Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,053)

Search Parameters:
Keywords = tillage system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4394 KB  
Article
Tracking Soil Organic Carbon and Nitrogen Under Organic Management: A Temporal Perspective
by Daniel Bragg, Joan Romanyà, José M. Blanco-Moreno and Francesc Xavier Sans
Agriculture 2025, 15(20), 2117; https://doi.org/10.3390/agriculture15202117 (registering DOI) - 11 Oct 2025
Abstract
Understanding the long-term impact of agricultural practices on soil parameters is essential for improving soil quality and sustainability. Soil Organic Carbon (SOC) and total Nitrogen (N) are key indicators due to their influence on crop productivity, nutrient cycling, and microbial activity. This study [...] Read more.
Understanding the long-term impact of agricultural practices on soil parameters is essential for improving soil quality and sustainability. Soil Organic Carbon (SOC) and total Nitrogen (N) are key indicators due to their influence on crop productivity, nutrient cycling, and microbial activity. This study assesses the effects of tillage intensity (inversion vs. non-inversion) and organic amendments (manure vs. no manure) on SOC and total N dynamics in Mediterranean rain-fed arable systems. Data were collected over a ten-year field trial (2011–2020) in Catalonia, under cereal–legume rotation and organic management, focusing on two soil depths (0–10 and 10–20 cm). Fertilization was the main driver of SOC and N changes. Non-inversion tillage promoted topsoil accumulation and microbial colonization, especially during the first period (2011–2015). The combination of manure and reduced tillage led to faster and greater SOC increases. Moreover, initial SOC levels were negatively related to SOC changes in the topsoil. These results revealed the combination of manure and non-inversion tillage as the more suitable management practice to preserve soil quality in organic arable rain-fed systems, emphasizing the importance of understanding the impact of agricultural management in the long-term under Mediterranean conditions. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

25 pages, 1817 KB  
Article
Effect of Varying Dairy Cow Size and Live Weight on Soil Structure and Pasture Attributes
by Mary Negrón, Ignacio F. López, José Dörner, Andrew D. Cartmill, Oscar A. Balocchi and Eladio Saldivia
Agronomy 2025, 15(10), 2367; https://doi.org/10.3390/agronomy15102367 - 10 Oct 2025
Abstract
Grazing systems’ production efficiency is a dynamic interaction between soil, pasture, livestock, and climate. The magnitude of the changes is related to the mechanical stress applied by the livestock and their feeding behaviour. In Southern Chile, dairy cattle present a high heterogeneity in [...] Read more.
Grazing systems’ production efficiency is a dynamic interaction between soil, pasture, livestock, and climate. The magnitude of the changes is related to the mechanical stress applied by the livestock and their feeding behaviour. In Southern Chile, dairy cattle present a high heterogeneity in breeds, size, live weight, and milk production. This study investigated whether cows of contrasting size/live weight can improve degraded pasture and positively modify soil (Andosol-Duric Hapludand) physical features. Three pasture types were used as follows: (i) cultivated fertilised Lolium perenne L. (perennial ryegrass) and Trifolium repens L. (white clover) mixture (BM); (ii) cultivated fertilised L. perenne, T. repens, Bromus valdivianus Phil. (pasture brome), Holcus lanatus L. (Yorkshire fog), and Dactylis glomerata L. (cocksfoot) mixture (MSM); and (iii) naturalised fertilised pasture Agrostis capillaris L. (browntop), B. valdivianus, and T. repens (NFP). Pastures were grazed with two groups of dairy cows of contrasting size and live weight: light cows (LC) [live weight: 464 ± 5.4 kg; height at the withers: 132 ± 0.6 cm (average ± s.e.m.)] and heavy cows (HC) [live weight: 600 ± 8.7 kg; height at the withers: 141 ± 0.9 cm (average ± s.e.m.)]. Hoof area was measured, and the pressure applied by cows on the soil was calculated. Soil differences in penetration resistance (PR) and macro-porosity (wCP > 50 μm) between pastures were explained by tillage and seeding, rather than as a result of livestock presence and movement (animal trampling). The PR variation during the year was associated with the soil water content (SWC). Grazing dairy cows of contrasting live weight caused changes in soil and pasture attributes, and they behaved differently during grazing. Light cows were linked to more intense grazing, a stable soil structure, and pastures with competitive species and greater tiller density. In MSM, pasture consumption increased, and the soil was more resilient to hoof compression. In general, grazing with heavy cows in these three different pasture systems did not negatively impact soil physical properties. These findings indicate that volcanic soils are resilient and that during renovation, the choice of pasture type has a greater initial impact on soil structure than the selection of cow size, but incorporating lighter cows can be a strategy to promote denser pasture swards in these grazing systems. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

15 pages, 2125 KB  
Article
Surface Mapping by RPAs for Ballast Optimization and Slip Reduction in Plowing Operations
by Lucas Santos Santana, Lucas Gabryel Maciel do Santos, Josiane Maria da Silva, Aldir Carpes Marques Filho, Francesco Toscano, Enio Farias de França e Silva, Alexandre Maniçoba da Rosa Ferraz Jardim, Thieres George Freire da Silva and Marco Antonio Zanella
AgriEngineering 2025, 7(10), 332; https://doi.org/10.3390/agriengineering7100332 - 3 Oct 2025
Viewed by 276
Abstract
Driving wheel slippage in agricultural tractors is influenced by soil moisture, density, and penetration resistance. These surface variations reflect post-tillage composition, enabling dynamic mapping via Remotely Piloted Aircraft (RPAs). This study evaluated ballast recommendations based on soil surface data and slippage percentages, correlating [...] Read more.
Driving wheel slippage in agricultural tractors is influenced by soil moisture, density, and penetration resistance. These surface variations reflect post-tillage composition, enabling dynamic mapping via Remotely Piloted Aircraft (RPAs). This study evaluated ballast recommendations based on soil surface data and slippage percentages, correlating added wheel weights at different speeds for a tractor-reversible plow system. Six 94.5 m2 quadrants were analyzed for slippage monitored by RPA (Mavic3M-RTK) pre- and post-agricultural operation overflights and soil sampling (moisture, density, penetration resistance). A 2 × 2 factorial scheme (F-test) assessed soil-surface attribute correlations and slippage under varying ballasts (52.5–57.5 kg/hp) and speeds. Results showed slippage ranged from 4.06% (52.5 kg/hp, fourth reduced gear) to 11.32% (57.5 kg/hp, same gear), with liquid ballast and gear selection significantly impacting performance in friable clayey soil. Digital Elevation Model (DEM) and spectral indices derived from RPA imagery, including Normalized Difference Red Edge (NDRE), Normalized Difference Water Index (NDWI), Bare Soil Index (BSI), Green–Red Vegetation Index (GRVI), Visible Atmospherically Resistant Index (VARI), and Slope, proved effective. The approach reduced tractor slippage from 11.32% (heavy ballast, 4th gear) to 4.06% (moderate ballast, 4th gear), showing clear improvement in traction performance. The integration of indices and slope metrics supported ballast adjustment strategies, particularly for secondary plowing operations, contributing to improved traction performance and overall operational efficiency. Full article
(This article belongs to the Special Issue Utilization and Development of Tractors in Agriculture)
Show Figures

Figure 1

23 pages, 808 KB  
Article
Integrated Effects of Tillage Intensity, Genotype, and Weather Variability on Growth, Yield, and Grain Quality of Winter Wheat in Maize–Wheat Rotation
by Jan Buczek, Beata Michalska-Klimczak, Renata Tobiasz-Salach and Dorota Gawęda
Agriculture 2025, 15(19), 2069; https://doi.org/10.3390/agriculture15192069 - 1 Oct 2025
Viewed by 406
Abstract
The aim of the study was to compare grain yield, grain quality, and morphophysiological parameters of three winter wheat cultivars: Kilimanjaro, Hymalaya, and Ostroga. The cultivars were grown in crop rotation after grain maize harvest, using three tillage systems: conventional (C), reduced (R), [...] Read more.
The aim of the study was to compare grain yield, grain quality, and morphophysiological parameters of three winter wheat cultivars: Kilimanjaro, Hymalaya, and Ostroga. The cultivars were grown in crop rotation after grain maize harvest, using three tillage systems: conventional (C), reduced (R), and no-tillage (N). A three-year field experiment was conducted in southeastern Poland. Compared to no-tillage, the use of conventional and reduced systems resulted in higher grain yield, increased leaf area index and relative chlorophyll content, and higher gas exchange parameters. In the conventional system, the highest grain yield was achieved by cvs. Hymalaya and Ostroga, while in no-tillage and reduced, it was cv. Hymalaya. Compared to no-tillage, the conventional system resulted in higher values of grain quality parameters, while simultaneously reducing ash content, and the reduced system promoted a better gluten index. Interactions between cultivar and tillage system demonstrated good grain quality in terms of protein, falling number, and gluten index. Gluten content above 25.0% was found in grains of cvs. Kilimanjaro and Hymalaya in the reduced and conventional systems, and cv. Ostroga in the conventional system. The dry and semi-drought periods in the 2018/2019 season were conducive to more favorable grain quality parameter values: protein, gluten, falling number, and ash. However, the resulting grain was characterized by a lower gluten index and lower physical parameters. Cvs. Hymalaya and Ostroga are recommended for cultivation in conventional and reduced tillage systems, and cv. additionally for no-tillage systems. Growing the cv. Kilimanjaro in no-tillage and reduced tillage systems, and the cv. Ostroga in a no-tillage system, will result in lower grain yields. Full article
Show Figures

Figure 1

30 pages, 2921 KB  
Article
Soil Nitrogen Dynamics and Transformation Under No-Tillage Perennial Rice Farming Systems
by Xupeng Zeng, Getachew Melaku, Guangfu Huang, Jing Zhang, Shilai Zhang, Yujiao Zhang and Fengyi Hu
Agriculture 2025, 15(19), 2033; https://doi.org/10.3390/agriculture15192033 - 28 Sep 2025
Viewed by 323
Abstract
Annual rice growing lands are mainly threatened by soil loss. High-yielding perennial rice cultivars with great socioeconomic values are developed to stabilize fragile rice farms. Nitrogen balance in perennial rice fields can be facilitated by its no-tillage-based management system. However, systematic studies on [...] Read more.
Annual rice growing lands are mainly threatened by soil loss. High-yielding perennial rice cultivars with great socioeconomic values are developed to stabilize fragile rice farms. Nitrogen balance in perennial rice fields can be facilitated by its no-tillage-based management system. However, systematic studies on nitrogen transformation and its distribution pattern are lacking. This study has therefore been conducted to look for the merits of no-tillage-based perennial rice farming on maintaining balanced nitrogen under perennial rice field conditions. From 2021 to 2023, a field experiment was conducted for six successive seasons, and the effect of no-tillage-based perennial rice plantation on apparent nitrogen balance was assessed. Plant nitrogen dry matter production efficiency and nitrogen recovery efficiency under the perennial rice production system were higher than the annual rice farming system by 10.32% (p < 0.05) and 14.17% (p < 0.05) per annum, respectively. Perennial rice systems exhibit higher nitrogen use efficiency and soil nitrogen potential for crops, sustain soil nitrogen balance and enhance soil fertility for long-term rice productivity. Perennial rice farming system is conducive to green and sustainable production in farmland. Full article
(This article belongs to the Special Issue Conservation-Regenerative Agriculture for Sustainable Agroecosystems)
Show Figures

Figure 1

27 pages, 10950 KB  
Article
Design and Analysis of 36 Novel Technical Models for Straw Return in Rice–Wheat Systems Based on Spatial and Temporal Variability
by Sagni B. Miressa, Yinian Li, Xiaoyuan Yan, Aayush Niroula, Ruiyin He and Qishuo Ding
Agronomy 2025, 15(10), 2288; https://doi.org/10.3390/agronomy15102288 - 27 Sep 2025
Viewed by 1463
Abstract
Straw return is essential for improving soil fertility, recycling organic matter, and sustaining productivity in rice–wheat systems. This study focuses on the conceptual design and systematic analysis of the spatial and temporal variability of straw return methods and their classification. We proposed and [...] Read more.
Straw return is essential for improving soil fertility, recycling organic matter, and sustaining productivity in rice–wheat systems. This study focuses on the conceptual design and systematic analysis of the spatial and temporal variability of straw return methods and their classification. We proposed and analyzed 36 technical models for straw return by integrating spatial distribution (depth and horizontal placement) with temporal variability (decomposition period managed through mulching or decomposers). The models of straw return were categorized into five classes: mixed burial, even spreading, strip mulching, deep burial, and ditch burial. Field experiments were conducted in Babaiqiao Town, Nanjing, China, using clay loam soils typical of intensive rice–wheat rotation. Soil properties (bulk density, porosity, and moisture content) and straw characteristics (length and density) were evaluated to determine their influence on decomposition efficiency and nutrient release. Results showed that shallow incorporation (0–5 cm) accelerated straw breakdown and microbial activity, while deeper incorporation (15–20 cm) enhanced long-term organic matter accumulation. Temporal control using mulching films and decomposer agents further improved moisture retention, aeration, and nutrient availability. For the rice–wheat system study area, four typical straw return modes were selected based on spatial distribution and soil physical parameters: straw even spreading, rotary plowing, conventional tillage with mulching, and straw plowing with burying. This study added to the growing body of literature on straw return by providing a systematic analysis of the parameters influencing straw decomposition and the incorporation. The results have significant implications for sustainable agricultural practices, offering practical recommendations for optimizing straw return strategies to improve soil health. Full article
(This article belongs to the Special Issue Advances in Tillage Methods to Improve the Yield and Quality of Crops)
Show Figures

Graphical abstract

22 pages, 3877 KB  
Article
Tillage Management Alters Carbon Sink Capacity in Arid Phaeozems: Insights from a Carbon Balance Perspective
by Peizhe Yu, Mingxu Deng, Guangzhi Lin, Ming Liu, Zhongxue Zhang, Zhijuan Qi and Xin Zhou
Agronomy 2025, 15(10), 2285; https://doi.org/10.3390/agronomy15102285 - 26 Sep 2025
Viewed by 203
Abstract
To comprehensively explore the net carbon balance within cropland systems subject to diverse tillage practices (Down-slope cultivation (CK), Subsoiling tillage (SF), Ridge to district field (RF), Ridge to district field + subsoiling tillage (RF-S), Transverse slope planting (TP), Transverse slope planting + ridge [...] Read more.
To comprehensively explore the net carbon balance within cropland systems subject to diverse tillage practices (Down-slope cultivation (CK), Subsoiling tillage (SF), Ridge to district field (RF), Ridge to district field + subsoiling tillage (RF-S), Transverse slope planting (TP), Transverse slope planting + ridge to district field (TP-R), Transverse slope planting + subsoiling tillage (TP-S)), a series of well-designed field experiments were meticulously carried out. The CO2 emission intensity of soil heterotrophic respiration, CH4 emission intensity, carbon loss in runoff, carbon emissions from farmland materials, dry matter mass and carbon content of different crop organs after harvest were measured for the six different tillage practices. Moreover, the annual and seasonal variations in farmland soil carbon pools under different treatments were analyzed using the net carbon flux (NCF) of the cropland system. The results indicated that, under different tillage practices, the CO2 emission intensity of soil heterotrophic respiration in each regime across different years generally exhibited a pattern of increasing initially and then decreasing, reaching its peak during the filling stage (pod-setting stage). The RF regime significantly reduced the CO2 emissions from soil heterotrophic respiration (p < 0.05). The CH4 emissions in each regime across different years also demonstrated an overall tendency of rising initially and subsequently declining, with an alternating positive–negative pattern, reaching its peak during the jointing stage (branching stage). The SF regime significantly decreased the CH4 emissions (p < 0.05). The regimes with cross-slope tillage significantly reduced the carbon loss in runoff (p < 0.05). Throughout every year, the NPP of crops under the TP-S regime attained its peak value (p < 0.05). The RF regime effectively increased the NPP of crops, reduced the soil heterotrophic respiration CO2 emissions and the carbon loss in runoff, and its NCF value reached the maximum level (p < 0.05), presenting a weak carbon “source”. Overall, ridged-field (RF) effectively curbs greenhouse gas emissions, boosts farmland carbon sequestration, and mitigates soil fertility decline. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Graphical abstract

25 pages, 5602 KB  
Article
Machine Learning-Based Estimation of Tractor Performance in Tillage Operations Using Soil Physical Properties
by So-Yun Gong, Seung-Min Baek, Seung-Yun Baek, Yong-Joo Kim and Wan-Soo Kim
Agronomy 2025, 15(9), 2228; https://doi.org/10.3390/agronomy15092228 - 21 Sep 2025
Viewed by 389
Abstract
Accurate estimation of tractor performance under various soil conditions is essential for enhancing operational efficiency in precision agriculture. This study developed machine learning models to estimate tractor performance based on key soil physical properties. Three algorithms—decision tree (DT), CatBoost, and LightGBM—were employed to [...] Read more.
Accurate estimation of tractor performance under various soil conditions is essential for enhancing operational efficiency in precision agriculture. This study developed machine learning models to estimate tractor performance based on key soil physical properties. Three algorithms—decision tree (DT), CatBoost, and LightGBM—were employed to capture nonlinear relationships between soil parameters and tractor performance indicators. The input variables included soil moisture content, cone index, and particle composition, while the output variables were engine torque, power, slip ratio, and axle power. The models in this study were trained and validated using field data collected from eight paddy fields in Chungcheongnam-do (two in Seosan, two in Cheongyang, and four in Dangjin) and two paddy fields in Gyeonggi-do (Anseong), Republic of Korea. Results showed that models using multiple soil variables significantly outperformed those using single variables. In Model D, CatBoost demonstrated superior performance in predicting engine torque, engine power, slip ratio, and axle power, achieving R2 values that were 7.0–14.2% higher than those of DT and 1.6–3.8% higher than those of LightGBM. These findings demonstrate the feasibility of using machine learning with minimal input data to estimate tractor performance, potentially reducing the reliance on extensive physical testing. Full article
Show Figures

Figure 1

22 pages, 4207 KB  
Article
Performance Assessment of a Vibratory-Enhanced Plowing System for Improved Energy Efficiency and Tillage Quality on Compacted Soils
by Laurentiu Constantin Vlădutoiu, Eugen Marin, Florin Nenciu, Daniel Lateș, Ioan Catalin Persu, Mario Cristea and Dragoș Manea
AgriEngineering 2025, 7(9), 304; https://doi.org/10.3390/agriengineering7090304 - 18 Sep 2025
Viewed by 447
Abstract
Compacted and degraded soils pose increasing challenges to agricultural practices, necessitating innovative approaches to soil tillage. This paper evaluates the performance of a vibratory-enhanced moldboard plowing system, designed to improve energy efficiency and tillage quality under compacted and moisture-deficient conditions, typical of low-moisture [...] Read more.
Compacted and degraded soils pose increasing challenges to agricultural practices, necessitating innovative approaches to soil tillage. This paper evaluates the performance of a vibratory-enhanced moldboard plowing system, designed to improve energy efficiency and tillage quality under compacted and moisture-deficient conditions, typical of low-moisture soils. Field experiments were conducted across four distinct Romanian regions with varying soil types and climatic conditions, all characterized by significant compaction and limited soil moisture. The vibratory system, mounted directly on each plow body, employed sinusoidal oscillations generated by a DC moto-vibrator, to reduce soil adhesion and traction force requirements, thereby lowering fuel consumption. Key parameters including fuel consumption, working speed, soil fragmentation, weed incorporation, and traction force were measured and compared with the conventional plowing method. The results showed enhanced soil fragmentation and more effective residue incorporation, along with notable reductions in traction effort and fuel use at optimal oscillation settings. These findings highlight the potential of vibratory tillage to be used as a soil preparation method for compaction-prone areas, improving the soil structure while increasing operational energy efficiency. Full article
(This article belongs to the Special Issue Utilization and Development of Tractors in Agriculture)
Show Figures

Figure 1

19 pages, 540 KB  
Article
Technological Properties of Ancient Wheat Species and Common Wheat Grown Organically Under Mouldboard Ploughing and Shallow Tillage
by Tomasz Knapowski, Małgorzata Szczepanek, Wojciech Kozera and Ladislav Ducsay
Agriculture 2025, 15(18), 1937; https://doi.org/10.3390/agriculture15181937 - 12 Sep 2025
Viewed by 366
Abstract
The need to diversify food products on the market, the interest of producer-farmers and food processors in nutritionally healthy raw materials, and especially the demand among consumers for new, high-quality product assortments have led to the introduction of ancient wheat species into cultivation. [...] Read more.
The need to diversify food products on the market, the interest of producer-farmers and food processors in nutritionally healthy raw materials, and especially the demand among consumers for new, high-quality product assortments have led to the introduction of ancient wheat species into cultivation. Ancient plant species are often grown using environmentally friendly agricultural technologies. The aim of the study was to compare the technological parameters, rheological properties of dough, and baking indicators of grains (and the flour milled from them) from ancient wheat species T. sphaerococcum and T. persicum with common wheat. These were cultivated using both traditional ploughing and simplified shallow tillage systems. The wheat grain was obtained from field experiments located in three certified organic farms in Poland. In the plant material samples, physical, technological and rheological parameters were determined. The grain, flour, baked bread, and the colour of grain and flour were characterised. It was found that the tested cultivation systems did not have a significant effect on the analysed traits (except for dough parameters: dough stability time, dough softening, and bread weight after removal from the oven and 24 h after baking where shallow tillage turned out to be more advantageous). In turn, the wheat species significantly influenced the tested traits. This factor was found to determine relatively high (higher than common wheat) values of protein complex and water absorption characteristics in ancient wheat flour (T. persicum: TPC/TPCF—156/150 g·kg−1, WG/WGF—39.4/34.5%, WA—62.9%; T. sphaerococcum: TPC/TPCF—145/142 g·kg−1, WG/WGF—38.5/33.3%, WA—58.2%). The obtained results for the technological and rheological properties of the grain and flour indicate that ancient wheat species, particularly T. persicum, can be a potential raw material for the production of healthy food, including bread baking. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

18 pages, 1159 KB  
Article
High-Residue and Reduced Tillage Enhances Soil Fertility, Weed Suppression, and Crop Yield in Organic Vegetable Systems
by Jacob Pecenka, Arianna Bozzolo and Andrew Smith
Sustainability 2025, 17(17), 8069; https://doi.org/10.3390/su17178069 - 8 Sep 2025
Viewed by 795
Abstract
Organic annual vegetable farming systems often rely on intensive tillage for weed management due to the prohibition of synthetic herbicides. Regenerative organic agriculture aims to improve soil health and reduce the frequency and intensity of soil tillage by using cover crops as high-residue [...] Read more.
Organic annual vegetable farming systems often rely on intensive tillage for weed management due to the prohibition of synthetic herbicides. Regenerative organic agriculture aims to improve soil health and reduce the frequency and intensity of soil tillage by using cover crops as high-residue mulches to suppress weeds. In southern coastal California, the moderate climate supports year-round vegetable production, discouraging many growers from integrating cover crops into their operation and leaving sustainability-minded growers with few strategies to produce organic vegetables outside of reliance on tillage. This study evaluates standard organic tillage practices versus high-residue cover-crop mulch system on squash, peppers, and eggplant over two seasons. We assessed treatment effects on soil health indicators, weed pressure, and crop production. Soil under the cover-crop system improved soil organic matter, organic carbon and nitrogen, microbially active carbon, and water infiltration compared to bare soil. Weed biomass was substantially lower under the high-residue mulch due to persistent surface cover. Crop yield was 82%, 169%, and 189% higher in the cover-crop plots for squash, pepper, and eggplant, respectively. These findings demonstrate that high-residue cover-crop systems can enhance soil health, reduce weed pressure, and substantially increase yields, providing evidence-based strategies for implementing regenerative organic practices in vegetable systems. Full article
(This article belongs to the Special Issue Sustainable Agriculture, Soil Erosion and Soil Conservation)
Show Figures

Figure 1

18 pages, 4279 KB  
Article
Soil Compaction Prediction in Precision Agriculture Using Cultivator Shank Vibration and Soil Moisture Data
by Shaghayegh Janbazialamdari, Daniel Flippo, Evan Ridder and Edwin Brokesh
Agriculture 2025, 15(17), 1896; https://doi.org/10.3390/agriculture15171896 - 7 Sep 2025
Viewed by 831
Abstract
Precision agriculture applies data-driven strategies to manage spatial and temporal variability within fields, aiming to increase productivity while minimizing pressure on natural resources. As interest in smart tillage systems expands, this study explores a central question: Can tillage tools be used to measure [...] Read more.
Precision agriculture applies data-driven strategies to manage spatial and temporal variability within fields, aiming to increase productivity while minimizing pressure on natural resources. As interest in smart tillage systems expands, this study explores a central question: Can tillage tools be used to measure soil compaction during regular field operations? To investigate this, vibration data measurements were collected from a cultivator shank in the northeast of Kansas using the AVDAQ system. The test field soils were Reading silt loam and Eudora–Bismarck Grove silt loams. The relationship between shank vibrations, soil moisture (measured by a Hydrosense II soil–water sensor), and soil compaction (measured by a cone penetrometer) was evaluated using machine learning models. Both XGBoost and Random Forest demonstrated strong predictive performance, with Random Forest achieving a slightly higher correlation of 93.8% compared to 93.7% for XGBoost. Statistical analysis confirmed no significant difference between predicted and measured values, validating the accuracy and reliability of both models. Overall, the results demonstrate that combining vibration data with soil moisture data as model inputs enables accurate estimation of soil compaction, providing a foundation for future in situ soil sensing, reduced tillage intensity, and more sustainable cultivation practices. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 2764 KB  
Article
Beyond Monoculture: A Comparative Analysis of Soil Properties and Grain Quality in Rice-Based Co-Culture Systems
by Yang Xu, Geye Ding, Weiwei Ma, Jiao Yuan, Jing Liu, Ziyu Xie, Junde Guo, Linzhi Ou, Huang Huang, Can Chen and Junhua Li
Biology 2025, 14(9), 1195; https://doi.org/10.3390/biology14091195 - 4 Sep 2025
Viewed by 427
Abstract
Rice-based co-culture systems offer sustainable agricultural benefits, yet stage-specific impacts on soil properties and grain quality remain underexplored. This study presented the first comprehensive assessment of the stage-specific effects under conventional tillage (CTL), rice-chicken (RC), rice-fish (RF), and rice-chicken-fish (RCF) systems on soil [...] Read more.
Rice-based co-culture systems offer sustainable agricultural benefits, yet stage-specific impacts on soil properties and grain quality remain underexplored. This study presented the first comprehensive assessment of the stage-specific effects under conventional tillage (CTL), rice-chicken (RC), rice-fish (RF), and rice-chicken-fish (RCF) systems on soil fertility, enzymatic activities, microbial communities, and grain quality. Our novel temporally explicit analysis revealed system- and stage-dependent modulation. RCF increased late-season organic matter by 10.4%, while RC consistently enhanced available potassium. Enzymatic activities exhibited distinct temporal shifts, with RF showing peak catalase activity at heading (0.47 mL g−1 30 min−1), RC maintaining consistently higher invertase activity, and both RF and RCF displaying delayed urease peaks at filling (0.38 mg g−1 24 h−1). Microbial communities were significantly restructured (ANOSIM, R2 = 0.694, p < 0.001), with increased network complexity in co-cultures, particularly in RCF (95 nodes, 153 edges). Grain quality improvements included higher milling recovery (2.6–5.3%) in RC and elevated protein content (16.6%) in RF and RCF, along with reduced chalkiness (20–30%) across all co-cultures. Integrative analysis established linkages between soil properties (e.g., pH, organic matter, invertase), microbial taxa (e.g., Nitrospira, Syntrophus), and grain quality attributes. These findings provide mechanistic insights into soil-plant-microbe interactions and support the implementation of stage-specific management strategies for sustainable rice production systems. Full article
(This article belongs to the Section Microbiology)
Show Figures

Graphical abstract

15 pages, 4485 KB  
Article
Analysis of Multi-Source Vibration Characteristics of No-Tillage Planter Based on Field Operation Condition
by Dong He, Hongwen Li, Jinshuo Bi, Yingbo Wang, Caiyun Lu, Chao Wang, Zhengyang Wu and Rongrong Li
Agriculture 2025, 15(17), 1840; https://doi.org/10.3390/agriculture15171840 - 29 Aug 2025
Viewed by 488
Abstract
Field surface fluctuations and crop residues can induce significant random vibrations of no-tillage planters, which may negatively affect seed implantation stability and crop yield. At present, it is difficult to understand the extent to which the working components of a no-tillage planter affect [...] Read more.
Field surface fluctuations and crop residues can induce significant random vibrations of no-tillage planters, which may negatively affect seed implantation stability and crop yield. At present, it is difficult to understand the extent to which the working components of a no-tillage planter affect its vibration, and how to reduce the influence of vibration on the quality of the no-tillage seeding is a critical problem. The main factors affecting the vibration of no-tillage planters were studied by tractor engine vibration source impact analysis experiments, no-tillage planter structural vibration source experiments, and light and heavy no-tillage configuration vibration source analysis experiments. The results show that the effects of the ground wheels, the fertilizing and stubble breaking and cleaning devices, the packer wheels, and the power output shaft gradually diminish. The resonant frequencies of the tractor–no-tillage planter system were 68.36 Hz and 67.38 Hz. Furthermore, this study provided a relative assessment of the correlation between planter downforce and its vibration intensity. To sum up, the multi-source vibration impact analysis method proposed an effective method for studying the contribution of individual components to the overall vibration behavior of no-tillage planters. It provides a theoretical basis for the optimization design of the vibration damping system. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

18 pages, 6468 KB  
Review
Carbon Sequestration Under Different Agricultural Land Use in Croatia
by Igor Bogunovic
Agriculture 2025, 15(17), 1821; https://doi.org/10.3390/agriculture15171821 - 27 Aug 2025
Viewed by 588
Abstract
In order to help mitigate climate change, carbon farming methods must be urgently introduced. The research systematically reviewed peer-reviewed literature, national statistical reports, and policy documents published between 2000 and 2024, focusing on the impact of land management on soil organic carbon in [...] Read more.
In order to help mitigate climate change, carbon farming methods must be urgently introduced. The research systematically reviewed peer-reviewed literature, national statistical reports, and policy documents published between 2000 and 2024, focusing on the impact of land management on soil organic carbon in Croatia. This paper provides an overview of current agricultural practices on croplands and grasslands in Croatia. It identifies the weak points of current soil management and suggests possible measures for carbon sequestration in cropland and grassland soils. About 89% of Croatian soils are tilled conventionally, along with other harmful practices such as uncontrolled grazing and improper fertilization, which contribute to increasing carbon losses and soil degradation. Different practices are presented and discussed as possible solutions, each adapted to the specific environmental and soil conditions of Croatia. For example, studies in Croatian Stagnosols report 5% lower CO2 emissions under conservation tillage compared to conventional tillage, while long-term grass cover in perennial croplands has shown soil organic carbon increases of up to 51%. The recommendations are categorised according to the possibility of a change in carbon stocks over time and the associated carbon storage potential. Croatia needs to recognize any shortcomings in the existing system and create incentives and policies to transform management practices into site and environment-specific regional practices. Full article
Show Figures

Figure 1

Back to TopTop