Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (544)

Search Parameters:
Keywords = thermo-mechanical coupling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2418 KB  
Article
Revealing a New and Significant Thermomechanical Coupling Phenomenon for Rapid Thermal Transients
by Florent Clavier, Lionel Desgranges and Christophe Goupil
J. Exp. Theor. Anal. 2025, 3(4), 33; https://doi.org/10.3390/jeta3040033 (registering DOI) - 27 Oct 2025
Abstract
Conventional thermomechanical models recently failed to reproduce the temperature profile measured during rapid annular laser heating of a disk, with discrepancies of up to 150 K. One might have thought that these discrepancies resulted from neglecting the so-called “strong” thermomechanical coupling. However, the [...] Read more.
Conventional thermomechanical models recently failed to reproduce the temperature profile measured during rapid annular laser heating of a disk, with discrepancies of up to 150 K. One might have thought that these discrepancies resulted from neglecting the so-called “strong” thermomechanical coupling. However, the discrepancies seemed too large to be explained in this way, suggesting that another more significant phenomenon was involved. In this paper, we first present the laser heating experiment that highlights the failure of conventional models. We then demonstrate that the established strong coupling thermomechanical theory cannot account for the observed divergences, as its impact on temperature does not exceed about 1 K. To address this limitation, we propose a new, more comprehensive thermomechanical coupling formalism based on the thermodynamics of irreversible processes (TIP). Its originality lies in the explicit consideration of spatial strain transport, introduced through the notion of strain flux. This approach reveals a previously unrecognized coupling term representing mechanical work production by heat-to-work conversion. Finally, we provide a quantitative estimate of the influence of this new term by reconsidering the heating experiment. The calculation shows that it could explain the discrepancies between theory and measurement. Although applied here to a specific case, this result supports the validity of our approach. It demonstrates that such coupling must be considered whenever a system is subjected to rapid thermal and mechanical transients. Full article
Show Figures

Figure 1

19 pages, 1856 KB  
Article
Multiscale Texture Fractal Analysis of Thermo-Mechanical Coupling in Micro-Asperity Contact Interfaces
by Jiafu Ruan, Xigui Wang, Yongmei Wang and Weiqiang Zou
Symmetry 2025, 17(11), 1799; https://doi.org/10.3390/sym17111799 (registering DOI) - 25 Oct 2025
Viewed by 132
Abstract
The line contact behavior of multiscale meshing interfaces necessitates synergistic investigation spanning nano-to centimeter-scale ranges. When nominally smooth gear teeth surfaces come into contact, the mechanical–thermal coupling effect at the meshing interface actually occurs over a collection of microscale asperities (roughness peaks) exhibiting [...] Read more.
The line contact behavior of multiscale meshing interfaces necessitates synergistic investigation spanning nano-to centimeter-scale ranges. When nominally smooth gear teeth surfaces come into contact, the mechanical–thermal coupling effect at the meshing interface actually occurs over a collection of microscale asperities (roughness peaks) exhibiting hierarchical distribution characteristics. The emergent deformation phenomena across multiple asperity scales govern the self-organized evolution of interface conformity, thereby regulating both the load transfer efficiency and thermal transport properties within the contact zone. The fractal nature of the roughness topography on actual meshing interfaces calls for the development of a cross-scale theoretical framework that integrates micro-texture optimization with multi-physics coupling contact behavior. Conventional roughness characterization methods based on statistical parameters suffer from inherent limitations: their parameter values are highly dependent on measurement scale, lacking uniqueness under varying sampling intervals and instrument resolutions, and failing to capture the scale-invariant nature of meshing interface topography. A scale-independent parameter system grounded in fractal geometry theory enables essential feature extraction and quantitative characterization of three-dimensional interface morphology. This study establishes a progressive deformation theory for gear line contact interfaces with fractal geometric characteristics, encompassing elastic, elastoplastic transition, and perfectly plastic stages. By systematically investigating the force–thermal coupling mechanisms in textured meshing interfaces under multiscale conditions, the research provides a theoretical foundation and numerical implementation pathways for high-precision multiscale thermo-mechanical analysis of meshing interfaces. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

24 pages, 38190 KB  
Article
Effect of Electrically Assisted Heat Treatment on Crack Arrest and Healing in Laser-Cladded Ni–Based Coatings
by Xuxiang Song, Xiao Li, Wenping Wang and Zhicheng Zhao
J. Manuf. Mater. Process. 2025, 9(11), 348; https://doi.org/10.3390/jmmp9110348 - 23 Oct 2025
Viewed by 202
Abstract
Cracks in laser-cladded coatings represent a critical challenge that severely limits their industrial deployment. In this study, high-frequency pulsed direct current-assisted electrically assisted heat treatment (EAHT) was applied to repair cracks in laser-cladded Ni60/WC coatings deposited on 45# medium carbon steel. The influence [...] Read more.
Cracks in laser-cladded coatings represent a critical challenge that severely limits their industrial deployment. In this study, high-frequency pulsed direct current-assisted electrically assisted heat treatment (EAHT) was applied to repair cracks in laser-cladded Ni60/WC coatings deposited on 45# medium carbon steel. The influence of current density and treatment duration on crack arrest and healing behavior was systematically investigated. Dye penetrant testing and scanning electron microscopy (SEM) were employed to characterize the morphology and evolution of cracks before and after EAHT, while hardness, fracture toughness, and wear resistance tests were conducted to evaluate the mechanical properties. The results revealed that the crack repair process proceeds through three distinct stages: internal filling, nucleation and growth of healing points, and complete crack closure. The combined effects of Joule heating and current crowding induced by EAHT significantly facilitated progressive crack healing from the bottom upward. Optimal crack arrest and healing were achieved at a current density of 6.25 A/mm2, resulting in a maximum fracture toughness of 10.74 MPa·m1/2 and a transition of the wear mechanism from spalling to abrasive wear. This study demonstrates that EAHT promotes selective crack-tip heating and microstructural regulation through thermo-electro-mechanical coupling, thereby markedly enhancing the comprehensive performance of Ni-based WC coatings. Full article
Show Figures

Figure 1

20 pages, 6071 KB  
Article
Study on Gas Pre-Extraction Law of Along-Layer Boreholes Based on Thermo-Hydro-Mechanical-Damage Coupled Model
by Biao Hu, Xuyang Lei, Lu Zhang, Hang Long, Pengfei Ji, Lianmeng Wang, Yonghao Ding and Cuixia Wang
Mathematics 2025, 13(21), 3375; https://doi.org/10.3390/math13213375 - 23 Oct 2025
Viewed by 124
Abstract
Modeling the pre-extraction of coalbed methane presents a significant mathematical challenge due to the complex interplay of multiple physical fields. This paper presents a robust mathematical model based on a thermo-hydro-mechanical damage (THMD) framework to describe this process. The model is formulated as [...] Read more.
Modeling the pre-extraction of coalbed methane presents a significant mathematical challenge due to the complex interplay of multiple physical fields. This paper presents a robust mathematical model based on a thermo-hydro-mechanical damage (THMD) framework to describe this process. The model is formulated as a system of coupled, non-linear partial differential equations (PDEs) that integrate governing equations for heat transfer, fluid seepage, and solid mechanics with a damage evolution law derived from continuum damage mechanics. A key contribution of this work is the integration of this multi-physics model, solved numerically using the Finite Element Method (FEM), with a statistical modeling approach using Response Surface Methodology (RSM) and Analysis of Variance (ANOVA). This integrated framework allows for a systematic analysis of the model’s parameter space and a rigorous quantification of sensitivities. The ANOVA results reveal that the model’s damage output is most sensitive to the borehole diameter (F = 2531.51), while the effective extraction radius is predominantly governed by the initial permeability (F = 4219.59). This work demonstrates the power of combining a PDE-based multi-physics model with statistical metamodeling to provide deep, quantitative insights for optimizing gas extraction strategies in deep, low-permeability coal seams. Full article
Show Figures

Figure 1

20 pages, 3654 KB  
Article
Simulation Analysis of Temperature Change in FDM Process Based on ANSYS APDL and Birth–Death Element Technology
by Yuehua Mi and Seyed Hamed Hashemi Sohi
Micromachines 2025, 16(10), 1181; https://doi.org/10.3390/mi16101181 - 19 Oct 2025
Viewed by 242
Abstract
During the Fused Deposition Modeling (FDM) molding process, temperature changes are nonlinear and instantaneous, which is a key parameter affecting FDM printing efficiency, molding accuracy, warpage deformation, and other factors. This study presents a finite element simulation framework that integrates ANSYS Parametric Design [...] Read more.
During the Fused Deposition Modeling (FDM) molding process, temperature changes are nonlinear and instantaneous, which is a key parameter affecting FDM printing efficiency, molding accuracy, warpage deformation, and other factors. This study presents a finite element simulation framework that integrates ANSYS Parametric Design Language (APDL) with birth–death element technology to investigate the temperature evolution and thermomechanical behavior during the FDM process. The framework enables dynamic simulation of the complete printing and cooling cycle, capturing the layer-by-layer material deposition and subsequent thermal history. Results indicate that temperature distribution follows a gradient pattern along the printing path, with rapid heat dissipation at the periphery and heat accumulation in the central regions. Thermomechanical coupling analysis reveals significant stress concentration at the part bottom (310 MPa) and progressive strain increase from bottom (3.68 × 10−5 m) to top (2.95 × 10−4 m). Experimental validation demonstrates strong agreement with numerical predictions, showing maximum temperature deviations below 8% and strain distribution errors within 5%. This integrated approach provides an effective tool for predicting thermal-induced deformations and optimizing FDM process parameters to enhance part quality. Full article
(This article belongs to the Section D3: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

19 pages, 3122 KB  
Article
Investigation on the Sealing Performance of Vent Valves in Low-Temperature Marine Environments Based on Thermo-Mechanical Coupling
by Jianxiang Zhang, Wenyong Guo, Hantao Chen, Zhe Wu, Shihao Zhu and Li Yu
Appl. Sci. 2025, 15(20), 11103; https://doi.org/10.3390/app152011103 - 16 Oct 2025
Viewed by 160
Abstract
This study investigates the sealing performance of marine vent valves in low-temperature environments (−30 °C to −40 °C) via thermo-mechanical coupling analysis. Polytetrafluoroethylene (PTFE) was selected as the sealing material for its excellent cryogenic toughness, corrosion resistance, and cost-effectiveness. The total minimum specific [...] Read more.
This study investigates the sealing performance of marine vent valves in low-temperature environments (−30 °C to −40 °C) via thermo-mechanical coupling analysis. Polytetrafluoroethylene (PTFE) was selected as the sealing material for its excellent cryogenic toughness, corrosion resistance, and cost-effectiveness. The total minimum specific sealing pressure (qtotal) of PTFE, corrected for marine vibrations (15–60 Hz), was 3.702 MPa. Using ANSYS Workbench 2022, finite element simulations of a DN200 globe valve showed that low temperatures caused non-uniform thermal contraction, reducing the gasket-poppet contact width (2.5 mm to 1.75 mm) and maximum specific pressure (16.967 MPa to 13.352 MPa), leading to leakage risks. Optimizing the stem preload to 36,000 N restored effective sealing: the maximum specific pressure rebounded to 16.601 MPa, with no pressure below 3.702 MPa. This research provides a method for evaluating low-temperature sealing performance and supports safe vessel operation in cold waters. Full article
(This article belongs to the Special Issue Applied Numerical Analysis and Computing in Mechanical Engineering)
Show Figures

Figure 1

17 pages, 4085 KB  
Article
Thermal Sensitivity of a Microoptoelectromechanical Evanescent-Coupling-Based Accelerometer
by Evgenii Barbin, Ivan Kulinich, Tamara Nesterenko, Alexei Koleda, Ayan Myrzakhmetov, Denis Mokhovikov, Sergey Vtorushin and Alena Talovskaia
Sensors 2025, 25(20), 6388; https://doi.org/10.3390/s25206388 - 16 Oct 2025
Viewed by 281
Abstract
This treatise studies the thermal sensitivity of the mechanical and optical transmission coefficients of a microoptoelectromechanical (MOEM) accelerometer based on evanescent coupling in a temperature range from minus 40 to plus 125 °C. Two types of optical measuring transducers are considered: based on [...] Read more.
This treatise studies the thermal sensitivity of the mechanical and optical transmission coefficients of a microoptoelectromechanical (MOEM) accelerometer based on evanescent coupling in a temperature range from minus 40 to plus 125 °C. Two types of optical measuring transducers are considered: based on a directional coupler and a resonator. This analysis covers the optical and mechanical components of the thermal sensitivity of the transmission coefficient. In terms of the mechanical part, the temperature effect induces changes to the linear dimensions of the structure and material characteristics and causes internal mechanical stresses as well. The temperature effect on the optical system of the accelerometer is conditioned by the thermo-optic effect of the materials the optical waveguides are made of. This study includes experiments on the refraction index dependence on the temperature of the optical films that compose the optical system of the MOEM accelerometer. The experiment shows that the refraction index of the films grows with temperature and amounts to 0.12642 ppm/°C for silicon nitride on the SiO2/Si substrate. For the optical measuring transducer based on a directional coupler, the thermal sensitivity of the accelerometer’s optical transmission coefficient is 580 ppm/°C. For the resonator-based transducer, the thermal sensitivity is 0.33 °C−1. The thermal sensitivity of the normalized mechanical transmission coefficient of the accelerometer is 120 ppm/°C. For optical measuring transducers based on a directional coupler, the contribution of the temperature dependent refraction index alteration to the overall error is 5 times larger than that of the MOEM accelerometer’s mechanical parameters, while for the resonator-based transducer the difference reaches 3000 times. This means its operability is only possible in a thermostatic environment. Full article
(This article belongs to the Special Issue Advanced Optical and Optomechanical Sensors)
Show Figures

Figure 1

27 pages, 7638 KB  
Article
Concurrent Multiscale Modelling of Thermomechanical Responses of Heterogeneous Partition Walls
by Shige Wang, Sen Yang, Yang Li, Lian Huang, Yanming Xu, Heng Zhang and Pei Li
Materials 2025, 18(20), 4744; https://doi.org/10.3390/ma18204744 - 16 Oct 2025
Viewed by 298
Abstract
Partition walls are widely used in engineering structures, and their thermomechanical performance has a significant influence on overall safety and durability. Under extreme conditions, such as high temperatures, these walls are subjected to complex thermal expansion, stress development, and deformation, which may compromise [...] Read more.
Partition walls are widely used in engineering structures, and their thermomechanical performance has a significant influence on overall safety and durability. Under extreme conditions, such as high temperatures, these walls are subjected to complex thermal expansion, stress development, and deformation, which may compromise structural stability. Analyzing full-field deformation of parathion walls with high accuracy is a burden for classical fine-scale finite element methods. To address these challenges, this study applies a multiscale finite element method to investigate the coupled thermomechanical behavior of partition walls, providing a more computationally efficient alternative to conventional single-scale models. The method effectively captures thermal–mechanical interactions in walls composed of solid steel, porous steel, and composite plates. Numerical simulations confirm the accuracy and efficiency of the proposed approach, demonstrating its suitability for practical engineering applications. The results offer a reliable basis for optimizing partition wall design, improving energy performance, and ensuring structural integrity under demanding operating conditions. Full article
(This article belongs to the Special Issue Modelling of Deformation Characteristics of Materials or Structures)
Show Figures

Figure 1

21 pages, 6002 KB  
Article
Numerical Investigation on the Extrusion Process of Flexible Pipe Liners for Deep-Sea Mineral Transport
by Wanhai Xu, Congyan Meng, Shuangning You, Yexuan Ma and Yingying Wang
J. Mar. Sci. Eng. 2025, 13(10), 1970; https://doi.org/10.3390/jmse13101970 - 15 Oct 2025
Viewed by 219
Abstract
Flexible pipes have significant application potential in deep-sea mineral resource exploitation. As the innermost barrier of flexible pipes, the liner directly withstands abrasive wear from mineral particles. The extrusion quality of the liner is a decisive factor for the service life of the [...] Read more.
Flexible pipes have significant application potential in deep-sea mineral resource exploitation. As the innermost barrier of flexible pipes, the liner directly withstands abrasive wear from mineral particles. The extrusion quality of the liner is a decisive factor for the service life of the pipe and requires optimization of process parameters for improvement. However, the extrusion process of wear-resistant liners made of ultra-high molecular weight polyethylene (UHMWPE) involves complex thermo-mechanical coupling behavior, which creates major challenges in developing accurate numerical models that represent the entire process. To precisely simulate the extrusion process and guide process parameter optimization, this paper establishes a numerical simulation model for flexible pipe liner extrusion based on the Eulerian–Lagrangian coupling method. Simulations under various outlet temperature and screw speed conditions were carried out to reveal the evolution of mechanical behavior during extrusion and clarify the influence of key process parameters. The main conclusions can be summarized as follows. An increase in extrusion temperature reduces the maximum stress and promotes better molecular orientation and crystallinity in UHMWPE material, while the maximum heat flux remains essentially unchanged. An increase in screw speed has little effect on maximum material stress but leads to a significant increase in maximum heat flux. In addition, significant stress appears in the UHMWPE material at the extrusion die exit and is mainly concentrated in the unextruded material section. The numerical model effectively addresses the challenges of simulating material phase transition, large deformation and long-distance flow, which are difficult to capture with traditional methods. The findings offer a theoretical basis and technical guidance for optimizing extrusion process parameters and strengthening quality control in flexible pipe liner extrusion. Full article
(This article belongs to the Special Issue Safety Evaluation and Protection in Deep-Sea Resource Exploitation)
Show Figures

Figure 1

26 pages, 16140 KB  
Article
A Multiphysics Framework for Fatigue Life Prediction and Optimization of Rocker Arm Gears in a Large-Mining-Height Shearer
by Chunxiang Shi, Xiangkun Song, Weipeng Xu, Ying Tian, Jinchuan Zhang, Xiangwei Dong and Qiang Zhang
Computation 2025, 13(10), 242; https://doi.org/10.3390/computation13100242 - 15 Oct 2025
Viewed by 308
Abstract
This study investigates premature fatigue failure in rocker arm gears of large-mining-height shearers operating at alternating ±45° working angles, where insufficient lubrication generates non-uniform thermal -stress fields. In this study, an integrated multiphysics framework combining transient thermal–fluid–structure coupling simulations with fatigue life prediction [...] Read more.
This study investigates premature fatigue failure in rocker arm gears of large-mining-height shearers operating at alternating ±45° working angles, where insufficient lubrication generates non-uniform thermal -stress fields. In this study, an integrated multiphysics framework combining transient thermal–fluid–structure coupling simulations with fatigue life prediction is proposed. Transient thermo-mechanical coupling analysis simulated dry friction conditions, capturing temperature and stress fields under varying speeds. Fluid–thermal–solid coupling analysis modeled wet lubrication scenarios, incorporating multiphase flow to track oil distribution, and calculated convective heat transfer coefficients at different immersion depths (25%, 50%, 75%). These coupled simulations provided the critical time-varying temperature and thermal stress distributions acting on the gears (Z6 and Z7). Subsequently, these simulated thermo-mechanical loads were directly imported into ANSYS 2024R1 nCode DesignLife to perform fatigue life prediction. Simulations demonstrate that dry friction induces extreme operating conditions, with Z6 gear temperatures reaching over 800 °C and thermal stresses peaking at 803.86 MPa under 900 rpm, both escalating linearly with rotational speed. Lubrication depth critically regulates heat dissipation, where 50% oil immersion optimizes convective heat transfer at 8880 W/m2·K for Z6 and 11,300 W/m2·K for Z7, while 25% immersion exacerbates thermal gradients. Fatigue life exhibits an inverse relationship with speed but improves significantly with cooling. Z6 sustains a lower lifespan, exemplified by 25+ days at 900 rpm without cooling versus 50+ days for Z7, attributable to higher stress concentrations. Based on the multiphysics analysis results, two physics-informed engineering optimizations are proposed to reduce thermal stress and extend gear fatigue life: a staged cooling system using spiral copper tubes and an intelligent lubrication strategy with gear-pump-driven dynamic oil supply and thermal feedback control. These strategies collectively enhance gear longevity, validated via multiphysics-driven topology optimization. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

44 pages, 1504 KB  
Review
Energy Dissipation and Efficiency Challenges of Cryogenic Sloshing in Aerospace Propellant Tanks: A Systematic Review
by Alih John Eko, Xuesen Zeng, Mazhar Peerzada, Tristan Shelley, Jayantha Epaarachchi and Cam Minh Tri Tien
Energies 2025, 18(20), 5362; https://doi.org/10.3390/en18205362 - 11 Oct 2025
Viewed by 340
Abstract
Cryogenic propellant sloshing presents significant challenges in aerospace systems, inducing vehicle instability, structural fatigue, energy losses, and complex thermal management issues. This review synthesizes experimental, analytical, and numerical advances with an emphasis on energy dissipation and conversion efficiency in propellant storage and transfer. [...] Read more.
Cryogenic propellant sloshing presents significant challenges in aerospace systems, inducing vehicle instability, structural fatigue, energy losses, and complex thermal management issues. This review synthesizes experimental, analytical, and numerical advances with an emphasis on energy dissipation and conversion efficiency in propellant storage and transfer. Recent developments in computational fluid dynamics (CFD) and AI-driven digital-twin frameworks are critically examined alongside the influences of tank materials, baffle configurations, and operating conditions. Unlike conventional fluids, cryogenic propellants in microgravity and within composite overwrapped pressure vessels (COPVs) exhibit unique thermodynamic and dynamic couplings that remain only partially characterized. Prior reviews have typically treated these factors in isolation; here, they are unified through an integrated perspective linking cryogenic thermo-physics, reduced-gravity hydrodynamics, and fluid–structure interactions. Persistent research limitations are identified in the areas of data availability, model validation, and thermo-mechanical coupling fidelity, underscoring the need for scalable multi-physics approaches. This review’s contribution lies in consolidating these interdisciplinary domains while outlining a roadmap toward experimentally validated, AI-augmented digital-twin architectures for improved energy efficiency, reliability, and propellant stability in next-generation aerospace missions. Full article
Show Figures

Figure 1

17 pages, 2502 KB  
Article
Kinetic Parameters at High-Pressure-Limit for Unimolecular Alkene Elimination Reaction Class of Fatty Acid Alkyl Esters (FAAEs)
by Xiaohui Sun, Zhenyu Pei, Zerong Li and Yuanyuan Tian
Molecules 2025, 30(20), 4054; https://doi.org/10.3390/molecules30204054 - 11 Oct 2025
Viewed by 232
Abstract
The unimolecular alkene elimination reaction class of fatty acid alkyl esters (FAAEs) is a crucial component in the low-temperature combustion mechanism for biodiesel fuels. However, thermo-kinetic parameters for this reaction class are scarce, particularly for the large-size molecules over four carbon atoms and [...] Read more.
The unimolecular alkene elimination reaction class of fatty acid alkyl esters (FAAEs) is a crucial component in the low-temperature combustion mechanism for biodiesel fuels. However, thermo-kinetic parameters for this reaction class are scarce, particularly for the large-size molecules over four carbon atoms and intricate branched-chain configurations. Thermo-kinetic parameters are essential for constructing a reaction mechanism, which can be used to clarify the chemical nature of combustion for biodiesel fuels. In this paper, the B3LYP method, in conjunction with the 6-311G(d,p) basis set, is used to carry out geometry optimization of the species participating in the reactions. Frequency calculations are further executed at the same level of theory. Additionally, coupled with the 6-311G(d,p) basis set, the B3LYP method acts as the low-level ab initio approach, while the Gaussian-4 (G4) composite method serves as the high-level ab initio approach within the isodesmic reaction correction scheme. The CCSD(T) approach is employed to verify the consistency of the electronic energy ascertained through the G4 method. The isodesmic reaction method (IRM) is used to obtain the energy barriers and reaction enthalpies for unimolecular alkene elimination reaction class of FAAEs. Based on the reaction class transition state theory (RC-TST), high-pressure-limit rate coefficients were computed, with asymmetric Eckart tunneling corrections applied across 500~2000 K temperature range. Rate rules at the high-pressure-limit are obtained through the averaging of rate coefficients from a representative collection of reactions, which incorporate substituent groups and carbon chains with different sizes and lengths. Ultimately, the energy barriers, reaction enthalpies, and rate rules at the high-pressure-limit and kinetic parameters expressed as (A, n, E) are supplied for developing the low-temperature combustion mechanism of biodiesel fuels. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

17 pages, 5260 KB  
Article
Study on Double-Curvature Metal Plates Sequential Forming with Heat-Assisted Incremental Bending Based on Minimum Energy Method
by Bo Wei, Feifei Zhang, Zhun Cheng and Bo Yuan
Metals 2025, 15(10), 1124; https://doi.org/10.3390/met15101124 - 10 Oct 2025
Viewed by 297
Abstract
This study presents a high-frequency heat-assisted incremental bending process for the high-efficiency, high-precision forming of medium-thickness (≥3 mm) double-curved metal plates, addressing the limitations of traditional stamping and line heating methods in aerospace and marine applications. A minimum energy loading path strategy is [...] Read more.
This study presents a high-frequency heat-assisted incremental bending process for the high-efficiency, high-precision forming of medium-thickness (≥3 mm) double-curved metal plates, addressing the limitations of traditional stamping and line heating methods in aerospace and marine applications. A minimum energy loading path strategy is proposed to optimize the forming trajectory and reduce residual stress. A coupled thermomechanical finite element model was developed, incorporating high-frequency induction heating, temperature-dependent material properties, and Coulomb friction. The model was validated through experiments on Q235 steel plates. Results show that the proposed process reduces the peak forming force and decreases the number of forming points compared to conventional cold incremental bending. Springback is reduced, and the final shape accuracy reaches within 3 mm deviation from the target geometry. Double-curvature sail and saddle-shaped plates were successfully fabricated, demonstrating the feasibility and effectiveness of the method. This work provides a promising solution for low-cost, flexible manufacturing of complex medium-thickness components. Full article
(This article belongs to the Special Issue Advances in Metal Forming and Plasticity)
Show Figures

Figure 1

18 pages, 4365 KB  
Article
Thermo-Mechanical Coupled Characteristics for the Non-Axisymmetric Outer Ring of the High-Speed Rail Axle Box Bearing with Embedded Intelligent Sensor Slots
by Longkai Wang, Can Hu, Fengyuan Liu and Hongbin Tang
Symmetry 2025, 17(10), 1667; https://doi.org/10.3390/sym17101667 - 6 Oct 2025
Viewed by 299
Abstract
As high-speed railway systems continue to develop toward intelligent operation, axle box bearings integrated with sensors have become key components for real-time condition monitoring. However, introducing sensor-embedded slots disrupts the structural continuity and thermal conduction paths of traditional bearing rings. This results in [...] Read more.
As high-speed railway systems continue to develop toward intelligent operation, axle box bearings integrated with sensors have become key components for real-time condition monitoring. However, introducing sensor-embedded slots disrupts the structural continuity and thermal conduction paths of traditional bearing rings. This results in localized stress concentrations and thermal distortion, which compromise the bearing’s overall performance and service life. This study focuses on a double-row tapered roller bearing used in axle boxes and develops a multi-physics finite element model incorporating the effects of sensor-embedded grooves, based on Hertzian contact theory and the Palmgren frictional heat model. Both contact load verification and thermo-mechanical coupling analysis were performed to evaluate the influence of two key design parameters—groove depth and arc length—on equivalent stress, temperature distribution, and thermo-mechanical coupling deformation. The results show that the embedded slot structure significantly alters the local thermodynamic response. Especially when the slot depth reaches a certain value, both stress and deformation due to thermo-mechanical effects exhibit obvious nonlinear escalation. During the design process, the length and depth of the arc-shaped embedded slot, among other parameters, should be strictly controlled. The study of the stress and temperature characteristics under the thermos-mechanical coupling effect of the axle box bearing is of crucial importance for the design of the intelligent bearing body structure and safety assessment. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

24 pages, 11789 KB  
Article
Mechanical Performance Degradation and Microstructural Evolution of Grout-Reinforced Fractured Diorite Under High Temperature and Acidic Corrosion Coupling
by Yuxue Cui, Henggen Zhang, Tao Liu, Zhongnian Yang, Yingying Zhang and Xianzhang Ling
Buildings 2025, 15(19), 3547; https://doi.org/10.3390/buildings15193547 - 2 Oct 2025
Viewed by 338
Abstract
The long-term stability of grout-reinforced fractured rock masses in acidic groundwater environments after tunnel fires is critical for the safe operation of underground engineering. In this study, grouting reinforcement tests were performed on fractured diorite specimens using a high-strength fast-anchoring agent (HSFAA), and [...] Read more.
The long-term stability of grout-reinforced fractured rock masses in acidic groundwater environments after tunnel fires is critical for the safe operation of underground engineering. In this study, grouting reinforcement tests were performed on fractured diorite specimens using a high-strength fast-anchoring agent (HSFAA), and their mechanical degradation and microstructural evolution mechanisms were investigated under coupled high-temperature (25–1000 °C) and acidic corrosion (pH = 2) conditions. Multi-scale characterization techniques, including uniaxial compression strength (UCS) tests, X-ray computed tomography (CT), scanning electron microscopy (SEM), three-dimensional (3D) topographic scanning, and X-ray diffraction (XRD), were employed systematically. The results indicated that the synergistic thermo-acid interaction accelerated mineral dissolution and induced structural reorganization, resulting in surface whitening of specimens and decomposition of HSFAA hydration products. Increasing the prefabricated fracture angles (0–60°) amplified stress concentration at the grout–rock interface, resulting in a reduction of up to 69.46% in the peak strength of the specimens subjected to acid corrosion at 1000 °C. Acidic corrosion suppressed brittle disintegration observed in the uncorroded specimens at lower temperature (25–600 °C) by promoting energy dissipation through non-uniform notch formation, thereby shifting the failure modes from shear-dominated to tensile-shear hybrid modes. Quantitative CT analysis revealed a 34.64% reduction in crack volume (Vca) for 1000 °C acid-corroded specimens compared to the control specimens at 25 °C. This reduction was attributed to high-temperature-induced ductility, which transformed macroscale crack propagation into microscale coalescence. These findings provide critical insights for assessing the durability of grouting reinforcement in post-fire tunnel rehabilitation and predicting the long-term stability of underground structures in chemically aggressive environments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop