Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (261)

Search Parameters:
Keywords = thermal storage wall

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3459 KB  
Article
Modeling Thermal Energy Storage Capability of Organic PCMs Confined in a 2-D Cavity
by Abdullatif A. Gari
Computation 2025, 13(9), 209; https://doi.org/10.3390/computation13090209 - 1 Sep 2025
Abstract
Organic phase change materials (PCMs) are a useful and increasingly popular choice for thermal energy storage applications such as solar energy and building envelope thermal barriers. Buildings located in high-temperature locations are exposed to extreme weather with high solar radiation intensity. PCM envelopes [...] Read more.
Organic phase change materials (PCMs) are a useful and increasingly popular choice for thermal energy storage applications such as solar energy and building envelope thermal barriers. Buildings located in high-temperature locations are exposed to extreme weather with high solar radiation intensity. PCM envelopes could act as thermal barriers on the exterior walls to prevent excessive heat gain and save on air conditioning costs. The PCM cavity is represented as a square cavity in this project. This project studies the effect of different parameters on energy transfer through the cavity. These parameters are PCM, heat flux gain (solar radiation), and time period (day hours). One parameter was changed at a time while others remained the same. This model was simulated numerically using ANSYS FLUENT software version 6.3.26. The project was solved as a transient problem and was run for a full day in simulation time. A pressure-based model was used because it is ideal for viscous flow and suitable for mildly compressible and low-speed flow. The PISO algorithm was used here because of the transient nature of the project. Temperature and convection heat transfer flux on the inner surface were recorded to study how the inner temperature and the amount of convective heat flux gain react to different conditions after energy passes the PCM envelope. It was found that Linoleic Acid provides the highest convective heat flux gain, meaning it provides the lowest thermal resistance. On the other hand, Tricosane was found to provide the lowest convective heat flux gain, meaning it provides the highest thermal resistance. For longer days (τq < 1), the PCM was in a liquid form for a longer time, which means less conduction, while for shorter days (τq > 1), the PCM was in a solid form for a longer time. Full article
(This article belongs to the Special Issue Computational Methods for Energy Storage)
Show Figures

Figure 1

13 pages, 3355 KB  
Article
Buried SWCNTs Interlayer Promotes Hole Extraction and Stability in Inverted CsPbI2.85Br0.15 Perovskite Solar Cells
by Fangtao Yu, Dandan Chen, He Xi, Wenming Chai, Yuhao Yan, Weidong Zhu, Dazheng Chen, Long Zhou, Yimin Lei and Chunfu Zhang
Molecules 2025, 30(17), 3535; https://doi.org/10.3390/molecules30173535 - 29 Aug 2025
Viewed by 181
Abstract
Inverted (p-i-n) CsPbIxBr3−x (x = 0~3) perovskite solar cells (PSCs) are of growing interest due to their excellent thermal stability and optoelectronic performance. However, they suffer from severe energy level mismatch and significant interfacial energy losses at the bottom hole [...] Read more.
Inverted (p-i-n) CsPbIxBr3−x (x = 0~3) perovskite solar cells (PSCs) are of growing interest due to their excellent thermal stability and optoelectronic performance. However, they suffer from severe energy level mismatch and significant interfacial energy losses at the bottom hole transport layers (HTLs). Herein, we propose a strategy to simultaneously enhance the crystallinity of CsPbI2.85Br0.15 and facilitate hole extraction at the HTL/CsPbI2.85Br0.15 interface by incorporating semiconducting single-walled carbon nanotubes (SWCNTs) onto [2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl] phosphonic acid (MeO-2PACz) HTL. The unique electrical properties of SWCNTs enable the MeO-2PACz/SWCNT HTL to achieve high conductivity, optimal energy level alignment, and an adaptable surface. Consequently, the defect density is reduced, hole extraction is accelerated, and interfacial charge recombination is effectively suppressed. As a result, these synergistic benefits boost the power conversion efficiency (PCE) from 15.74% to 18.78%. Moreover, unencapsulated devices retained 92.35% of their initial PCE after 150 h of storage in ambient air and 89.03% after accelerated aging at 85 °C for 10 h. These findings highlight the strong potential of SWCNTs as an effective interlayer for inverted CsPbI2.85Br0.15 PSCs and provide a promising strategy for designing high-performance HTLs by integrating SWCNTs with self-assembled monolayers (SAMs). Full article
Show Figures

Figure 1

20 pages, 1158 KB  
Article
Integrated Optimization Method of External Wall Insulation for Granaries in Different Climate Regions in China
by Ruili Liu, Zhu He, Chengzhou Guo and Haitao Wang
Sustainability 2025, 17(16), 7489; https://doi.org/10.3390/su17167489 - 19 Aug 2025
Viewed by 363
Abstract
The use of thermal insulation material in building envelopes is closely related to economic benefits, energy-savings, and carbon reduction of buildings. The construction forms of different components in building envelopes have an important influence on the optimization design of thermal insulation in building [...] Read more.
The use of thermal insulation material in building envelopes is closely related to economic benefits, energy-savings, and carbon reduction of buildings. The construction forms of different components in building envelopes have an important influence on the optimization design of thermal insulation in building envelopes. In this study, an integrated optimization approach is proposed to search for the best solution of thermal insulation in external walls and the optimal combination scheme of different construction forms of envelope components in granaries. The integrated optimization approach consists of an orthogonal experimental design (OEDM) method-based determination module of an optimal combination scheme of different construction forms of components, an assessment model-based quantitative analysis module, and an integrated assessment indicator-based selection module of the best solution of external wall insulation. Firstly, the OEDM method is used to determine the optimal combination scheme of different construction forms of the foundation wall of an external wall, thermal insulation material, external window, roof, and floors in buildings. Secondly, integrated economic, energy, and carbon analysis models are developed to analyze comprehensive performance of external wall insulation. Finally, an integrated assessment indicator consisting of an energy balanced index, a carbon balanced index, and weight coefficients is presented to determine the best solution of external wall insulation. The applications of this optimization approach in different ecological grain storage zones in China demonstrated that the outdoor air temperature characteristics could affect the comprehensive performance of external wall insulation in granaries, significantly. The best solution of external wall insulation in granaries in Turpan city, Daqing city, Kaifeng city, Changsha city, Anshun city, and Danzhou city was expanded polystyrene insulation (EPS) with a layer thickness of 0.078 m, 0.048 m, 0.083 m, 0.089 m, 0.062 m, and 0.131 m, respectively. The greatest difference in the lowest entire construction cost and the lowest carbon emission of external wall insulation among different typical climate regions in China was 12.987 USD/m2 and 6.3 kgCO2e/m2, respectively. Full article
Show Figures

Figure 1

21 pages, 21564 KB  
Article
Remote Visualization and Optimization of Fluid Dynamics Using Mixed Reality
by Sakshi Sandeep More, Brandon Antron, David Paeres and Guillermo Araya
Appl. Sci. 2025, 15(16), 9017; https://doi.org/10.3390/app15169017 - 15 Aug 2025
Viewed by 411
Abstract
This study presents an innovative pipeline for processing, compressing, and remotely visualizing large-scale numerical simulations of fluid dynamics in a virtual wind tunnel (VWT), leveraging virtual and augmented reality (VR/AR) for enhanced analysis and high-end visualization. The workflow addresses the challenges of handling [...] Read more.
This study presents an innovative pipeline for processing, compressing, and remotely visualizing large-scale numerical simulations of fluid dynamics in a virtual wind tunnel (VWT), leveraging virtual and augmented reality (VR/AR) for enhanced analysis and high-end visualization. The workflow addresses the challenges of handling massive databases generated using Direct Numerical Simulation (DNS) while maintaining visual fidelity and ensuring efficient rendering for user interaction. Fully immersive visualization of supersonic (Mach number 2.86) spatially developing turbulent boundary layers (SDTBLs) over strong concave and convex curvatures was achieved. The comprehensive DNS data provides insights on the transport phenomena inside turbulent boundary layers under strong deceleration or an Adverse Pressure Gradient (APG) caused by concave walls as well as strong acceleration or a Favorable Pressure Gradient (FPG) caused by convex walls under different wall thermal conditions (i.e., Cold, Adiabatic, and Hot walls). The process begins with a .vts file input from a DNS, which is visualized using ParaView software. These visualizations, representing different fluid behaviors based on a DNS with a high spatial/temporal resolution and employing millions of “numerical sensors”, are treated as individual time frames and exported in GL Transmission Format (GLTF), which is a widely used open-source file format designed for efficient transmission and loading of 3D scenes. To support the workflow, optimized Extract–Transform–Load (ETL) techniques were implemented for high-throughput data handling. Conversion of exported Graphics Library Transmission Format (GLTF) files into Graphics Library Transmission Format Binary files (typically referred to as GLB) reduced the storage by 25% and improved the load latency by 60%. This research uses Unity’s Profile Analyzer and Memory Profiler to identify performance limitations during contour rendering, focusing on the GPU and CPU efficiency. Further, immersive VR/AR analytics are achieved by connecting the processed outputs to Unity engine software and Microsoft HoloLens Gen 2 via Azure Remote Rendering cloud services, enabling real-time exploration of fluid behavior in mixed-reality environments. This pipeline constitutes a significant advancement in the scientific visualization of fluid dynamics, particularly when applied to datasets comprising hundreds of high-resolution frames. Moreover, the methodologies and insights gleaned from this approach are highly transferable, offering potential applications across various other scientific and engineering disciplines. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

30 pages, 9222 KB  
Article
Thermodynamic Modeling of Multilayer Insulation Schemes Coupling Liquid Nitrogen Cooled Shield and Vapour Hydrogen Cooled Shield for LH2 Tank
by Jingyang Lu, Liqiong Chen and Xingyu Zhou
Processes 2025, 13(8), 2574; https://doi.org/10.3390/pr13082574 - 14 Aug 2025
Viewed by 313
Abstract
The thermal insulation performance of liquid hydrogen (LH2) storage tanks is critical for long-distance transportation. The active cooled shield (ACS) technologies, such as the liquid nitrogen cooled shield (LNCS) and the vapor hydrogen cooled shield (VHVCS) are important thermal insulation methods. [...] Read more.
The thermal insulation performance of liquid hydrogen (LH2) storage tanks is critical for long-distance transportation. The active cooled shield (ACS) technologies, such as the liquid nitrogen cooled shield (LNCS) and the vapor hydrogen cooled shield (VHVCS) are important thermal insulation methods. Many researchers installed the VHVCS inside the multilayer insulation (MLI) and obtained the optimal position. However, the MLI layer is often thinner than the vacuum interlayer between the inner and outer tanks, and there is a large vacuum interlayer between the outermost side of MLI and the inner wall of the outer tank. It is unknown whether the insulation performance can be improved if we install ACS in the mentioned vacuum interlayer and separate a portion of the MLI to be installed on the outer surface of ACS. In this configuration, the number of inner MLI (IMLI) layers and the ACS position are interdependent, a coupling that has not been thoroughly investigated. Therefore, thermodynamic models for MLI, MLI-LNCS, and MLI-VHVCS schemes were developed based on the Layer-by-Layer method. By applying Robin boundary conditions, the temperature distribution and heat leakage of the MLI scheme were predicted. Considering the coupled effects of IMLI layer count and ACS position, a co-optimization strategy was adopted, based on an alternating iterative search algorithm. The results indicate that for the MLI-LNCS scheme, the optimal number of IMLI layers and LNCS position are 36 layers and 49%, respectively. For the MLI-VHVCS scheme, the optimal values are 21 layers and 39%, respectively. Compared to conventional MLI, the MLI-LNCS scheme achieves an 88.09% reduction in heat leakage. However, this improvement involves increased system complexity and higher operational costs from LN2 circulation. In contrast, the MLI-VHVCS scheme achieves a 62.74% reduction in heat leakage, demonstrating that using sensible heat from cryogenic vapor can significantly improve the thermal insulation performance of LH2 storage tanks. The work of this paper provides a reference for the design and optimization of the insulation scheme of LH2 storage tanks. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

13 pages, 1265 KB  
Article
Effect of Recycling on the Thermal and Rheological Properties of PP/MWCNT Composites Used as Liner Materials
by Attila Bata, Ferenc Ronkay, Caizhi Zhang and Péter Gerse
Polymers 2025, 17(16), 2178; https://doi.org/10.3390/polym17162178 - 8 Aug 2025
Viewed by 442
Abstract
In this study, we developed polypropylene-based nanocomposites using different (0.3, 0.5, and 1 wt%) fillers of multi-walled carbon nanotubes (MWCNTs), with a particular focus on their applicability as lining materials for Type IV hydrogen storage tanks. The aim of this research was to [...] Read more.
In this study, we developed polypropylene-based nanocomposites using different (0.3, 0.5, and 1 wt%) fillers of multi-walled carbon nanotubes (MWCNTs), with a particular focus on their applicability as lining materials for Type IV hydrogen storage tanks. The aim of this research was to improve the thermal stability and rheological behavior of PP, while also evaluating the recyclability of the resulting composites in order to support sustainability goals. A realistic recycling approach was simulated by producing original and regranulated (REG) samples using a twin-screw extruder. Thermal analysis showed that the incorporation of MWCNTs promoted crystallization, increasing both the degree of crystallinity and lamellar thickness, which are beneficial factors in terms of reducing gas permeability. Rheological tests showed increased storage and loss moduli in both nanocomposites and their recycled counterparts, especially at low frequencies. It is noteworthy that in REG samples with 0.3 and 1 wt% content, the zero-shear viscosity increased by approximately 50% and 90%, respectively, compared to pure PP. In our research, we produced nanocomposites that could offer significant advances in the field of hydrogen storage and liner materials, while the results of the regranulated composites could further enhance the sustainability of our materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

22 pages, 5509 KB  
Article
Kinetic Analysis of Thermal Degradation of Styrene–Butadiene Rubber Compounds Under Different Aging Conditions
by Imen Hamouda, Masoud Tayefi, Mostafa Eesaee, Meysam Hassanipour and Phuong Nguyen-Tri
J. Compos. Sci. 2025, 9(8), 420; https://doi.org/10.3390/jcs9080420 - 6 Aug 2025
Viewed by 790
Abstract
This study examined the impact of storage and operational aging on the thermal stability, structural degradation, and electrical properties of styrene–butadiene rubber (SBR) compound by analyzing three distinct materials: a laboratory-stored sample, an operationally aged one, and an original unaged reference. Thermal degradation [...] Read more.
This study examined the impact of storage and operational aging on the thermal stability, structural degradation, and electrical properties of styrene–butadiene rubber (SBR) compound by analyzing three distinct materials: a laboratory-stored sample, an operationally aged one, and an original unaged reference. Thermal degradation was analyzed through thermogravimetric analysis (TGA), which examined weight loss as a function of temperature and time at different heating rates. Results showed that the onset temperature and peak position in the 457 °C to 483 °C range remained stable. The activation energy (Ea) was determined using the Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO), and Friedman methods, with the original unaged sample’s (OUS) Ea averaging 203.7 kJ/mol, decreasing to 163.47 kJ/mol in the laboratory-stored sample (LSS), and increasing to 224.18 kJ/mol in the operationally aged sample (OAS). The Toop equation was applied to estimate the thermal degradation lifetime at a 50% conversion rate. Since the material had been exposed to electricity, the evolution of electrical conductivity was studied and found to have remained stable after storage at around 0.070 S/cm. However, after operational aging, it showed a considerable increase in conductivity, to 0.321 S/cm. Scanning Electron Microscopy (SEM) was employed to analyze microstructural degradation and chemical changes, providing insights into the impact of aging on thermal stability and electrical properties. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

15 pages, 3003 KB  
Article
Experimental Investigations on Sustainable Dual-Biomass-Based Composite Phase Change Materials for Energy-Efficient Building Applications
by Zhiwei Sun, Wei Wen, Jiayu Wu, Jingjing Shao, Wei Cai, Xiaodong Wen, Chaoen Li, Haijin Guo, Yin Tang, Meng Wang, Dongjing Liu and Yang He
Materials 2025, 18(15), 3632; https://doi.org/10.3390/ma18153632 - 1 Aug 2025
Viewed by 340
Abstract
The incorporation of phase change material (PCM) can enhance wall thermal performance and indoor thermal comfort, but practical applications still face challenges related to high costs and potential leakage issues. In this study, a novel dual-biomass-based shape-stabilized PCM (Bio-SSPCM) was proposed, wherein waste [...] Read more.
The incorporation of phase change material (PCM) can enhance wall thermal performance and indoor thermal comfort, but practical applications still face challenges related to high costs and potential leakage issues. In this study, a novel dual-biomass-based shape-stabilized PCM (Bio-SSPCM) was proposed, wherein waste cooking fat and waste reed straw were, respectively, incorporated as the PCM substance and supporting material. The waste fat (lard) consisted of both saturated and unsaturated fatty acid glycerides, exhibiting a melting point about 21.2–41.1 °C and a melting enthalpy value of 40 J/g. Reed straw was carbonized to form a sustainable porous biochar supporting matrix, which was used for the vacuum adsorption of waste fat. The results demonstrate that the as-prepared dual-Bio-SSPCM exhibited excellent thermal performance, characterized by a latent heat capacity of 25.4 J/g. With the addition of 4 wt% of expanded graphite (EG), the thermal conductivity of the composite PCM reached 1.132 W/(m·K), which was 5.4 times higher than that of the primary lard. The thermal properties of the Bio-SSPCM were characterized using an analog T-history method. The results demonstrated that the dual-Bio-SSPCM exhibited exceptional and rapid heat storage and exothermic capabilities. The dual-Bio-SSPCM, prepared from waste cooking fat and reed straw, can be considered as environmentally friendly construction material for energy storage in line with the principles of the circular economy. Full article
(This article belongs to the Special Issue Eco-Friendly Intelligent Infrastructures Materials)
Show Figures

Graphical abstract

17 pages, 4072 KB  
Article
Mechanistic Insights into Brine Domain Assembly Regulated by Natural Potential Field: A Molecular Dynamics Exploration in Porous Media
by Xiaoman Leng, Yajun Wang, Yueying Wang, Zhixue Sun, Shuangyan Kou, Ruidong Wu, Yifan Xu and Yufeng Jiang
Processes 2025, 13(8), 2355; https://doi.org/10.3390/pr13082355 - 24 Jul 2025
Viewed by 228
Abstract
The behavior of brine solution in the porous media of the strata is of great significance for geological environment regulation. In this study, a molecular dynamics model with silicon dioxide walls was constructed to reveal the regulatory mechanism of the natural potential of [...] Read more.
The behavior of brine solution in the porous media of the strata is of great significance for geological environment regulation. In this study, a molecular dynamics model with silicon dioxide walls was constructed to reveal the regulatory mechanism of the natural potential of the electric field on cluster aggregation. It was found that the critical electric field intensity was 7 V/m. When the electric field intensity was lower than this value, the aggregation rate was only increased by 0.73 times due to thermal motion; when it was higher than this value, the rate increased sharply by 3.2 times due to the dominant effect of electric field force. The microscopic structure analysis indicated that the strong electric field induced the transformation of clusters from fractal structure into an amorphous structure (the index of the order degree increased by 58%). The directional regulation experiments confirmed that the axial electric field led to anisotropic growth (the index of uniformity increased by 0.58 ± 0.04), and the rotational electric field could achieve a three-dimensional uniform distribution (the index of uniformity increased by 42%). This study provides theoretical support for the regulation of brine behavior and the optimization of geological energy storage. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 2560 KB  
Article
Numerical Simulation Study of Heat Transfer Fluid Boiling Effects on Phase Change Material in Latent Heat Thermal Energy Storage Units
by Minghao Yu, Xun Zheng, Jing Liu, Dong Niu, Huaqiang Liu and Hongtao Gao
Energies 2025, 18(14), 3836; https://doi.org/10.3390/en18143836 - 18 Jul 2025
Viewed by 315
Abstract
The innovation in thermal storage systems for solar thermal power generation is crucial for achieving efficient utilization of new energy sources. Molten salt has been extensively studied as a phase change material (PCM) for latent heat thermal energy storage systems. In this study, [...] Read more.
The innovation in thermal storage systems for solar thermal power generation is crucial for achieving efficient utilization of new energy sources. Molten salt has been extensively studied as a phase change material (PCM) for latent heat thermal energy storage systems. In this study, a two-dimensional model of a vertical shell-and-tube heat exchanger is developed, utilizing water-steam as the heat transfer fluid (HTF) and phase change material for heat transfer analysis. Through numerical simulations, we explore the interplay between PCM solidification and HTF boiling. The transient results show that tube length affects water boiling duration and PCM solidification thickness. Higher heat transfer fluid flow rates lower solidified PCM temperatures, while lower heat transfer fluid inlet temperatures delay boiling and shorten durations, forming thicker PCM solidification layers. Adding fins to the tube wall boosts heat transfer efficiency by increasing contact area with the phase change material. This extension of boiling time facilitates greater PCM solidification, although it may not always optimize the alignment of bundles within the thermal energy storage system. Full article
(This article belongs to the Special Issue New Advances in Heat Transfer, Energy Conversion and Storage)
Show Figures

Figure 1

35 pages, 2895 KB  
Review
Ventilated Facades for Low-Carbon Buildings: A Review
by Pinar Mert Cuce and Erdem Cuce
Processes 2025, 13(7), 2275; https://doi.org/10.3390/pr13072275 - 17 Jul 2025
Viewed by 1416
Abstract
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding [...] Read more.
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding and the insulated structure, address that challenge. First, the paper categorises VFs by structural configuration, ventilation strategy and functional control into four principal families: double-skin, rainscreen, hybrid/adaptive and active–passive systems, with further extensions such as BIPV, PCM and green-wall integrations that couple energy generation or storage with envelope performance. Heat-transfer analysis shows that the cavity interrupts conductive paths, promotes buoyancy- or wind-driven convection, and curtails radiative exchange. Key design parameters, including cavity depth, vent-area ratio, airflow velocity and surface emissivity, govern this balance, while hybrid ventilation offers the most excellent peak-load mitigation with modest energy input. A synthesis of simulation and field studies indicates that properly detailed VFs reduce envelope cooling loads by 20–55% across diverse climates and cut winter heating demand by 10–20% when vents are seasonally managed or coupled with heat-recovery devices. These thermal benefits translate into steadier interior surface temperatures, lower radiant asymmetry and fewer drafts, thereby expanding the hours occupants remain within comfort bands without mechanical conditioning. Climate-responsive guidance emerges in tropical and arid regions, favouring highly ventilated, low-absorptance cladding; temperate and continental zones gain from adaptive vents, movable insulation or PCM layers; multi-skin adaptive facades promise balanced year-round savings by re-configuring in real time. Overall, the review demonstrates that VFs constitute a versatile, passive-plus platform for low-carbon buildings, simultaneously enhancing energy efficiency, durability and indoor comfort. Future advances in smart controls, bio-based materials and integrated energy-recovery systems are poised to unlock further performance gains and accelerate the sector’s transition to net-zero. Emerging multifunctional materials such as phase-change composites, nanostructured coatings, and perovskite-integrated systems also show promise in enhancing facade adaptability and energy responsiveness. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

10 pages, 2486 KB  
Article
Performance of Miniature Carbon Nanotube Field Emission Pressure Sensor for X-Ray Source Applications
by Huizi Zhou, Wenguang Peng, Weijun Huang, Nini Ye and Changkun Dong
Micromachines 2025, 16(7), 817; https://doi.org/10.3390/mi16070817 - 17 Jul 2025
Viewed by 1847
Abstract
There is a lack of an effective approach to measure vacuum conditions inside sealed vacuum electronic devices (VEDs) and other small-space vacuum instruments. In this study, the application performance of an innovative low-pressure gas sensor based on the emission enhancements of multi-walled carbon [...] Read more.
There is a lack of an effective approach to measure vacuum conditions inside sealed vacuum electronic devices (VEDs) and other small-space vacuum instruments. In this study, the application performance of an innovative low-pressure gas sensor based on the emission enhancements of multi-walled carbon nanotube (MWCNT) field emitters was investigated, and the in situ vacuum performance of X-ray tubes was studied for the advantages of miniature dimension and having low power consumption, extremely low outgassing, and low thermal disturbance compared to conventional ionization gauges. The MWCNT emitters with high crystallinity presented good pressure sensing performance for nitrogen, hydrogen, and an air mixture in the range of 10−7 to 10−3 Pa. The miniature MWCNT sensor is able to work and remain stable with high-temperature baking, important for VED applications. The sensor monitored the in situ pressures of the sealed X-ray tubes successfully with high-power operations and a long-term storage of over two years. The investigation showed that the vacuum of the sealed X-ray tube is typical at a low 10−4 Pa level, and pre-sealing degassing treatments are able to make the X-ray tube work under high vacuum levels with less outgassing and keep a stable high vacuum for a long period of time. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

29 pages, 3584 KB  
Review
Energy Efficiency in Buildings Through the Application of Phase Change Materials: An In-Depth Analysis of the Integration of Spent Coffee Grounds (SCGs)
by Abir Hmida, Fouad Erchiqui, Abdelkader Laafer and Mahmoud Bourouis
Energies 2025, 18(14), 3629; https://doi.org/10.3390/en18143629 - 9 Jul 2025
Viewed by 812
Abstract
Energy demand in the building sector has drastically increased due to rising occupant comfort requirements, accounting for 30% of the world’s final energy consumption and 26% of global carbon emissions. Thus, to improve building efficiency in heating and cooling applications, phase change material [...] Read more.
Energy demand in the building sector has drastically increased due to rising occupant comfort requirements, accounting for 30% of the world’s final energy consumption and 26% of global carbon emissions. Thus, to improve building efficiency in heating and cooling applications, phase change material (PCM)-based passive thermal management techniques have been considered due to their energy storage capabilities. This study provides a comprehensive review of the research on PCM applications, types, and encapsulation forms. Various solutions have been proposed to enhance PCM performance. In this review, the authors suggest new methods to improve PCM efficiency by using the multilayered wall technique, which involves employing two layers of a hybrid bio-composite—specifically, the hybrid hemp/wood fiber-reinforced composite with a polypropylene (PP) matrix—along with a layer of PCM made from spent coffee grounds (SCGs). Previous studies have shown that oil extracted from SCGs demonstrates good thermal and chemical stability, as it contains approximately 60–80% fatty acids, with a phase transition temperature of approximately 4.5 ± 0.72 °C and latent heat values of 51.15 ± 1.46 kJ/kg. Full article
Show Figures

Figure 1

21 pages, 5735 KB  
Article
Numerical Investigation Using Machine Learning Process Combination of Bio PCM and Solar Salt for Thermal Energy Storage Applications
by Ravi Kumar Kottala, Sankaraiah Mogaligunta, Makham Satyanarayana Gupta, Seepana Praveenkumar, Ramakrishna Raghutu, Kiran Kumar Patro, Achanta Sampath Dakshina Murthy and Dharmaiah Gurram
Symmetry 2025, 17(7), 998; https://doi.org/10.3390/sym17070998 - 25 Jun 2025
Viewed by 533
Abstract
TGA kinetic analysis can assess the thermal stability and degradation properties of PCMs by calculating activation energies and onset degradation temperatures, which are critical elements when developing optimal PCM composition and assessing long-term performance in thermal energy storage applications. In this study, we [...] Read more.
TGA kinetic analysis can assess the thermal stability and degradation properties of PCMs by calculating activation energies and onset degradation temperatures, which are critical elements when developing optimal PCM composition and assessing long-term performance in thermal energy storage applications. In this study, we utilize a thermogravimetric analyzer to examine the thermal stability of both solar salt phase change material (i.e., commonly used in medium-temperature applications) (NaNO3 + KNO3) and a composite eutectic PCM mixture (i.e., PCM with 20% biochar). The activation energies of both the pure solar salt and composite solar salt PCM sample were evaluated using a variety of different kinetic models such as Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO), and Starink. For pure PCM, the mean activation energies calculated using the KAS, FWO, and Starink methods are 581.73 kJ/mol, 570.47 kJ/mol, and 581.31 kJ/mol, respectively. Conversely, for the composite solar salt PCM sample, the calculated experimental average activation energies are 51.67 kJ/mol, 62.124 kJ/mol, and 51.383 kJ/mol. Additionally, various machine learning models, such as linear regression, decision tree regression, gradient boosting regression, random forest regression, polynomial regression, Gaussian process regression, and KNN regression models, are developed to predict the degradation behaviour of pure and composite solar salts under different loading rates. In the machine learning models, the mass loss of the samples is the output variable and the input features are PCM type, heating rate, and temperature. The machine learning models had a great prediction performance based on experimental TGA data, with KNN regression outperforming the other models by achieving the lowest RMSE of 0.0318 and the highest R2 score of 0.977. Full article
Show Figures

Figure 1

18 pages, 2759 KB  
Article
Microstructural Characteristics of Earth Materials and the Induced Latent Heat on Indoor Environment
by Shenwei Yu, Jun Mu and Zhipeng Liang
Sustainability 2025, 17(13), 5731; https://doi.org/10.3390/su17135731 - 21 Jun 2025
Viewed by 555
Abstract
Earth materials in construction demonstrate significant potential attributed to their accessibility, recyclability, and low energy demands for processing. Modern techniques have enhanced their mechanical strength and durability, enabling their application in load-bearing and infill walls while preserving ecological benefits. However, existing studies on [...] Read more.
Earth materials in construction demonstrate significant potential attributed to their accessibility, recyclability, and low energy demands for processing. Modern techniques have enhanced their mechanical strength and durability, enabling their application in load-bearing and infill walls while preserving ecological benefits. However, existing studies on indoor heat–humidity regulation primarily emphasize material parameters and macro-level performance. Moreover, the dynamic interactions between the unique thermal storage–release mechanisms and indoor environments have not been systematically analyzed. With the Kelvin equation, capillary mechanics, adsorption theories, and microstructural analysis were integrated in this study to quantify cyclic capillary condensation and evaporation in microvoids. The results reveal that earth materials contain abundant medium-sized pores (19.85–53.83 nm) sustaining vapor exchange with their surroundings. Capillary condensation occurs 0.86–0.96 times the planar surface vapor pressure, influenced by pore size (negatively correlated) and temperature (negatively correlated). During the daytime, capillary evaporation occurs in the nanopores of the raw earth wall under the influence of the outdoor environment’s cyclical temperature and humidity. This process absorbs heat from the indoor environment and raises the ambient humidity. During the nighttime, capillary condensation occurs in the pores, releasing heat to the indoor area and absorbing moisture from the environment, contributing to the balance of the indoor thermal environment of the earth buildings. The findings lay a scientific foundation for quantitatively evaluating earth buildings’ indoor climate control performance, supporting their integration into green building systems. This research bridges knowledge gaps in micro-to-macro thermal dynamics while advancing the ecological optimization of materials for sustainable architecture. Full article
Show Figures

Figure 1

Back to TopTop