Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,861)

Search Parameters:
Keywords = thermal insulator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
50 pages, 1506 KiB  
Review
Sustainable Insulation Technologies for Low-Carbon Buildings: From Past to Present
by Pinar Mert Cuce
Sustainability 2025, 17(11), 5176; https://doi.org/10.3390/su17115176 - 4 Jun 2025
Abstract
Building facade insulation technologies have evolved from primitive thermal barriers to high-performance, multifunctional systems that enhance energy efficiency and indoor comfort. Historical insulation methods, such as thick masonry walls and timber-based construction, have gradually been replaced by advanced materials and innovative facade designs. [...] Read more.
Building facade insulation technologies have evolved from primitive thermal barriers to high-performance, multifunctional systems that enhance energy efficiency and indoor comfort. Historical insulation methods, such as thick masonry walls and timber-based construction, have gradually been replaced by advanced materials and innovative facade designs. Studies indicate that a significant proportion of a building’s heat loss occurs through its external walls and windows, highlighting the need for effective insulation strategies. The development of double-skin facades (D-SFSs), adaptive facades (AFs), and green facades has enabled substantial reductions in heating and cooling energy demands. Materials such as vacuum insulation panels (VIPs), aerogels, and phase change materials (PCMs) have demonstrated superior thermal resistance, contributing to improved thermal regulation and reduced carbon emissions. Green facades offer additional benefits by lowering surface temperatures and mitigating urban heat island effects, while D-SF configurations can reduce cooling loads by over 20% in warm climates. Despite these advancements, challenges remain regarding the initial investment costs, durability, and material sustainability. The future of facade insulation technologies is expected to focus on bio-based and recyclable insulation materials, enhanced thermal performance, and climate-responsive facade designs. This study provides a comprehensive review of historical and modern facade insulation technologies, examining their impact on energy efficiency, sustainability, and future trends in architectural design. Full article
19 pages, 3010 KiB  
Article
Heat Transmittance and Weathering Performance of Thermally Modified Fir Wood Exposed Outdoors
by Anastasia Ioakeimidou, Vasiliki Kamperidou and Ioannis Barboutis
Forests 2025, 16(6), 945; https://doi.org/10.3390/f16060945 - 4 Jun 2025
Abstract
In order to rationally utilize wood materials, increase wood quality, and mitigate drawbacks, research on industrial techniques for timber protection and preservation is essential on a European and global scale. When high-quality timber enters the market, it offers structures and objects that have [...] Read more.
In order to rationally utilize wood materials, increase wood quality, and mitigate drawbacks, research on industrial techniques for timber protection and preservation is essential on a European and global scale. When high-quality timber enters the market, it offers structures and objects that have considerable added value. This study examines the performance of thermally treated (6 h at 170 °C and 200 °C) softwood species (fir wood) when exposed outdoors and applied on wooden building structures as cladding timber, among other structures. International standards were applied for the characterization of the untreated and thermally treated wooden boards after the treatments in terms of physical, hygroscopic, and surface properties. In contrast, all the boards (of dimensions 390 × 75 × 20 mm in length, width, thickness respectively) were exposed outdoors to direct sunlight and a combination of biotic and abiotic factors for a six-month period to mainly investigate the thermal properties (heat transfer analysis/insulation properties) using a real-time test in situ, as well as to investigate their potential resistance to natural weathering (color, surface roughness, visual inspection, etc.). Heat transfer in the thermally treated wood specimens was found to be much slower than that in the untreated specimens, which, combined with lower hygroscopicity and higher dimensional stability, reveals the high potential of thermally treated wood utilization in outdoor applications, such as cladding, facades, frames, and other outdoor elements. Full article
Show Figures

Figure 1

26 pages, 2266 KiB  
Article
An Analysis of Energy Efficiency Actions and Photovoltaic Energy in Public Buildings in a Semi-Arid Region: The Requirements for Positive Energy and Net-Zero Energy Buildings in Brazil
by Elder Ramon Chaves da Costa, Rogério Diogne de Souza e Silva and Victor de Paula Brandão Aguiar
Sustainability 2025, 17(11), 5157; https://doi.org/10.3390/su17115157 - 4 Jun 2025
Abstract
The search for sustainable energy alternatives is urgent in the face of climate change and resource scarcity. In this context, increasing energy efficiency in buildings through distributed energy resources (DERs) is crucial for sustainability and self-sufficiency. This article aims to analyze the impact [...] Read more.
The search for sustainable energy alternatives is urgent in the face of climate change and resource scarcity. In this context, increasing energy efficiency in buildings through distributed energy resources (DERs) is crucial for sustainability and self-sufficiency. This article aims to analyze the impact of several energy efficiency actions, in addition to the installation of a photovoltaic solar energy system in a public building in a semi-arid region, determining the necessary aspects for such buildings to become positive energy buildings (PEBs) and/or net zero energy buildings (NZEBs). As a basis for the methodology, a case study was carried out in a university restaurant in a semi-arid region in Brazil. Several pieces of data were collected, such as the air temperature, solar radiation, active energy and the number of users in the building. The relevance of each variable in relation to electricity consumption was identified through statistical correlation analysis, resulting in an energy consumption per square meter per year of 80.78 kWh/m2/year and an active energy consumption per user per year of 0.88 kWh/m2/year. Three energy efficiency actions were evaluated and compared technically and economically against the investment in a grid-connected photovoltaic system (GCPVS) for the same building, simulating before and after the entry into force of Law 14.300/2022, which regulates distributed generation in Brazil. The installation of thermal insulation on the building’s roof showed good technical, economic and environmental performance, compared to GCPVS, and proved to be attractive and competitive among the other scenarios. All simulated actions resulted in an annual emission reduction of 14.8 tCO2e. When calculating the building’s generation potential, it was found that it could be considered an NZEB and PEB. Full article
(This article belongs to the Special Issue Sustainable Net-Zero-Energy Building Solutions)
Show Figures

Figure 1

20 pages, 3689 KiB  
Article
Numerical Investigation and Optimization of Transpiration Cooling Plate Structures with Combined Particle Diameter
by Dan Wang, Yaxin Liu, Xiang Zhang, Mingliang Kong and Hanchao Liu
Energies 2025, 18(11), 2950; https://doi.org/10.3390/en18112950 - 4 Jun 2025
Abstract
Transpiration cooling is an efficient thermal protection technology used for scramjet combustors and other components. However, a conventional transpiration cooling plate structure with uniform porous media distribution suffers from a large temperature difference between the upstream and downstream surfaces and high coolant injection [...] Read more.
Transpiration cooling is an efficient thermal protection technology used for scramjet combustors and other components. However, a conventional transpiration cooling plate structure with uniform porous media distribution suffers from a large temperature difference between the upstream and downstream surfaces and high coolant injection pressure (p). To enhance the overall cooling effect and reduce the maximum surface temperature and coolant injection pressure, the combined particle diameter plate structure (CPD−PS) is proposed. Numerical simulations show that compared with the single-particle diameter plate structure (SPD−PS), the CPD−PS with a larger upstream particle diameter (dp) than that of the downstream (dpA > dpB) can effectively reduce the upstream temperature and improve average cooling efficiency (ηave). Meanwhile, gradually increasing dp will increase the permeability of porous media, reduce coolant flow resistance, and thus lower coolant injection pressure. An optimization analysis of CPD−PS is conducted using response surface methodology (RSM), and the influence of design variables on the objective function (ηave and p) is analyzed. Further optimization with the multi-objective genetic algorithm (MOGA) determines the optimal structural parameters. The results suggest that porosity (ε) and dp are the most crucial parameters affecting ηave and p of CPD−PS. After optimization, the maximum temperature of the porous plate is significantly reduced by 8.40%, and the average temperature of the hot end surface is also reduced. The overall cooling performance is effectively improved, ηave is increased by 6.02%, and p is significantly reduced. Additionally, the upstream surface velocity of the optimized structure changes and the boundary layer thickens, which enhances the thermal insulation effect. Full article
Show Figures

Figure 1

18 pages, 6117 KiB  
Article
Numerical Analysis of Conditions for Partial Discharge Inception in Spherical Gaseous Voids in XLPE Insulation of AC Cables at Rated Voltage and During AC, VLF and DAC Tests
by Paweł Mikrut and Paweł Zydroń
Energies 2025, 18(11), 2949; https://doi.org/10.3390/en18112949 - 4 Jun 2025
Abstract
AC power cables play an important role in power systems, in the transmission and distribution of electrical energy. For this reason, to ensure high operational reliability, voltage withstand tests and diagnostic tests are performed at every stage of their technical life to determine [...] Read more.
AC power cables play an important role in power systems, in the transmission and distribution of electrical energy. For this reason, to ensure high operational reliability, voltage withstand tests and diagnostic tests are performed at every stage of their technical life to determine the condition of cable insulation. Due to the large electrical capacitances of cable systems, modern testing methods use very low frequency (VLF) and damped oscillating (DAC) voltages. The research presented in the article analyzed the effect of the test voltage waveform parameters on the partial discharge (PD) inception conditions in spherical gaseous voids present in the XLPE insulation of AC cable model. Using COMSOL 6.1 and MATLAB R2021b, a coupled electro-thermal model of a 110 kV AC cable was implemented, for which the critical gaseous void dimensions were estimated and phase-resolved PD patterns were generated for the rated voltage and the VLF and DAC test voltages specified in the relevant standards. In the analyses for the rated voltage, the influence of internal temperature distribution, which causes modification of XLPE permittivity, was taken into account in the numerical cable model. Full article
Show Figures

Figure 1

21 pages, 3889 KiB  
Article
Effects of Organic Acidic Products from Discharge-Induced Decomposition of the FRP Matrix on ECR Glass Fibers in Composite Insulators
by Dandan Zhang, Zhiyu Wan, Kexin Shi, Ming Lu and Chao Gao
Polymers 2025, 17(11), 1540; https://doi.org/10.3390/polym17111540 - 31 May 2025
Viewed by 232
Abstract
This study investigates the degradation mechanisms of fiber-reinforced polymer (FRP) matrices in composite insulators under partial discharge (PD) conditions. The degradation products may further cause deterioration of the electrical and chemical resistance (ECR) glass fibers. Using pyrolysis–gas chromatography-mass spectrometry (PY-GC-MS) and high-performance liquid [...] Read more.
This study investigates the degradation mechanisms of fiber-reinforced polymer (FRP) matrices in composite insulators under partial discharge (PD) conditions. The degradation products may further cause deterioration of the electrical and chemical resistance (ECR) glass fibers. Using pyrolysis–gas chromatography-mass spectrometry (PY-GC-MS) and high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS-MS), the thermal degradation gas and liquid products of the degraded FRP matrix were analyzed, revealing the presence of organic acids. These acids form when the epoxy resin’s cross-linked bonds break at high temperatures, generating anhydrides that hydrolyze into carboxylic acids in the presence of moisture. The hydrolyzation process is accelerated by hydroxyl radicals produced during PD. The resulting carboxylic acids deteriorate the glass fibers within the FRP matrix by degrading surface coupling agents and reacting with the alkali metal–silica network, leading to the substitution and precipitation of metal ions. Organic acids, particularly carboxylic acids, were found to have a more severe deteriorating effect on glass fibers compared to inorganic acids, with high temperatures exacerbating this process. These findings provide critical insights into the deterioration mechanisms of FRP under operational conditions, offering valuable guidance for optimizing manufacturing processes and enhancing the longevity of composite insulators. Full article
(This article belongs to the Special Issue New Insights into Fiber-Reinforced Polymer Composites)
Show Figures

Figure 1

24 pages, 1613 KiB  
Article
Partial Discharge-Based Cable Vulnerability Ranking with Fuzzy and FAHP Models: Application in a Danish Distribution Network
by Mohammad Reza Shadi, Hamid Mirshekali and Hamid Reza Shaker
Sensors 2025, 25(11), 3454; https://doi.org/10.3390/s25113454 - 30 May 2025
Viewed by 190
Abstract
Aging underground cables pose a threatening issue in distribution systems. Replacing all cables at once is economically unfeasible, making it crucial to prioritize replacements. Traditionally, age-based strategies have been used, but they are likely to fail to depict the real condition of cables. [...] Read more.
Aging underground cables pose a threatening issue in distribution systems. Replacing all cables at once is economically unfeasible, making it crucial to prioritize replacements. Traditionally, age-based strategies have been used, but they are likely to fail to depict the real condition of cables. Insulation faults are influenced by electrical, mechanical, thermal, and chemical stresses, and partial discharges (PDs) often serve as early indicators and accelerators of insulation aging. The trends in PD activity provide valuable information about insulation condition, although they do not directly reveal the cable’s real age. Due to the absence of an established ranking methodology for such condition-based data, this paper proposes a fuzzy logic and fuzzy analytic hierarchy process (FAHP)-based cable vulnerability ranking framework that effectively manages uncertainty and expert-based conditions. The proposed framework requires only basic and readily accessible data inputs, specifically cable age, which utilities commonly maintain, and PD measurements, such as peak values and event counts, which can be acquired through cost-effective, noninvasive sensing methods. To systematically evaluate the method’s performance and robustness, particularly given the inherent uncertainties in cable age and PD characteristics, this study employs Monte Carlo simulations coupled with a Spearman correlation analysis. The effectiveness of the developed framework is demonstrated using real operational cable data from a Danish distribution network, meteorological information from the Danish Meteorological Institute (DMI), and synthetically generated PD data. The results confirm that the FAHP-based ranking approach delivers robust and consistent outcomes under uncertainty, thereby supporting utilities in making more informed and economical maintenance decisions. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

18 pages, 7005 KiB  
Article
Influence of an Alkaline Activator and Mineral Admixture on the Properties of Alkali-Activated Recycled Concrete Powder-Foamed Concrete
by Yongfan Gong, Chao Liu, Zhihui Zhao, Zhengguang Wu and Bangwei Wu
Materials 2025, 18(11), 2567; https://doi.org/10.3390/ma18112567 - 30 May 2025
Viewed by 201
Abstract
Alkali-activated recycled concrete powder-foamed concrete (ARCP-FC) is a new type of insulation architectural material, which is prepared using recycled concrete powders (RCPs), slag powders, fly ash, and sodium silicate. In this study, the influence of the water-to-cement (W/C) ratio, the Na2O [...] Read more.
Alkali-activated recycled concrete powder-foamed concrete (ARCP-FC) is a new type of insulation architectural material, which is prepared using recycled concrete powders (RCPs), slag powders, fly ash, and sodium silicate. In this study, the influence of the water-to-cement (W/C) ratio, the Na2O content, and the mineral admixture content on the mechanical strength, physical properties, and thermal conductivity of ARCP-FC were investigated. The results showed that the compressive strength and dry apparent density of ARCP-FC decreased with the increase in the W/C ratio. In contrast, the water absorption rate increased as the W/C ratio increased. Fewer capillaries were formed due to the rapid setting property, and the optimal W/C ratio was 0.45. The compressive strength and dry apparent density first decreased and then increased with the increase in Na2O content. Too high Na2O addition was not conducive to the thermal insulation of ARCP-FC, and the optimal Na2O content was 6%. The compressive strength and dry shrinkage gradually decreased, while the water absorption gradually increased as the fly ash content increased. Fly ash improved deformation, and the pore was closed to the sphere, reducing the shrinkage and thermal conductivity. The optimal mixture of ARCP-FC consisted of 60% recycled concrete powders, 20% slag, and 20% fly ash. The density, porosity, compressive strength, and thermal conductivity of ARCP-FC were 800 kg/m3, 59.1%, 4.1 MPa, and 0.1036 W/(m·K), respectively. ARCP-FC solved the contradiction between compressive strength and dry apparent density, making it a promising building material for external insulation boards and insulation layers. Full article
Show Figures

Figure 1

31 pages, 3470 KiB  
Article
Reducing Cooling Energy Demand in Saudi Arabian Residential Buildings Using Passive Design Approaches
by Lucelia Rodrigues, Benjamin Abraham Cherian and Serik Tokbolat
Buildings 2025, 15(11), 1895; https://doi.org/10.3390/buildings15111895 - 30 May 2025
Viewed by 239
Abstract
In Saudi Arabia’s hot and arid climate, residential buildings account for over half of national electricity consumption, with cooling demands alone responsible for more than 70% of this use. This paper explores the hypothesis that contemporary villa designs are inherently inefficient and that [...] Read more.
In Saudi Arabia’s hot and arid climate, residential buildings account for over half of national electricity consumption, with cooling demands alone responsible for more than 70% of this use. This paper explores the hypothesis that contemporary villa designs are inherently inefficient and that current building regulations fall short of enabling adequate thermal performance. This issue is expected to become increasingly significant in the near future as external temperatures continue to rise. The study aims to assess whether passive design strategies rooted in both engineering and architectural principles can offer substantial reductions in cooling energy demand under current and future climatic conditions. A typical detached villa was simulated using IES-VE to test a range of passive measures, including optimized window-to-wall ratios, enhanced glazing configurations, varied envelope constructions, solar shading devices, and wind-tower-based natural ventilation. Parametric simulations were conducted under current climate data and extended to future weather scenarios. Unlike many prior studies, this work integrates these strategies holistically and evaluates their combined impact, rather than in isolation while assessing the impact of future weather in the region. The findings revealed that individual measures such as insulated ceilings and reduced window-to-wall ratios significantly lowered cooling loads. When applied in combination, these strategies achieved a 68% reduction in cooling energy use compared to the base-case villa. While full passive performance year-round remains unfeasible in such extreme conditions, the study demonstrates a clear pathway toward energy-efficient housing in the Gulf region. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

25 pages, 5223 KiB  
Article
Microstructure-Driven Hygrothermal Behavior of Mycelium-Based Composites for Bio-Based Insulation
by Sina Motamedi, Daniel R. Rousse and Geoffrey Promis
Energies 2025, 18(11), 2864; https://doi.org/10.3390/en18112864 - 30 May 2025
Viewed by 166
Abstract
This study investigates the coupled hygrothermal behavior of mycelium-based composites (MBCs) as a function of their microstructural organization, governed by fungal species, substrate type, additive incorporation, and treatment method. Eleven composite formulations were selected and characterized using a multi-scale experimental approach, combining scanning [...] Read more.
This study investigates the coupled hygrothermal behavior of mycelium-based composites (MBCs) as a function of their microstructural organization, governed by fungal species, substrate type, additive incorporation, and treatment method. Eleven composite formulations were selected and characterized using a multi-scale experimental approach, combining scanning electron microscopy, dynamic vapor sorption, vapor permeability tests, capillary uptake measurements, and transient thermal conductivity analysis. SEM analysis revealed that Ganoderma lucidum forms dense and interconnected hyphal networks, whereas Trametes versicolor generates looser, localized structures. These morphological differences directly influence water vapor transport and heat conduction. Additive-enriched composites exhibited up to 21.8% higher moisture uptake at 90% RH, while straw-based composites demonstrated higher capillary uptake and free water saturation (up to 704 kg/m3), indicating enhanced moisture sensitivity. In contrast, hemp-based formulations with Ganoderma lucidum showed reduced sorption and vapor permeability due to limited pore interconnectivity. Thermal conductivity varied nonlinearly with temperature and moisture content. Fitting the experimental data with an exponential model revealed a moisture sensitivity coefficient thirty times lower for GHOP compared to VHOP, highlighting the stabilizing effect of a compact microstructure. The distinction between total and effective porosity emerged as a key factor in explaining discrepancies between apparent and functional moisture behavior. These findings demonstrate that hygric and thermal properties in MBCs are governed not by porosity alone, but by the geometry and connectivity of the internal fungal network. Optimizing these structural features enables fine control overheat and mass transfer, laying the groundwork for the development of high-performance, bio-based insulation materials. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings: 3rd Edition)
Show Figures

Figure 1

19 pages, 1448 KiB  
Review
Advanced Sound Insulating Materials: An Analysis of Material Types and Properties
by Jacek Lukasz Wilk-Jakubowski, Artur Kuchcinski, Lukasz Pawlik and Grzegorz Wilk-Jakubowski
Appl. Sci. 2025, 15(11), 6156; https://doi.org/10.3390/app15116156 - 30 May 2025
Viewed by 152
Abstract
This review article presents a comprehensive analysis of recent advancements in sound insulating materials, focusing on the characterization of material types and their properties from 2015 to 2024. It examined the application of various natural and synthetic materials, including fibrous, porous, composite, polymeric, [...] Read more.
This review article presents a comprehensive analysis of recent advancements in sound insulating materials, focusing on the characterization of material types and their properties from 2015 to 2024. It examined the application of various natural and synthetic materials, including fibrous, porous, composite, polymeric, and advanced materials, in architectural and environmental acoustics. A systematic search in the Scopus database identified relevant articles that were classified according to the material types and their inherent properties. The analysis covered key aspects such as thermal, mechanical, chemical, and physical characteristics, and their impact on sound insulation performance. Unlike previous studies that focused on classic materials or single aspects, this review used analytical and database tools to identify recent research trends. This review highlights the development of advanced and sustainable materials for noise reduction that address challenges in both building acoustics and environmental sound pollution. Full article
Show Figures

Figure 1

14 pages, 3834 KiB  
Article
Comparative Study of Thermal Runaway Propagation and Material Barrier Effect of Lithium-Ion Batteries
by Yikai Mao, Yaoyu Chen, Yanglin Ye, Yin Chen and Mingyi Chen
Batteries 2025, 11(6), 214; https://doi.org/10.3390/batteries11060214 - 29 May 2025
Viewed by 124
Abstract
Battery thermal runaway (TR) is usually accompanied by a large amount of heat release, as well as a jet of flame. This not only causes harm to the surrounding environment but even exacerbates thermal runaway propagation (TRP). At this stage, many types of [...] Read more.
Battery thermal runaway (TR) is usually accompanied by a large amount of heat release, as well as a jet of flame. This not only causes harm to the surrounding environment but even exacerbates thermal runaway propagation (TRP). At this stage, many types of materials are used to suppress TRP, and people tend to focus on improving one characteristic of the material while ignoring other properties of the material. This may leave potential pitfalls for TRP suppression, suggesting the need to study multiple properties of multiple materials. In order to better weigh the advantages and disadvantages of different types of materials when suppressing TRP, we compared three typical materials for suppressing TRP behavior in lithium-ion batteries (LIBs). These materials are phase change materials (PCM), ceramic fibers, and glass fibers. They are all available in two different thicknesses, 2 mm and 3 mm. The experiments started with a comparative analysis of the TR experimental phenomena in the presence of the different materials. Then, the temperature and mass loss of the battery module during TR were analyzed separately and comparatively. The 3 mm glass fiber showed the best inhibition effect, which extended the TR interval between cells 1 and 2 to 894 s and successfully inhibited the TR of cell 3. Compared with the blank group, the total mass loss decreased from 194.3 g to 182.2 g, which is a 6.2% reduction. Subsequently, we comprehensively analyzed the performance of the three materials in suppressing TRP by combining their suppressing mechanisms. The experimental results show that glass fiber has the best effect in suppressing TRP due to its excellent thermal insulation and mechanical properties. This study may provide new insights into how to trade-off material properties for TRP suppression in the future. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire)
Show Figures

Figure 1

30 pages, 9217 KiB  
Article
Navigating Energy Efficiency and Mould Risk in Australian Low-Rise Homes: A Comparative Analysis of Nine External Wall Systems in Southeast Australia
by Liqun Guan, Mark Dewsbury, Louise Wallis and Hartwig Kuenzel
Energies 2025, 18(11), 2843; https://doi.org/10.3390/en18112843 - 29 May 2025
Viewed by 296
Abstract
As energy-efficient buildings become central to climate change mitigation, the opportunity for interior and interstitial moisture accumulation and mould growth can increase. This study investigated the potential simulation-based mould growth risks associated with the current generation of insulated low-rise timber framed external wall [...] Read more.
As energy-efficient buildings become central to climate change mitigation, the opportunity for interior and interstitial moisture accumulation and mould growth can increase. This study investigated the potential simulation-based mould growth risks associated with the current generation of insulated low-rise timber framed external wall systems within southeastern Australia. More than 8000 hygrothermal and bio-hygrothermal simulations were completed to evaluate seasonal moisture patterns and calculate mould growth potential for nine typical external wall systems. Results reveal that the combination of increased thermal insulation and air-tightness measures between the 2010 and 2022 specified building envelope energy efficiency regulations further increased predicted Mould Index values, particularly in cool-temperate climates. This was in part due to insufficient moisture management requirements, like an air space between the cladding and the weather resistive layer and/or the low-water vapour permeability of exterior weather resistive pliable membranes. By contrast, warmer temperate climates and drier cool-temperate climates exhibit consistently lower calculated Mould Index values. Despite the 2022 requirement for a greater water vapour-permeance of exterior pliable membranes, the external walls systems explored in this research had a higher calculated Mould Index than the 2010 regulatory compliant external wall systems. Lower air change rates significantly increased calculated interstitial mould growth risk, while the use of interior vapour control membranes proved effective in its mitigation for most external wall systems. The addition of ventilated cavity in combination with either or both an interior vapour control membrane and a highly vapour-permeable exterior pliable membranes further reduced risk. The findings underscore the need for tailored, climate-responsive design interventions to minimise surface and interstitial mould growth risk and building durability, whilst achieving high performance external wall systems. Full article
Show Figures

Figure 1

27 pages, 1848 KiB  
Article
A Decision Support Tool to Assess the Energy Renovation Performance Through a Timber-Based Solution for Concrete-Framed Buildings
by Gianpiero Evola, Michele Torrisi, Vincenzo Costanzo, Marilena Lazzaro, Diego Arnone and Giuseppe Margani
Energies 2025, 18(11), 2839; https://doi.org/10.3390/en18112839 - 29 May 2025
Viewed by 166
Abstract
The present paper describes a novel and user-friendly Decision Support System (e-DSS) designed to assist technicians in the preliminary design stage of a building renovation process based on the solutions developed in the innovation project e-SAFE, funded by the EU under the H2020 [...] Read more.
The present paper describes a novel and user-friendly Decision Support System (e-DSS) designed to assist technicians in the preliminary design stage of a building renovation process based on the solutions developed in the innovation project e-SAFE, funded by the EU under the H2020 program. The e-DSS is engineered to rapidly assess key performance indicators, including energy performance before and after renovation, reduction in CO2 emission for space heating, space cooling, and DHW preparation, seismic upgrade feasibility, expected costs, and payback time. To demonstrate its capabilities, the e-DSS was applied to an existing public housing building in Catania, southern Italy. The predicted thermal energy needs for space heating and cooling were compared to the results from detailed simulations using a professional-grade software tool, for both as-built condition and a proposed renovation generated by the e-DSS itself. The discrepancies identified through this comparison will inform the refinement of the e-DSS algorithms to increase their accuracy and reliability. More generally, this paper recommends suitable algorithms that can be effectively employed in the development of simplified decision-making tools specifically tailored for building professionals operating in the early phase of building renovation projects. Full article
(This article belongs to the Special Issue Performance Analysis of Building Energy Efficiency)
Show Figures

Figure 1

29 pages, 2455 KiB  
Article
Geopolymer Concretes with Organic Phase Change Materials—Analysis of Thermal Properties and Microstructure
by Agnieszka Przybek, Michał Łach, Paulina Romańska, Justyna Ciemnicka, Karol Prałat and Artur Koper
Materials 2025, 18(11), 2557; https://doi.org/10.3390/ma18112557 - 29 May 2025
Viewed by 192
Abstract
Geopolymer concretes, synthesized from industrial by-products such as fly ash through alkaline activation, have attracted considerable attention due to their favorable thermal and microstructural properties. Incorporating phase change materials (PCMs) into geopolymer matrices can improve thermal properties, making them suitable for various sustainable [...] Read more.
Geopolymer concretes, synthesized from industrial by-products such as fly ash through alkaline activation, have attracted considerable attention due to their favorable thermal and microstructural properties. Incorporating phase change materials (PCMs) into geopolymer matrices can improve thermal properties, making them suitable for various sustainable construction applications. The thermal properties of geopolymer concrete depend on the composition and structure of the materials used. Adding PCMs to geopolymer concrete can significantly improve its thermal properties by increasing its heat storage capacity. PCMs absorb and release thermal energy during phase transformations, which can help regulate temperature fluctuations in building materials. This feature is particularly beneficial in regions with extreme temperature fluctuations, where maintaining a stable indoor climate is crucial. Integrating organic PCMs into geopolymer matrices has been shown to improve thermal insulation. Furthermore, the microstructural analysis of geopolymer concrete containing organic PCM indicates that incorporating these materials can lead to a more homogeneous and denser microstructure. Integrating organic PCMs instead of inorganic into geopolymer concrete is a promising route to improve thermal properties and microstructural stability. The combination of geopolymer technology with PCM not only contributes to the sustainable development of building materials but also addresses the challenges of temperature regulation in buildings. Full article
Show Figures

Figure 1

Back to TopTop