Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = thrust line

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3079 KB  
Article
Reducing Aerodynamic Interference Through Layout Optimization of Symmetrically Cambered Wingsails: A Comparative Study of In-Line and Parallel Configurations
by Stephan van Reen, Jianfeng Lin, Jiqiang Niu, Peter Sharpe, Xiaodong Li and Hua-Dong Yao
J. Mar. Sci. Eng. 2025, 13(10), 1998; https://doi.org/10.3390/jmse13101998 - 17 Oct 2025
Viewed by 204
Abstract
Rigid wingsails are increasingly adopted for wind-assisted ship propulsion, with Symmetrically Cambered (SC) profiles identified as highly efficient for thrust generation. This study investigates installation layouts for multiple SC wingsails, focusing on aerodynamic interference that limits their performance. A fast 2D potential-flow panel [...] Read more.
Rigid wingsails are increasingly adopted for wind-assisted ship propulsion, with Symmetrically Cambered (SC) profiles identified as highly efficient for thrust generation. This study investigates installation layouts for multiple SC wingsails, focusing on aerodynamic interference that limits their performance. A fast 2D potential-flow panel method is employed and benchmarked against wind tunnel and 3D IDDES data. Two representative layouts are analyzed: triple-in-line (TL) and quad-in-parallel (QP). Layout optimization is performed using a genetic algorithm with distances between sails as design variables, constrained by the total installation span, at apparent wind angles (AWAs) of 60°, 90°, and 120°. Results show that thrust generation decreases progressively from upstream to downstream sails due to interference effects, with penalties of about 4–6% in the TL and up to 28% in the QP layout. The optimization improves performance only for the TL layout at 60°, while the QP layout shows negligible gains. Analysis of pressure distributions confirms that downstream sails suffer from reduced suction on the leading edge caused by upstream wakes. Overall, the TL layout demonstrates significantly higher aerodynamic reliability than the QP layout. These findings provide new insights into multi-sail configurations and highlight the importance of layout optimization in maximizing thrust efficiency. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics and Acoustic Design Methods for Ship)
Show Figures

Figure 1

21 pages, 1922 KB  
Article
Real-Time Detection of LEO Satellite Orbit Maneuvers Based on Geometric Distance Difference
by Aoran Peng, Bobin Cui, Guanwen Huang, Le Wang, Haonan She, Dandan Song and Shi Du
Aerospace 2025, 12(10), 925; https://doi.org/10.3390/aerospace12100925 - 14 Oct 2025
Viewed by 276
Abstract
Low Earth orbit (LEO) satellites, characterized by low altitudes, high velocities, and strong ground signal reception, have become an essential and dynamic component of modern global navigation satellite systems (GNSS). However, orbit decay induced by atmospheric drag poses persistent challenges to maintaining stable [...] Read more.
Low Earth orbit (LEO) satellites, characterized by low altitudes, high velocities, and strong ground signal reception, have become an essential and dynamic component of modern global navigation satellite systems (GNSS). However, orbit decay induced by atmospheric drag poses persistent challenges to maintaining stable trajectories. Frequent orbit maneuvers, though necessary to sustain nominal orbits, introduce significant difficulties for precise orbit determination (POD) and navigation augmentation, especially under complex operational conditions. Unlike most existing methods that rely on Two-Line Element (TLE) data—often affected by noise and limited accuracy—this study directly utilizes onboard GNSS observations in combination with real-time precise ephemerides. A novel time-series indicator is proposed, defined as the geometric root-mean-square (RMS) distance between reduced-dynamic and kinematic orbit solutions, which is highly responsive to orbit disturbances. To further enhance robustness, a sliding window-based adaptive thresholding mechanism is developed to dynamically adjust detection thresholds, maintaining sensitivity to maneuvers while suppressing false alarms. The proposed method was validated using eight representative maneuver events from the GRACE-FO satellites (May 2018–June 2022), successfully detecting seven of them. One extremely short-duration maneuver was missed due to the limited number of usable GNSS observations after quality-control filtering. To examine altitude-related applicability, two Sentinel-3A maneuvers were also analyzed, both successfully detected, confirming the method’s effectiveness at higher LEO altitudes. Since the thrust magnitudes and durations of the Sentinel-3A maneuvers are not publicly available, these cases primarily serve to verify applicability rather than to quantify sensitivity. Experimental results show that for GRACE-FO maneuvers, the proposed method achieves near-real-time responsiveness under long-duration, high-thrust conditions, with an average detection delay below 90 s. For Sentinel-3A, detections occurred approximately 7 s earlier than the reported maneuver epochs, a discrepancy attributed to the 30 s observation sampling interval rather than methodological bias. Comparative analysis with representative existing methods, presented in the discussion section, further demonstrates the advantages of the proposed approach in terms of sensitivity, timeliness, and adaptability. Overall, this study presents a practical, efficient, and scalable solution for real-time maneuver detection in LEO satellite missions, contributing to improved GNSS augmentation, space situational awareness, and autonomous orbit control. Full article
(This article belongs to the Special Issue Precise Orbit Determination of the Spacecraft)
Show Figures

Figure 1

17 pages, 7111 KB  
Article
Blind Fault and Thick-Skinned Tectonics: 2025 Mw 6.4 Paratebueno Earthquake in Eastern Cordillera Fold-and-Thrust Belt
by Bingquan Han, Jyr-Ching Hu, Chen Yu, Zhenhong Li and Zhenjiang Liu
Remote Sens. 2025, 17(19), 3264; https://doi.org/10.3390/rs17193264 - 23 Sep 2025
Viewed by 642
Abstract
On 8 June 2025, the Mw 6.4 Paratebueno earthquake struck the eastern foothills of the Eastern Andes, Colombia. The event occurred near the Guaicáramo fault, along the eastern margin of the Eastern Cordillera fold-and-thrust belt. To investigate its rupture characteristics and tectonic implications, [...] Read more.
On 8 June 2025, the Mw 6.4 Paratebueno earthquake struck the eastern foothills of the Eastern Andes, Colombia. The event occurred near the Guaicáramo fault, along the eastern margin of the Eastern Cordillera fold-and-thrust belt. To investigate its rupture characteristics and tectonic implications, we utilized ALOS-2 and Sentinel-1 SAR data to derive coseismic deformation fields. Source geometry and slip distribution were inverted with the Okada dislocation model, and static Coulomb failure stress change were calculated to assess the triggering relationship with the 2023 Mw 6.2 Meta-Cundinamarca earthquake. The results reveal maximum line-of-sight displacements of 43 cm, 23 cm and 32 cm, respectively, caused by a northwest-dipping blind reverse fault (strike ~213°, dip 58°) with ~5 m maximum slip concentrated at depths of 8–12 km, without surface rupture. Combining geological and stratigraphic evidence, including regional structures and sedimentary cover thickness, this event implies a transition from a normal fault to reverse fault due to ongoing shortening of fold-and-thrust belt, consistent with a thick-skinned tectonic origin. Coulomb stress modeling suggests the 2023 event promoted the 2025 rupture, and the combined effect of the two events further increased stress on the southeastern Guaicáramo fault, implying elevated seismic hazard. Full article
Show Figures

Figure 1

18 pages, 15632 KB  
Article
Influence of Cutter Ring Structure on Rock-Breaking Force and Efficiency of TBM Disc Cutter Based on Discrete Element Method
by Juan-Juan Li, Jin Yu, Wentao Xu, Xiao-Zhao Li, Tian-Chi Fu and Long-Chuan Deng
Buildings 2025, 15(17), 3050; https://doi.org/10.3390/buildings15173050 - 26 Aug 2025
Viewed by 577
Abstract
Understanding the combined effects of edge width and cutter ring shape on the rock-breaking performance is critical for optimising disc cutter design. The intrusion test serves as an effective approach for investigating the rock-breaking mechanism of disc cutters. In this study, a two-dimensional [...] Read more.
Understanding the combined effects of edge width and cutter ring shape on the rock-breaking performance is critical for optimising disc cutter design. The intrusion test serves as an effective approach for investigating the rock-breaking mechanism of disc cutters. In this study, a two-dimensional discrete element method (DEM) model was established to simulate the intrusion process of a single disc cutter. Three commonly used disc cutter types were analysed: disc cutter with flat edge (FEDC), disc cutter with rounded edge (REDC) and disc cutter with alloy tooth (ATDC). The edge widths ranging from 10 mm to 24 mm were examined to assess their influence on rock crack propagation, stress distribution, cutting force and specific cutting energy. The FEDC and REDC exhibited face-contact extrusion breaking, whereas the ATDC was line-contact embedding breaking. The crack extension range, crack number, force chain intensity, stress distribution, rock-breaking force and specific cutting energy ranks are as follows: FEDC > REDC > ATDC. The ATDC generated a higher proportion of tensile cracks compared to the FEDC and REDC, though with fewer long cracks. The rock-breaking efficiency of the FEDC was lower, whereas the REDC and ATDC exhibited higher efficiency. With the increase in edge width, the force chain distribution became more concentrated, leading to greater internal rock damage, and the number and length of cracks increased significantly. Cracks initially expanded laterally at smaller edge widths but extended downward as edge width increased. The peak force and specific cutting energy increased with increasing edge width; the peak force at an edge width of 24 mm is approximately 3.5 times that of an edge width of 10 mm. The REDC is preferable in hard rock formations, and the ATDC is more effective in soft rock formations. The edge width should be determined based on rock properties and thrust capacity. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 5396 KB  
Article
A Numerical Strategy to Assess the Stability of Curved Masonry Structures Using a Simple Nonlinear Truss Model
by Natalia Pingaro, Martina Buzzetti and Alessandro Gandolfi
Buildings 2025, 15(13), 2226; https://doi.org/10.3390/buildings15132226 - 25 Jun 2025
Cited by 1 | Viewed by 691
Abstract
A straightforward and versatile numerical approach is proposed for the nonlinear analysis of single and double-curvature masonry structures. The method is designed to broaden accessibility to both experienced and less specialized users. Masonry units are discretized with elastic quadrilateral elements, while mortar joints [...] Read more.
A straightforward and versatile numerical approach is proposed for the nonlinear analysis of single and double-curvature masonry structures. The method is designed to broaden accessibility to both experienced and less specialized users. Masonry units are discretized with elastic quadrilateral elements, while mortar joints are modeled with a combination of elastic orthotropic plate elements or shear panels and elastic perfectly brittle trusses (cutoff bars). This method employs the simplest inelastic finite element available in any commercial software to lump nonlinearities exclusively within the mortar joints. It effectively captures the failure of curved structures under Mode 1 deformation, reproducing the typical collapse mechanism of unreinforced arches and vaults via flexural plastic hinges. The proposed method is benchmarked through three case studies drawn from the literature, each supported by experimental data and numerical results of varying complexity. A comprehensive evaluation of the global force–displacement curves, along with the analysis of the thrust line and the evolution of nonlinearities within the model, demonstrates the effectiveness, reliability, and simplicity of the approach proposed. By bridging the gap between advanced simulation and practical application, the approach provides a robust tool suitable for a wide range of users. This study contributes to a deeper understanding of the behavior of unreinforced curved masonry structures and lays a base for future advancements in the analysis and conservation of historical heritage. Full article
(This article belongs to the Collection Innovation in Structural Analysis and Dynamics for Constructions)
Show Figures

Figure 1

28 pages, 12155 KB  
Article
Domes and Earthquakes of Naples: A Comparative Study of Baroque and Neoclassical Structure
by Claudia Cennamo, Luciana Di Gennaro, Luigi Massaro and Giorgio Frunzio
Buildings 2025, 15(12), 2008; https://doi.org/10.3390/buildings15122008 - 11 Jun 2025
Viewed by 911
Abstract
The aim of this research is the structural study of the dome of Tesoro di San Gennaro in Naples compared with the more recent studies about San Francesco di Paola, as examples, respectively, of baroque and neoclassic style, emblems of different stylistic periods [...] Read more.
The aim of this research is the structural study of the dome of Tesoro di San Gennaro in Naples compared with the more recent studies about San Francesco di Paola, as examples, respectively, of baroque and neoclassic style, emblems of different stylistic periods of Neapolitan architectural schools about domes and churches. The studies are carried out with particular attention to evaluating their seismic safety without considering the role of the vertical supporting structures. The analysis adopts graphical approaches to assess the safety of the two domes under vertical and horizontal loads, with a special focus on the effects of earthquakes. In the case of San Gennaro, the approach is mixed between the rigid-kinematic theory and the theory of elasticity due to the presence of a wooden structure, while in the case of San Francesco di Paola, only the thrust-line method was used, applying it to the three-dimensional structures through the slicing technique. In conclusion, the methods to assess the safety of the domes under both vertical and horizontal seismic loads allow for a comparison of the two structures and provide a comprehensive evaluation of their structural integrity. The study demonstrates, through a predominantly graphical methodology, the effectiveness of traditional equilibrium-based approaches in assessing dome stability, highlighting the active contribution of the timber structure in San Gennaro and quantifying its role under seismic loading scenarios. Full article
(This article belongs to the Special Issue Recent Scientific Developments on the Mechanics of Masonry Structures)
Show Figures

Figure 1

19 pages, 4585 KB  
Article
E-Sail Three-Dimensional Interplanetary Transfer with Fixed Pitch Angle
by Alessandro A. Quarta
Appl. Sci. 2025, 15(9), 4661; https://doi.org/10.3390/app15094661 - 23 Apr 2025
Cited by 1 | Viewed by 505
Abstract
The electric solar wind sail (E-sail) is a propellantless propulsion system concept based on the use of a system of very long and thin conducting tethers, which create an artificial electric field that is able to deflect the solar-wind-charged particles in order to [...] Read more.
The electric solar wind sail (E-sail) is a propellantless propulsion system concept based on the use of a system of very long and thin conducting tethers, which create an artificial electric field that is able to deflect the solar-wind-charged particles in order to generate a net propulsive acceleration outside the planetary magnetospheres. The radial rig of conducting tethers is deployed and stretched by rotating the spacecraft about an axis perpendicular to the nominal plane of the sail. This rapid rotation complicates the thrust vectoring of the E-sail-based spacecraft, which is achieved by changing the orientation of the sail nominal plane with respect to an orbital reference frame. For this reason, some interesting steering techniques have recently been proposed which are based, for example, on maintaining the inertial direction of the spacecraft spin axis or on limiting the excursion of the so-called pitch angle, which is defined as the angle formed by the unit vector perpendicular to the sail nominal plane with the (radial) direction of propagation of the solar wind. In this paper, a different control strategy based on maintaining the pitch angle value constant during a typical interplanetary flight is investigated. In this highly constrained configuration, the spacecraft spin axis can rotate freely around the radial direction, performing a sort of conical motion around the Sun-vehicle line. Considering an interplanetary Earth–Venus or Earth–Mars mission scenario, the flight performance is here compared with a typical unconstrained optimal transfer, aiming to quantify the flight time variation due to the pitch angle value constraint. In this regard, simulation results indicate that the proposed control law provides a rather limited (percentage) performance variation in the case where the reference propulsive acceleration of the E-sail-based spacecraft is compatible with a medium- or low-performance propellantless propulsion system. Full article
(This article belongs to the Special Issue Novel Approaches and Trends in Aerospace Control Systems)
Show Figures

Figure 1

20 pages, 3865 KB  
Article
Research on the Thrust Allocation Method for Straight-Line Sailing of Multiple AUVs in Tandem Connection
by Jin Zhang, Shengfan Zhu and Shuai Kang
Appl. Sci. 2025, 15(8), 4106; https://doi.org/10.3390/app15084106 - 8 Apr 2025
Viewed by 444
Abstract
The relative motion and coupled dynamics between individual units in a Multiple AUVs in Tandem Connection (MATC) system make speed and inter-unit distance control particularly challenging, especially in large-scale configurations. This study proposes a novel hybrid thrust allocation method for steady straight-line sailing [...] Read more.
The relative motion and coupled dynamics between individual units in a Multiple AUVs in Tandem Connection (MATC) system make speed and inter-unit distance control particularly challenging, especially in large-scale configurations. This study proposes a novel hybrid thrust allocation method for steady straight-line sailing in MATC systems, addressing thrust constraints and unit coordination. First, the motion model of the MATC system was established based on Newton’s second law. Second, an improved Genetic Algorithm (GA) was developed to optimize thrust values for each unit in smaller configurations. Third, to address the computational challenges of thrust allocation in large MATC systems, an offline model training method was introduced, combining the Harris Hawks Optimization (HHO) algorithm with a BP neural network. Simulations were conducted for MATC configurations with 5 and 30 AUV units. The results demonstrate that, under current disturbances, the inter-unit distances and overall speed for the 5-unit MATC system quickly converged to target values of 0.12 m and 1.5 knots, respectively, without exceeding the 3.5 N thrust constraint. For the 30-unit MATC system, the proposed method achieved rapid convergence to target values, with a 56% reduction in straight-line speed deviation compared to using the improved GA alone. These findings validate the effectiveness of the proposed approach in enhancing control accuracy and scalability in MATC systems, offering significant potential for large-scale underwater applications. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

25 pages, 5912 KB  
Article
Exploration of Earth’s Magnetosphere Using CubeSats with Electric Propulsion
by Alessandro A. Quarta
Aerospace 2025, 12(3), 211; https://doi.org/10.3390/aerospace12030211 - 6 Mar 2025
Cited by 1 | Viewed by 960
Abstract
The study of the Earth’s magnetosphere through in situ observations is an important step in understanding the evolution of the Sun–Earth interaction. In this context, the long-term observation of the Earth’s magnetotail using a scientific probe in a high elliptical orbit is a [...] Read more.
The study of the Earth’s magnetosphere through in situ observations is an important step in understanding the evolution of the Sun–Earth interaction. In this context, the long-term observation of the Earth’s magnetotail using a scientific probe in a high elliptical orbit is a challenging mission scenario due to the alignment of the magnetotail direction with the Sun–Earth line, which requires a continuous rotation of the apse line of the spacecraft’s geocentric orbit. This aspect makes the mission scenario particularly suitable for space vehicles equipped with propellantless propulsion systems, such as the classic solar sails which convert the solar radiation pressure into propulsive acceleration without propellant expenditure. However, a continuous rotation of the apse line of the osculating orbit can be achieved using a more conventional solar electric thruster, which introduces an additional constraint on the duration of the scientific mission due to the finite mass of the propellant stored on board the spacecraft. This paper analyzes the potential of a typical CubeSat equipped with a commercial miniaturized electric thruster in performing the rotation of the apse line of a geocentric orbit suitable for the in situ observation of the Earth’s magnetotail. The paper also analyzes the impact of the size of a thruster array on the flight performance for an assigned value of the payload mass and the science orbit’s characteristics. In particular, this work illustrates the optimal guidance laws that allow us to maximize the duration of the scientific mission for an assigned CubeSat’s configuration. In this sense, this paper expands the literature regarding the study of this interesting mission scenario by extending the study to conventional propulsion systems that use a propellant to provide a continuous and steerable thrust vector. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

27 pages, 16018 KB  
Article
Investigation of Structural Nonlinearity Effects on the Aeroelastic and Wake Characteristics of a 15 MW Wind Turbine
by Zhenju Chuang, Lulin Xia, Yan Qu, Wenhua Li and Jiawen Li
J. Mar. Sci. Eng. 2025, 13(1), 116; https://doi.org/10.3390/jmse13010116 - 10 Jan 2025
Cited by 6 | Viewed by 1499
Abstract
As wind turbines increase in size, blades become longer, thinner, and more flexible, making them more susceptible to large geometric nonlinear deformations, which pose challenges for aeroelastic simulations. This study presents a nonlinear aeroelastic model that accounts for large deformations of slender, flexible [...] Read more.
As wind turbines increase in size, blades become longer, thinner, and more flexible, making them more susceptible to large geometric nonlinear deformations, which pose challenges for aeroelastic simulations. This study presents a nonlinear aeroelastic model that accounts for large deformations of slender, flexible blades, coupled through the Actuator Line Method (ALM) and Geometrically Exact Beam Theory (GEBT). The accuracy of the model is validated by comparing it with established numerical methods, demonstrating its ability to capture the bending–torsional coupled nonlinear characteristics of highly flexible blades. A bidirectional fluid–structure coupling simulation of the IEA 15MW wind turbine under uniform flow conditions is conducted. The effect of blade nonlinear deformation on aeroelastic performance is compared with a linear model based on Euler–Bernoulli beam theory. The study finds that nonlinear deformations reduce predicted angle of attack, decrease aerodynamic load distribution, and lead to a noticeable decline in both wind turbine performance and blade deflection. The effects on thrust and edgewise deformation are particularly significant. Additionally, nonlinear deformations weaken the tip vortex strength, slow the momentum exchange in the wake region, reduce turbulence intensity, and delay wake recovery. This study highlights the importance of considering blade nonlinear deformations in large-scale wind turbines. Full article
(This article belongs to the Topic Wind, Wave and Tidal Energy Technologies in China)
Show Figures

Figure 1

18 pages, 3052 KB  
Article
Research on Optimization Technology of Minimum Specific Fuel Consumption for Triple-Bypass Variable Cycle Engine
by Haonan Guo, Yuhua Zhang and Bing Yu
Aerospace 2025, 12(1), 10; https://doi.org/10.3390/aerospace12010010 - 27 Dec 2024
Cited by 3 | Viewed by 929
Abstract
This paper investigates the best control method of the lowest specific fuel consumption (SFC) to reduce the specific fuel consumption of the triple-bypass variable cycle engine. Specific fuel consumption is the ratio of fuel flow to thrust. First, the Kriging model of the [...] Read more.
This paper investigates the best control method of the lowest specific fuel consumption (SFC) to reduce the specific fuel consumption of the triple-bypass variable cycle engine. Specific fuel consumption is the ratio of fuel flow to thrust. First, the Kriging model of the engine near the supersonic cruise and subsonic cruise state points was extracted using the component-level model of the triple-bypass variable cycle engine, and the PSM was obtained close to the steady-state point. The contribution of each control variable to the engine’s specific fuel consumption was computed using the PSM and, at the same time, due to the linear characteristics of the PSM, it was easy to deal with various constrained linear optimization problems, and the steady-state points with the smallest specific fuel consumption under the constraints could be obtained through the linear optimization algorithm; however, the surge margin and pre-turbine temperature of the optimized point were limited in the optimization process, the method of direct switching inevitably brought the problem of overshoot of the controlled quantity, and the actual controlled quantity could still exceed the safe operation boundary of the engine in the process of change. Moreover, the performance optimization control itself is premised on sacrificing the surge margin of the engine, and its operating boundary is closer to the surge line, so the limitation protection problem in the transition state cannot be ignored in the process of performance optimization control. In this paper, a multivariable steady-state controller was designed based on Model Predictive Control (MPC) to meet the needs of engine optimization control mode switching. The simulation results of the supersonic cruise mode show that the minimum fuel consumption control can reduce the fuel consumption of the engine by 2.6% while the thrust remains constant. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

14 pages, 2500 KB  
Article
Leveraging Walnut Somatic Embryos as a Biomanufacturing Platform for Recombinant Proteins and Metabolites
by Paulo A. Zaini, Katherine R. Haddad, Noah G. Feinberg, Yakir Ophir, Somen Nandi, Karen A. McDonald and Abhaya M. Dandekar
BioTech 2024, 13(4), 50; https://doi.org/10.3390/biotech13040050 - 15 Nov 2024
Viewed by 1491
Abstract
Biomanufacturing enables novel sources of compounds with constant demand, such as food coloring and preservatives, as well as new compounds with peak demand, such as diagnostics and vaccines. The COVID-19 pandemic has highlighted the need for alternative sources of research materials, thrusting research [...] Read more.
Biomanufacturing enables novel sources of compounds with constant demand, such as food coloring and preservatives, as well as new compounds with peak demand, such as diagnostics and vaccines. The COVID-19 pandemic has highlighted the need for alternative sources of research materials, thrusting research on diversification of biomanufacturing platforms. Here, we show initial results exploring the walnut somatic embryogenic system expressing the recombinant receptor binding domain (RBD) and ectodomain of the spike protein (Spike) from the SARS-CoV-2 virus. Stably transformed walnut embryo lines were selected and propagated in vitro. Both recombinant proteins were detected at 3–14 µg/g dry weight of tissue culture material. Although higher yields of recombinant protein have been obtained using more conventional biomanufacturing platforms, we also report on the production of the red pigment betanin in somatic embryos, reaching yields of 650 mg/g, even higher than red beet Beta vulgaris. This first iteration shows the potential of biomanufacturing using somatic walnut embryos that can now be further optimized for different applications sourcing specialized proteins and metabolites. Full article
Show Figures

Figure 1

19 pages, 6930 KB  
Article
Deterministic Trajectory Design and Attitude Maneuvers of Gradient-Index Solar Sail in Interplanetary Transfers
by Marco Bassetto, Giovanni Mengali and Alessandro A. Quarta
Appl. Sci. 2024, 14(22), 10463; https://doi.org/10.3390/app142210463 - 13 Nov 2024
Cited by 1 | Viewed by 1290
Abstract
A refractive sail is a special type of solar sail concept, whose membrane exposed to the Sun’s rays is covered with an advanced engineered film made of micro-prisms. Unlike the well-known reflective solar sail, an ideally flat refractive sail is able to generate [...] Read more.
A refractive sail is a special type of solar sail concept, whose membrane exposed to the Sun’s rays is covered with an advanced engineered film made of micro-prisms. Unlike the well-known reflective solar sail, an ideally flat refractive sail is able to generate a nonzero thrust component along the sail’s nominal plane even when the Sun’s rays strike that plane perpendicularly, that is, when the solar sail attitude is Sun-facing. This particular property of the refractive sail allows heliocentric orbital transfers between orbits with different values of the semilatus rectum while maintaining a Sun-facing attitude throughout the duration of the flight. In this case, the sail control is achieved by rotating the structure around the Sun–spacecraft line, thus reducing the size of the control vector to a single (scalar) parameter. A gradient-index solar sail (GIS) is a special type of refractive sail, in which the membrane film design is optimized though a transformation optics-based method. In this case, the membrane film is designed to achieve a desired refractive index distribution with the aid of a waveguide array to increase the sail efficiency. This paper analyzes the optimal transfer performance of a GIS with a Sun-facing attitude (SFGIS) in a series of typical heliocentric mission scenarios. In addition, this paper studies the attitude control of the Sun-facing GIS using a simplified mathematical model, in order to investigate the effective ability of the solar sail to follow the (optimal) variation law of the rotation angle around the radial direction. Full article
Show Figures

Figure 1

16 pages, 1450 KB  
Article
Venus Magnetotail Long-Term Sensing Using Solar Sails
by Alessandro A. Quarta
Appl. Sci. 2024, 14(17), 8016; https://doi.org/10.3390/app14178016 - 7 Sep 2024
Cited by 1 | Viewed by 1377
Abstract
Propellantless propulsion systems, such as the well-known photonic solar sails that provide thrust by exploiting the solar radiation pressure, theoretically allow for extremely complex space missions that require a high value of velocity variation to be carried out. Such challenging space missions typically [...] Read more.
Propellantless propulsion systems, such as the well-known photonic solar sails that provide thrust by exploiting the solar radiation pressure, theoretically allow for extremely complex space missions that require a high value of velocity variation to be carried out. Such challenging space missions typically need the application of continuous thrust for a very long period of time, compared to the classic operational life of a space vehicle equipped with a more conventional propulsion system as, for example, an electric thruster. In this context, an interesting application of this propellantless thruster consists of using the solar sail-induced acceleration to artificially precess the apse line of a planetocentric elliptic orbit. This specific mission application was thoroughly investigated about twenty years ago in the context of the GeoSail Technology Reference Study, which analyzed the potential use of a spacecraft equipped with a small solar sail to perform an in situ study of the Earth’s upper magnetosphere. Taking inspiration from the GeoSail concept, this study analyzes the performance of a solar sail-based spacecraft in (artificially) precessing the apse line of a high elliptic orbit around Venus with the aim of exploring the planet’s induced magnetotail. In particular, during flight, the solar sail orientation is assumed to be Sun-facing, and the required thruster’s performance is evaluated as a function of the elliptic orbit’s characteristics by using both a simplified mathematical model of the spacecraft’s planetocentric dynamics and an approximate analytical approach. Numerical results show that a medium–low-performance sail is able to artificially precess the apse line of a Venus-centered orbit in order to ensure the long-term sensing of the planet’s induced magnetotail. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

17 pages, 268 KB  
Concept Paper
Crip Digital Intimacies: The Social Dynamics of Creating Access through Digital Technology
by Megan A. Johnson, Eliza Chandler, Chelsea Temple Jones and Lisa East
Societies 2024, 14(9), 174; https://doi.org/10.3390/soc14090174 - 6 Sep 2024
Cited by 1 | Viewed by 2392
Abstract
Disabled people are uniquely positioned in relation to the digital turn. Academic ableism, the inaccessibility of digital space, and gaps in digital literacy present barriers, while, at the same time, disabled, Deaf, and neurodivergent people’s access knowledge is at the forefront of innovations [...] Read more.
Disabled people are uniquely positioned in relation to the digital turn. Academic ableism, the inaccessibility of digital space, and gaps in digital literacy present barriers, while, at the same time, disabled, Deaf, and neurodivergent people’s access knowledge is at the forefront of innovations in culture and crip technoscience. This article explores disability, technology, and access through the concept of crip digital intimacy, a term that describes the relational and affective advances that disabled people make within digital space and through digital technology toward accessing the arts. We consider how moments of crip digital intimacy emerged through Accessing the Arts: Centring Disability Perspectives in Access Initiatives—a research project that explored how to make the arts more accessible through engaging disabled artist-participants in virtual storytelling, knowledge sharing, and art-making activities. Our analysis tracks how crip digital intimacies emerged through the ways participants collectively organized and facilitated access for themselves and each other. Guided by affordance theory and in line with the political thrust of crip technoscience, crip legibility, and access intimacy, we argue that crip digital intimacy emphasizes the interdependent and relational nature of access, recognizes the creativity and vitality of nonnormative bodyminds, and understands disability as a political—and frequently transgressive—way of being in the world. Full article
(This article belongs to the Special Issue Exploring Disability in the Digital Realm)
Back to TopTop