the proposed design blends naturally with the local environment and culture. It adheres to principles of sustainability and energy efficiency and aligns with Sustainable Development Goals (SDGs) 3, 6, 7, 11, and 15 by promoting heritage conservation, environmental regeneration, and responsible ecotourism. Full article
Show Figures

Figure 1

37 pages, 4602 KB  
Review
Solar-Driven Atmospheric Water Harvesting Technologies Using Adsorption: Principles, Materials, Performance, and System Configurations
by Malek Mannai, Valeria Palomba, Andrea Frazzica and Elpida Piperopoulos
Energies 2025, 18(16), 4250; https://doi.org/10.3390/en18164250 - 9 Aug 2025
Viewed by 600
Abstract
The global scarcity of freshwater, driven by population growth and the unequal distribution of water resources, has intensified the need for alternative water supply technologies. Among the most promising solutions, adsorption-based atmospheric water harvesting (AWH) systems offer the ability to extract water vapor [...] Read more.
The global scarcity of freshwater, driven by population growth and the unequal distribution of water resources, has intensified the need for alternative water supply technologies. Among the most promising solutions, adsorption-based atmospheric water harvesting (AWH) systems offer the ability to extract water vapor directly from ambient air, even under low-humidity conditions. This review presents a comprehensive overview of the thermodynamic principles and material characteristics governing these systems, with particular emphasis on adsorption isotherms and their role in predicting and optimizing system performance. A generalized theoretical framework is proposed to assess the energy efficiency of thermally driven AWH devices, based on key material parameters. Recent developments in sorbent materials, especially metal–organic frameworks (MOFs) and advanced zeolites, are examined for their high-water uptake, regeneration efficiency, and potential for operation under real climatic conditions. The Dubinin–Astakhov and modified Langmuir isotherm models are reviewed for their effectiveness in describing nonlinear sorption behaviors critical to performance modeling. In addition, component-level design strategies for adsorption-based AWH systems are discussed. The integration of solar energy is also discussed, highlighting recent prototypes and design strategies that have achieved water yields ranging from 0.1 to 2.5 L m−2/day and specific productivities up to 2.8 L kg−1 using MOF-801 at 20% RH. Despite notable progress, challenges remain, including limited productivity in non-optimized setups, thermal losses, long-term material stability, and scalability. This review concludes by identifying future directions for material development, system integration, and modeling approaches to advance the practical deployment of efficient and scalable AWH technologies. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

32 pages, 7126 KB  
Article
Switchable Building-Integrated Photovoltaic–Thermal Curtain Wall for Building Integration
by Masoud Valinejadshoubi, Anna-Maria Sigounis, Andreas K. Athienitis and Ashutosh Bagchi
Processes 2025, 13(8), 2512; https://doi.org/10.3390/pr13082512 - 9 Aug 2025
Viewed by 459
Abstract
This study presents a novel switchable multi-inlet Building integrated photovoltaic/thermal (BIPV/T) curtain wall system designed to enhance solar energy utilization in commercial buildings. The system integrates controllable air inlets and motorized dampers that dynamically adjust airflow patterns in response to real-time environmental conditions [...] Read more.
This study presents a novel switchable multi-inlet Building integrated photovoltaic/thermal (BIPV/T) curtain wall system designed to enhance solar energy utilization in commercial buildings. The system integrates controllable air inlets and motorized dampers that dynamically adjust airflow patterns in response to real-time environmental conditions such as solar irradiance, ambient air temperature, and PV panel temperature. A steady-state energy balance model, developed using a thermal network analogy and implemented in Python, was used to simulate winter operation in Montréal, Canada. Three operating modes with different air inlet configurations were assessed to evaluate system performance across variable air velocities and solar conditions. Results indicate that the switchable system improves combined thermal and electrical generation by 2% to 25% compared to fixed one- or two-inlet systems. Under low irradiance and air velocity, one-inlet operation is dominant, while higher solar gain and airflow favor two-inlet configurations. The system demonstrates effective temperature control and enhanced energy yield through optimized airflow management. This work highlights the potential of integrated control strategies and modular façade design in improving the efficiency of solar building envelope systems and offers practical implications for scalable deployment in energy-efficient, heating-dominated climates. Full article
(This article belongs to the Special Issue Design and Optimisation of Solar Energy Systems)
Show Figures

Figure 1

26 pages, 11921 KB  
Article
Variability and Trends in Earth’s Radiative Energy Budget from Uvsq-Sat (2021–2024) and CERES Observations (2013–2024)
by Mustapha Meftah, Christophe Dufour, Philippe Keckhut, Alain Sarkissian and Ping Zhu
Remote Sens. 2025, 17(16), 2751; https://doi.org/10.3390/rs17162751 - 8 Aug 2025
Viewed by 687
Abstract
The Earth’s Radiation Budget (ERB) is a critical component for understanding the planet’s climate system, as it governs the balance between incoming solar energy and outgoing thermal radiation. Accurate monitoring of the ERB, combined with Ocean Heat Content (OHC) measurements, is essential to [...] Read more.
The Earth’s Radiation Budget (ERB) is a critical component for understanding the planet’s climate system, as it governs the balance between incoming solar energy and outgoing thermal radiation. Accurate monitoring of the ERB, combined with Ocean Heat Content (OHC) measurements, is essential to assess Earth’s Energy Imbalance (EEI) and its implications for global warming. This paper presents new results on the ERB based on data from the Uvsq-Sat and Inspire-Sat nanosatellite missions, which operated from 2021 to 2024. These satellites constitute the first European constellation demonstrator designed for broadband, Wide Field-Of-View (WFOV) measurements of the ERB. While WFOV instruments provide enhanced temporal and spatial coverage, they do not replace the need for Narrow Field-Of-View (NFOV) measurements, such as those provided by the established Clouds and the Earth’s Radiant Energy System (CERES) instruments. Instead, they are designed to complement them. By using data from both the WFOV constellation and CERES instruments to measure Reflected Solar Radiation (RSR) and Outgoing Longwave Radiation (OLR), we estimate the EEI and monitor its evolution. Our analysis reveals a generally good agreement between Uvsq-Sat and CERES data for EEI from 2021 through the end of 2024. Over this period, EEI derived from Uvsq-Sat averaged +0.87 ± 0.23 Wm2, closely matching the recent CERES trend. Both datasets indicate a peak in EEI in mid-2023, followed by a decline throughout 2024, likely reflecting stabilizing feedbacks triggered by the 2023 El Niño event. Importantly, this short-term decline occurred within a sustained upward trend in EEI since 2013, as shown by CERES observations, with solar activity having a negligible impact. Comparisons with OHC measurements confirm ongoing ocean heat accumulation, consistent with the rising decadal trend in EEI. These insights underscore the importance of continuous, high-frequency observations to capture the complex and rapidly evolving processes influencing Earth’s energy balance. Demonstrations using nanosatellites at different local times illustrate the advantages of small satellite constellations for improved monitoring frequency and coverage, particularly for variables that change over short time scales, such as RSR, also known as Outgoing Shortwave Radiation (OSR). Full article
(This article belongs to the Special Issue Remote Sensing of Solar Radiation Absorbed by Land Surfaces)
Show Figures

Figure 1

18 pages, 2405 KB  
Article
Dynamic Comparative Assessment of Long-Term Simulation Strategies for an Off-Grid PV–AEM Electrolyzer System
by Roberta Caponi, Domenico Vizza, Claudia Bassano, Luca Del Zotto and Enrico Bocci
Energies 2025, 18(15), 4209; https://doi.org/10.3390/en18154209 - 7 Aug 2025
Viewed by 653
Abstract
Among the various renewable-powered pathways for green hydrogen production, solar photovoltaic (PV) technology represents a particularly promising option due to its environmental sustainability, widespread availability, and declining costs. However, the inherent intermittency of solar irradiance presents operational challenges for electrolyzers, particularly in terms [...] Read more.
Among the various renewable-powered pathways for green hydrogen production, solar photovoltaic (PV) technology represents a particularly promising option due to its environmental sustainability, widespread availability, and declining costs. However, the inherent intermittency of solar irradiance presents operational challenges for electrolyzers, particularly in terms of stability and efficiency. This study presents a MATLAB-based dynamic model of an off-grid, DC-coupled solar PV-Anion Exchange Membrane (AEM) electrolyzer system, with a specific focus on realistically estimating hydrogen output. The model incorporates thermal energy management strategies, including electrolyte pre-heating during startup, and accounts for performance degradation due to load cycling. The model is designed for a comprehensive analysis of hydrogen production by employing a 10-year time series of irradiance and ambient temperature profiles as inputs. The results are compared with two simplified scenarios: one that does not consider the equipment response time to variable supply and another that assumes a fixed start temperature to evaluate their impact on productivity. Furthermore, to limit the effects of degradation, the algorithm has been modified to allow the non-sequential activation of the stacks, resulting in an improvement of the single stack efficiency over the lifetime and a slight increase in overall hydrogen production. Full article
Show Figures

Figure 1

35 pages, 6795 KB  
Article
Thermal Analysis of Energy Efficiency Performance and Indoor Comfort in a LEED-Certified Campus Building in the United Arab Emirates
by Khushbu Mankani, Mutasim Nour and Hassam Nasarullah Chaudhry
Energies 2025, 18(15), 4155; https://doi.org/10.3390/en18154155 - 5 Aug 2025
Viewed by 603
Abstract
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green [...] Read more.
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green building certifications present opportunities for retrofitting and performance optimization. This study investigates the energy and thermal comfort performance of a LEED Gold-certified, mixed-use university campus in Dubai through a calibrated digital twin developed using IES thermal modelling software. The analysis evaluated existing sustainable design strategies alongside three retrofit energy conservation measures (ECMs): (1) improved building envelope U-values, (2) installation of additional daylight sensors, and (3) optimization of fan coil unit efficiency. Simulation results demonstrated that the three ECMs collectively achieved a total reduction of 15% in annual energy consumption. Thermal comfort was assessed using operative temperature distributions, Predicted Mean Vote (PMV), and Predicted Percentage of Dissatisfaction (PPD) metrics. While fan coil optimization yielded the highest energy savings, it led to less favorable comfort outcomes. In contrast, enhancing envelope U-values maintained indoor conditions consistently within ASHRAE-recommended comfort zones. To further support energy reduction and progress toward Net Zero targets, the study also evaluated the integration of a 228.87 kW rooftop solar photovoltaic (PV) system, which offset 8.09% of the campus’s annual energy demand. By applying data-driven thermal modelling to assess retrofit impacts on both energy performance and occupant comfort in a certified green building, this study addresses a critical gap in the literature and offers a replicable framework for advancing building performance in hot climate regions. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Graphical abstract

Back to TopTop