Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (143)

Search Parameters:
Keywords = thermo-mechanical behaviour

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10004 KB  
Article
Deposition-Induced Thermo-Mechanical Strain Behaviour of Magnetite-Filled PLA Filament in Fused Filament Fabrication Under Varying Printing Conditions
by Boubakeur Mecheri and Sofiane Guessasma
Polymers 2025, 17(17), 2430; https://doi.org/10.3390/polym17172430 - 8 Sep 2025
Viewed by 379
Abstract
Residual stresses and internal strains in 3D printing can lead to issues such as cracking, warping, and delamination—challenges that are amplified when using functional composite materials like magnetic PLA filaments. This study investigates the thermo-mechanical strain evolution during fused filament fabrication (FFF) of [...] Read more.
Residual stresses and internal strains in 3D printing can lead to issues such as cracking, warping, and delamination—challenges that are amplified when using functional composite materials like magnetic PLA filaments. This study investigates the thermo-mechanical strain evolution during fused filament fabrication (FFF) of magnetite-filled PLA using an integrated methodology combining strain gauge sensors, high-resolution infrared thermal imaging, and synchrotron X-ray microtomography. Printing parameters, including nozzle temperature (190–220 °C), build platform temperature (30–100 °C), printing speed (30–60 mm/s), and cooling strategy (fan on/off) were systematically varied to evaluate their influence. Results reveal steep thermal gradients along the build direction (up to −1 °C/µm), residual strain magnitudes reaching 0.1 µε, and enhanced viscoelastic creep at elevated platform temperatures. The addition of magnetic particles modifies heat distribution and strain evolution, leading to strong sensitivity to process conditions. These findings provide valuable insight into the complex thermo-mechanical interactions governing the structural integrity of magnetically functionalized PLA composites in additive manufacturing. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

16 pages, 6283 KB  
Article
In Situ Investigation of the Frictional Behaviour in Friction-Spinning
by Eugen Wiens, Dina Hijazi, Maik Jüttner, Werner Homberg, Mark Dennis Kensy and Wolfgang Tillmann
J. Manuf. Mater. Process. 2025, 9(9), 302; https://doi.org/10.3390/jmmp9090302 - 1 Sep 2025
Viewed by 514
Abstract
Friction-spinning is an incremental thermomechanical forming process that has huge potential due to its simple yet effective mechanism of utilising friction between a rotating workpiece and a forming tool to increase the workpiece’s temperature, which reduces the required forces and increases formability during [...] Read more.
Friction-spinning is an incremental thermomechanical forming process that has huge potential due to its simple yet effective mechanism of utilising friction between a rotating workpiece and a forming tool to increase the workpiece’s temperature, which reduces the required forces and increases formability during the forming process. Despite the simplicity of the process’s setup, the thermomechanical loads and high relative velocities involved, especially in the contact zone, make the application of classical methods for characterising friction inaccurate. It is therefore essential to find a way to describe the frictional behaviour under real process conditions to be able to gain a holistic understanding of the process and the effect of the adjustable parameters on the outcome, especially the temperature. To achieve this goal, an experimental setup that considers the actual process boundary conditions in forming tubes made of EN AW-6060 was used to measure in situ normal and frictional forces, in addition to process temperatures, under varying rotational speed and feed rate values. Full article
Show Figures

Figure 1

27 pages, 3818 KB  
Article
A Novel Master Curve Formulation with Explicitly Incorporated Temperature Dependence for Asphalt Mixtures: A Model Proposal with a Case Study
by Gilberto Martinez-Arguelles, Diego Casas, Rita Peñabaena-Niebles, Oswaldo Guerrero-Bustamante and Rodrigo Polo-Mendoza
Infrastructures 2025, 10(9), 227; https://doi.org/10.3390/infrastructures10090227 - 28 Aug 2025
Viewed by 444
Abstract
Accurately modelling and simulating the stiffness modulus of asphalt mixtures is essential for reliable pavement design and performance prediction under varying environmental and loading conditions. The preceding is commonly achieved through master curves, which relate stiffness to loading frequency at a reference temperature. [...] Read more.
Accurately modelling and simulating the stiffness modulus of asphalt mixtures is essential for reliable pavement design and performance prediction under varying environmental and loading conditions. The preceding is commonly achieved through master curves, which relate stiffness to loading frequency at a reference temperature. However, conventional master curves face two primary limitations. Firstly, temperature is not treated as a state variable; instead, its effect is indirectly considered through shift factors, which can introduce inaccuracies due to their lack of thermodynamic consistency across the entire range of possible temperatures. Secondly, conventional master curves often encounter convergence difficulties when calibrated with experimental data constrained to a narrow frequency spectrum. In order to address these shortcomings, this investigation proposes a novel formulation known as the Thermo-Stiffness Integration (TSI) model, which explicitly incorporates both temperature and frequency as state variables to predict the stiffness modulus directly, without relying on supplementary expressions such as shift factors. The TSI model is built on thermodynamics-based principles (such as Eyring’s rate theory and activation free energy) and leverages the time–temperature superposition principle to create a physically consistent representation of the mechanical behaviour of asphalt mixtures. This manuscript presents the development of the TSI model along with its application in a case study involving eight asphalt mixtures, including four hot-mix asphalts and four warm-mix asphalts. Each type of mixture contains recycled concrete aggregates at replacement levels of 0%, 15%, 30%, and 45% as partial substitutes for coarse natural aggregates. This diverse set of materials enables a robust evaluation of the model’s performance, even under non-traditional mixture designs. For this case study, the TSI model enhances computational stability by approximately 4 to 45 times compared to conventional master curves. Thus, the main contribution of this research lies in establishing a valuable mathematical tool for both scientists and practitioners aiming to improve the design and performance assessment of asphalt mixtures in a more physically realistic and computationally stable approach. Full article
Show Figures

Figure 1

18 pages, 13864 KB  
Article
Thermomechanical Analysis of the GTM 400 MOD Turbojet Engine Nozzle During Kerosene and Hydrogen Co-Combustion
by Łukasz Brodzik, Bartosz Ciupek, Andrzej Frąckowiak and Dominik Schroeder
Energies 2025, 18(16), 4382; https://doi.org/10.3390/en18164382 - 17 Aug 2025
Viewed by 552
Abstract
This study investigated the thermomechanical behaviour of the nozzle of a GTM 400MOD miniature turbojet engine during combustion of aviation kerosene and co-combustion of kerosene with hydrogen. Numerical analysis was based on experiments conducted on a dedicated test rig at engine speeds ranging [...] Read more.
This study investigated the thermomechanical behaviour of the nozzle of a GTM 400MOD miniature turbojet engine during combustion of aviation kerosene and co-combustion of kerosene with hydrogen. Numerical analysis was based on experiments conducted on a dedicated test rig at engine speeds ranging from 31,630 rpm to 65,830 rpm, providing data on the temperature and dynamic pressure at the nozzle outlet. These data served as input to numerical analyses using the ANSYS Fluent, Steady-State Thermal, and Static Structural modules to evaluate exhaust gas flow, temperature distribution, and stress and strain states. The paper performed a basic analysis with additional simplifications, and an extended analysis that took into account, among other things, thermal radiation in the flow. The results of the basic analysis show that, at comparable thrust levels, co-firing and pure kerosene combustion yield similar nozzle temperature distributions, with maximum wall temperatures ranging from 978 K to 1090 K, which remain below the allowable limit of 1193 K (920 °C). Maximum stresses reached approximately 261 MPa, close to but not exceeding the yield strength of 316 stainless steel. Maximum nozzle deformation did not exceed 0.8 mm. Small dynamic pressure fluctuations were observed; For example, at 31,630 rpm, co-firing increased the maximum dynamic pressure from 1.56 × 104 Pa to 1.63 × 104 Pa, while at 47,110 rpm, it decreased from 4.05 × 104 Pa to 3.89 × 104 Pa. The extended analysis yielded similar values for the nozzle temperature and pressure distributions. Stress and strain increased by more than 76% and 78%, respectively, compared to the baseline analysis. The results confirm that hydrogen co-firing does not significantly alter the nozzle thermomechanical loads, suggesting that this emission-free fuel can be used without negatively impacting the nozzle’s structural integrity under the tested conditions. The methodology, combining targeted experimental measurements with coupled CFD and FEM simulations, provides a reliable framework for assessing material safety margins in alternative fuel applications in small turbojet engines. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

15 pages, 6254 KB  
Article
Influence of Alpha/Gamma-Stabilizing Elements on the Hot Deformation Behaviour of Ferritic Stainless Steel
by Andrés Núñez, Irene Collado, Marta Muratori, Andrés Ruiz, Juan F. Almagro and David L. Sales
J. Manuf. Mater. Process. 2025, 9(8), 265; https://doi.org/10.3390/jmmp9080265 - 6 Aug 2025
Viewed by 532
Abstract
This study investigates the hot deformation behaviour and microstructural evolution of two AISI 430 ferritic stainless steel variants: 0A (basic) and 1C (modified). These variants primarily differ in chemical composition, with 0A containing higher austenite-stabilizing elements (C, N) compared to 1C, which features [...] Read more.
This study investigates the hot deformation behaviour and microstructural evolution of two AISI 430 ferritic stainless steel variants: 0A (basic) and 1C (modified). These variants primarily differ in chemical composition, with 0A containing higher austenite-stabilizing elements (C, N) compared to 1C, which features lower interstitial content and slightly higher Si and Cr. This research aimed to optimize hot rolling conditions for enhanced forming properties. Uniaxial hot compression tests were conducted using a Gleeble thermo-mechanical system between 850 and 990 °C at a strain rate of 3.3 s−1, simulating industrial finishing mill conditions. Analysis of flow curves, coupled with detailed microstructural characterization using electron backscatter diffraction, revealed distinct dynamic restoration mechanisms influencing each material’s response. Thermodynamic simulations confirmed significant austenite formation in both materials within the tested temperature range, notably affecting their deformation behaviour despite their initial ferritic state. Material 0A consistently exhibited a strong tendency towards dynamic recrystallization (DRX) across a wider temperature range, particularly at 850 °C. DRX led to a microstructure with a high concentration of low-angle grain boundaries and sharp deformation textures, actively reorienting grains towards energetically favourable configurations. However, under this condition, DRX did not fully complete the recrystallization process. In contrast, material 1C showed greater activity of both dynamic recovery and DRX, leading to a much more advanced state of grain refinement and recrystallization compared to 0A. This indicates that the composition of 1C helps mitigate the strong influence of the deformation temperature on the crystallographic texture, leading to a weaker texture overall than 0A. Full article
Show Figures

Figure 1

22 pages, 25395 KB  
Article
Hot Deformation and Predictive Modelling of β-Ti-15Mo Alloy: Linking Flow Stress, ω-Phase Evolution, and Thermomechanical Behaviour
by Arthur de Bribean Guerra, Alberto Moreira Jorge Junior, Guilherme Yuuki Koga and Claudemiro Bolfarini
Metals 2025, 15(8), 877; https://doi.org/10.3390/met15080877 - 6 Aug 2025
Viewed by 441
Abstract
This study investigates the hot deformation behaviour and flow stress prediction of metastable β-Ti-15Mo alloy, a promising material for biomedical applications requiring strength–modulus optimisation and thermomechanical tunability. Isothermal compression tests were performed within the temperature range of 923–1173 K and at strain rates [...] Read more.
This study investigates the hot deformation behaviour and flow stress prediction of metastable β-Ti-15Mo alloy, a promising material for biomedical applications requiring strength–modulus optimisation and thermomechanical tunability. Isothermal compression tests were performed within the temperature range of 923–1173 K and at strain rates of 0.17, 1.72, and 17.2 s1 to assess the material’s response under industrially relevant hot working conditions. The alloy showed significant sensitivity to temperature and strain rate, with dynamic recovery (DRV) and dynamic recrystallisation (DRX) dominating the softening behaviour depending on the conditions. A strain-compensated Arrhenius-type constitutive model was developed and validated, resulting in an apparent activation energy of approximately 234 kJ/mol. Zener–Hollomon parameter analysis confirmed a transition in deformation mechanisms. Although microstructural and diffraction data suggest possible contributions from nanoscale phase transformations, including ω-phase dissolution at high temperatures, these aspects remain to be fully elucidated. The model offers reliable predictions of flow behaviour and supports optimisation of thermomechanical processing routes for biomedical β-Ti alloys. Full article
(This article belongs to the Special Issue Hot Forming/Processing of Metals and Alloys)
Show Figures

Graphical abstract

18 pages, 20927 KB  
Article
Numerical and Experimental Study on the Deformation of Adaptive Elastomer Fibre-Reinforced Composites with Embedded Shape Memory Alloy Wire Actuators
by Holger Böhm, Andreas Hornig, Chokri Cherif and Maik Gude
J. Compos. Sci. 2025, 9(7), 371; https://doi.org/10.3390/jcs9070371 - 16 Jul 2025
Viewed by 539
Abstract
In this work, a finite element modelling methodology is presented for the prediction of the bending behaviour of a glass fibre-reinforced elastomer composite with embedded shape memory alloy (SMA) wire actuators. Three configurations of a multi-layered composite with differences in structural stiffness and [...] Read more.
In this work, a finite element modelling methodology is presented for the prediction of the bending behaviour of a glass fibre-reinforced elastomer composite with embedded shape memory alloy (SMA) wire actuators. Three configurations of a multi-layered composite with differences in structural stiffness and thickness are experimentally and numerically analysed. The bending experiments are realised by Joule heating of the SMA, resulting in deflection angles of up to 58 deg. It is shown that a local degradation in the structural stiffness in the form of a hinge significantly increases the amount of deflection. Modelling is fully elaborated in the finite element software ANSYS, based on material characterisation experiments of the composite and SMA materials. The thermomechanical material behaviour of the SMA is modelled via the Souza–Auricchio model, based on differential scanning calorimetry (DSC) and isothermal tensile experiments. The methodology allows for the consideration of an initial pre-stretch for straight-line positioned SMA wires and an evaluation of their phase transformation state during activation. The results show a good agreement of the bending angle for all configurations at the activation temperature of 120 °C reached in the experiments. The presented methodology enables an efficient design and evaluation process for soft robot structures with embedded SMA actuator wires. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

13 pages, 2802 KB  
Article
Redistribution of Residual Stresses in Titanium Alloy Butt-Welded Thick Plates Due to Wire-Cut Electrical Discharge Machining
by Qifeng Wu, Cunrui Bo, Kaixiang Sun and Liangbi Li
Metals 2025, 15(7), 750; https://doi.org/10.3390/met15070750 - 2 Jul 2025
Viewed by 357
Abstract
Welding and cutting behaviour may affect the mechanical properties of titanium alloy welded structures, which may have some impact on the safety assessment of the structure. This study analyses changes in residual stress in Ti80 butt-welded thick plates before and after wire-cut electric [...] Read more.
Welding and cutting behaviour may affect the mechanical properties of titanium alloy welded structures, which may have some impact on the safety assessment of the structure. This study analyses changes in residual stress in Ti80 butt-welded thick plates before and after wire-cut electric discharge machining, using numerical simulations based on thermo-elastoplastic theory and the element birth and death method, validated by X-ray non-destructive testing. The transverse residual tensile stress near the weld exhibits an asymmetric bimodal distribution, while the longitudinal stress is significantly higher than the transverse stress. Wire-cut electric discharge machining had minimal influence on the transverse residual stress distribution but led to partial relief of the longitudinal residual tensile stress. The maximum reductions in transverse and longitudinal welding residual tensile stresses are approximately 60% and 36%, respectively. The findings indicate that wire-cut electric discharge machining can alter surface residual stresses in Ti alloy butt-welded thick plates. This study also establishes a numerical simulation methodology for analysing welding residual stresses and their evolution due to wire-cut electric discharge machining. The results provide a theoretical basis for analysing the structural strength and safety of Ti-alloy-based deep-sea submersibles. Full article
Show Figures

Figure 1

14 pages, 1520 KB  
Article
Thermomechanical Parameters Modelling of Spring Force Elements Made of Shape Memory Alloys
by Olga Łastowska, Vitaliy Polishchuk and Andrii Poznanskyi
Materials 2025, 18(13), 3055; https://doi.org/10.3390/ma18133055 - 27 Jun 2025
Viewed by 460
Abstract
This study presents a phenomenological model for predicting the thermomechanical behaviour of spring-type actuators made of shape memory alloys (SMAs). The model incorporates the kinetics of martensite–austenite phase transitions as a function of temperature and applied stress. The primary innovation is the inclusion [...] Read more.
This study presents a phenomenological model for predicting the thermomechanical behaviour of spring-type actuators made of shape memory alloys (SMAs). The model incorporates the kinetics of martensite–austenite phase transitions as a function of temperature and applied stress. The primary innovation is the inclusion of a scalar internal variable that represents the evolution of the phase transformation within a phenomenological macroscopic model. This approach enables the deformation–force–temperature behaviour of SMA-based spring elements under cyclic loading to be accurately described. A set of constitutive equations was derived to describe reversible and residual strains, along with transformation start and finish conditions. Model parameters were calibrated using experimental data from VSP-1 and TN-1K SMA springs that were subjected to thermal cycling. The validation results show a high correlation between the theoretical predictions and the experimental data, with deviation margins of less than 6.5%. The model was then applied to designing and analysing thermosensitive actuator mechanisms for temperature control systems. This yielded accurate deformation–force characteristics, demonstrating low inertia and high repeatability. This approach enables the efficient prediction and improvement of the performance of SMA-based spring elements in actuators, making it relevant for adaptive systems in marine and aerospace applications. Full article
Show Figures

Figure 1

25 pages, 6761 KB  
Article
Laboratory Study on the Stiffening Phenomena Caused by Aging and by the Addition of Kraft Lignin at Low Dosages Measured by Physico-Chemical and Rheological Tests on a Soft Bitumen
by Gabriel Orozco, Sébastien Lamothe, Wesam Al-Falahat, Jean-Claude Carret and Alan Carter
Materials 2025, 18(10), 2209; https://doi.org/10.3390/ma18102209 - 10 May 2025
Viewed by 655
Abstract
This study investigates the stiffening phenomena caused by aging and low-dosage Kraft lignin addition on a soft bitumen (PG58S–28)- used in cold climate regions. Through a combination of physico-chemical and rheological analyses, including Fourier-transform infrared spectroscopy (FTIR), Brookfield rheometer viscosity (BRV), dynamic shear [...] Read more.
This study investigates the stiffening phenomena caused by aging and low-dosage Kraft lignin addition on a soft bitumen (PG58S–28)- used in cold climate regions. Through a combination of physico-chemical and rheological analyses, including Fourier-transform infrared spectroscopy (FTIR), Brookfield rheometer viscosity (BRV), dynamic shear rheometer (DSR), multiple stress creep recovery (MSCR), bending beam rheometer (BBR), and complex shear modulus (G*) tests, the impacts of lignin modification and thermo-oxidative aging are evaluated. In particular, the anti-aging potential of lignin is scrutinized. The results indicate that while the carbonyl index effectively tracks bitumen aging, the sulphoxide index is less reliable due to high initial S=O bond content in Kraft lignin and greater repeatability variability. Standard rheological tests (BRV, DSR, MSCR, and BBR) show that long-term aging significantly increases bitumen stiffness, while lignin modification leads to a moderate stiffening effect but does not exhibit any noticeable anti-aging properties. The G* analysis confirms that aging strongly influences bitumen rigidity, particularly at low and intermediate equivalent frequencies, while lignin acts similarly to an inert filler, with minimal effects on linear viscoelastic (LVE) behaviour. Overall, the study concludes that the addition of Kraft lignin at low dosage does not alter the fundamental aging mechanisms of bitumen, nor does it provide significant antioxidant benefits. These findings contribute to the ongoing discussion on bio-based bitumen modifiers and their role in sustainable pavement materials. Full article
Show Figures

Figure 1

25 pages, 3353 KB  
Article
Thermo-Physical Behaviour of Thermoplastic Composite Pipe for Oil and Gas Applications
by Obinna Okolie, Nadimul Haque Faisal, Harvey Jamieson, Arindam Mukherji and James Njuguna
Polymers 2025, 17(8), 1107; https://doi.org/10.3390/polym17081107 - 19 Apr 2025
Viewed by 1063
Abstract
Thermoplastic composite pipes (TCP) consist of three distinct layers—liner, reinforcement, and coating—offering superior advantages over traditional industrial pipes, including flexibility, lightweight construction, and corrosion resistance. This study systematically characterises the thermal properties of TCP layers and their compositions using a multi-method approach. Thermal [...] Read more.
Thermoplastic composite pipes (TCP) consist of three distinct layers—liner, reinforcement, and coating—offering superior advantages over traditional industrial pipes, including flexibility, lightweight construction, and corrosion resistance. This study systematically characterises the thermal properties of TCP layers and their compositions using a multi-method approach. Thermal analysis was conducted through differential scanning calorimetry (DSC) for isothermal and non-isothermal crystallisation, thermogravimetric analysis (TGA) for thermal stability, and Fourier transform infrared spectroscopy (FTIR) for material identification. FTIR confirmed polyethylene as the primary component of TCP, with compositional variations across the layers. TGA results indicated that thermal degradation begins at approximately 200 °C, with complete decomposition at 500 °C. DSC analysis revealed a double melting peak, prompting further investigation into its mechanisms. On-isothermal crystallisation kinetics, analysed at cooling rates of 10 °C/min and 50 °C/min, revealed an anisotropic crystalline growth pattern. Although nucleation occurs uniformly, the subsequent three-dimensional crystalline growth is governed more by the degree of supercooling than by the crystallography of the glass fibres. This underscores the importance of precisely controlling the cooling rate during manufacturing to optimise the anisotropic properties of the reinforced layer. This study also demonstrates the value of FTIR, TGA, and DSC techniques in characterising the thermo-physical behaviour of TCP, offering critical insights into thermal expansion, shrinkage phenomena, and overall material stability. Given the limited body of research on this specific TCP formulation, the findings presented here lay a foundation for both quality enhancement and process optimisation. Moreover, the paper offers a distinctive perspective on the dynamic behaviour, thermal expansion, and long-term performance of TCP in demanding oil and gas environments. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

24 pages, 15226 KB  
Article
Effect of Yarn-Level Fibre Hybridisation on Thermomechanical Behaviour of 3D Woven Orthogonal Flax/E-Glass Composite Laminae
by Nenglong Yang, Zhenmin Zou, Constantinos Soutis, Prasad Potluri and Kali Babu Katnam
J. Compos. Sci. 2025, 9(3), 135; https://doi.org/10.3390/jcs9030135 - 13 Mar 2025
Viewed by 1002
Abstract
This study investigates the novel role of yarn-level fibre hybridisation in tailoring thermomechanical properties and thermal residual stress (TRS) fields in the resin at both micro- and meso-scales of 3D orthogonal-woven flax/E-glass hybrid composites. Unlike previous studies, which primarily focus on macro-scale composite [...] Read more.
This study investigates the novel role of yarn-level fibre hybridisation in tailoring thermomechanical properties and thermal residual stress (TRS) fields in the resin at both micro- and meso-scales of 3D orthogonal-woven flax/E-glass hybrid composites. Unlike previous studies, which primarily focus on macro-scale composite behaviour, this work integrates a two-scale homogenisation scheme. It combines microscale representative volume element (RVE) models and mesoscale repeating unit cell (RUC) models to capture the effects of hybridisation from the fibre to lamina scale. The analysis specifically examines the cooling phase from a curing temperature of 100 °C down to 20 °C, where TRS develops due to thermal expansion mismatches. Microstructures are generated employing a random sequential expansion algorithm for RVE models, while weave architecture is generated using the open-source software TexGen 3.13.1 for RUC models. Results demonstrate that yarn-level hybridisation provides a powerful strategy to balance mechanical performance, thermal stability, and residual stress control, revealing its potential for optimising composite design. Stress analysis indicates that under in-plane tensile loading, stress levels in matrix-rich regions remain below 1 MPa, while binder yarns exhibit significant stress concentration, reaching up to 8.71 MPa under shear loading. The study quantifies how varying fibre hybridisation ratios influence stiffness, thermal expansion, and stress concentrations—bridging the gap between microstructural design and macroscopic composite performance. These findings highlight the potential of yarn-level fibre hybridisation in tailoring thermomechanical properties of yarns and laminae. The study also demonstrates its effectiveness in reducing TRS in composite laminae post-manufacturing. Additionally, hybridisation allows for adjusting density requirements, making it suitable for applications where weight and thermal properties are critical. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

34 pages, 4698 KB  
Article
Stat-Space Approach to Three-Dimensional Thermoelastic Half-Space Based on Fractional Order Heat Conduction and Variable Thermal Conductivity Under Moor–Gibson–Thompson Theorem
by Hamdy M. Youssef
Fractal Fract. 2025, 9(3), 145; https://doi.org/10.3390/fractalfract9030145 - 25 Feb 2025
Cited by 1 | Viewed by 666
Abstract
This study presents a mathematical model of a three-dimensional thermoelastic half-space with variable thermal conductivity under the definition of fractional order heat conduction based on the Moor–Gibson–Thompson theorem. The non-dimensional governing equations using Laplace and double Fourier transform methods have been applied to [...] Read more.
This study presents a mathematical model of a three-dimensional thermoelastic half-space with variable thermal conductivity under the definition of fractional order heat conduction based on the Moor–Gibson–Thompson theorem. The non-dimensional governing equations using Laplace and double Fourier transform methods have been applied to a three-dimensional thermoelastic, isotropic, and homogeneous half-space exposed to a rectangular thermal loading pulse with a traction-free surface. The double Fourier transforms and Laplace transform inversions have been computed numerically. The numerical distributions of temperature increment, invariant stress, and invariant strain have been shown and analysed. The fractional order parameter and the variability of thermal conductivity significantly influence all examined functions and the behaviours of the thermomechanical waves. Classifying thermal conductivity as weak, normal, and strong is crucial and closely corresponds to the actual behaviour of the thermal conductivity of thermoelastic materials. Full article
Show Figures

Figure 1

10 pages, 3122 KB  
Proceeding Paper
A Computational Multiphysics Study of a Satellite Thruster
by Marcello A. Lepore, Marzio Piller, Mario Guagliano and Angelo R. Maligno
Eng. Proc. 2025, 85(1), 14; https://doi.org/10.3390/engproc2025085014 - 14 Feb 2025
Viewed by 2186
Abstract
This work concerns a study of the thermomechanical behaviour of a commercial thruster for aerospace use. The thruster, operated using a bipropellant liquid mixture, is used for the motion and in-orbit altitude control of small telecommunications satellites. The mixture used in the combustion [...] Read more.
This work concerns a study of the thermomechanical behaviour of a commercial thruster for aerospace use. The thruster, operated using a bipropellant liquid mixture, is used for the motion and in-orbit altitude control of small telecommunications satellites. The mixture used in the combustion process is composed of propylene and nitrous oxide, while the wall of the thruster is made of PH15-5 stainless steel. A computational fluid dynamics analysis of conjugate heat transfer determines the spatial–temporal distribution of temperature within the thruster wall. This information is passed to a finite element mechanical model that simulates the stress and the equivalent plastic strain distribution within the thruster wall. Full article
Show Figures

Figure 1

32 pages, 9117 KB  
Article
Defining and Optimising High-Fidelity Models for Accurate Inherent Strain Calculation in Laser Powder Bed Fusion
by Iñaki Setien, Michele Chiumenti, Maria San Sebastian, Manuel A. Caicedo and Carlos A. Moreira
Metals 2025, 15(2), 180; https://doi.org/10.3390/met15020180 - 11 Feb 2025
Cited by 2 | Viewed by 1139
Abstract
Powder Bed Fusion–Laser Beam (PBF-LB) is a leading technique in metal additive manufacturing, yet it continues to face challenges related to residual stresses and distortions. The inherent strain method has emerged as a valuable predictive tool, offering early assessments of part behaviour due [...] Read more.
Powder Bed Fusion–Laser Beam (PBF-LB) is a leading technique in metal additive manufacturing, yet it continues to face challenges related to residual stresses and distortions. The inherent strain method has emerged as a valuable predictive tool, offering early assessments of part behaviour due to its simplicity and manageable computational demands. However, accurately defining the inherent strain tensor, which is critical for these models, remains a challenge. This study provides a comprehensive analysis of the local meso-scale model definition and inherent strain calculation procedure in the PBF-LB process using a multi-scale modelling approach. The primary objective is to guide the definition of local high-fidelity thermo-mechanical models. This research investigates the contributions of thermal, plastic, and activation strains (strains due to Finite Element (FE) activation) to the inherent strain tensor, demonstrating the significant impact of activation strains. A sensitivity analysis identified an optimal control volume size to ensure minimal boundary effects. An optimised local high-fidelity model is proposed to efficiently calculate inherent strain tensor, significantly reducing computational costs without compromising accuracy. The method was validated by applying it to a complex SBA actuator geometry, which showed good agreement between predicted and experimental distortions. The consistency of the proposed method with empirically derived tensors further reinforces its potential to improve predictive capabilities in the PBF-LB process, ultimately enhancing part quality. Full article
(This article belongs to the Special Issue Advances in 3D Printing Technologies of Metals—2nd Edition)
Show Figures

Figure 1

Back to TopTop