Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (206)

Search Parameters:
Keywords = tilt correction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2484 KB  
Systematic Review
Anterior Vertebral Body Tethering Versus Posterior Spinal Fusion in Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis of Comparative Outcomes
by Mohamed Abdelaal, Maher Ghandour, Ümit Mert, Miguel Pishnamaz, Matthias Knobe, Frank Hildebrand, Rolf Sobottke, Koroush Kabir and Mohamad Agha Mahmoud
J. Clin. Med. 2025, 14(19), 6707; https://doi.org/10.3390/jcm14196707 - 23 Sep 2025
Abstract
Background/Objectives: To compare the radiographic, perioperative, and patient-reported outcomes between anterior vertebral body tethering (VBT) and posterior spinal fusion (PSF) in adolescents with idiopathic scoliosis. Methods: A systematic search of PubMed, Scopus, Web of Science, and Google Scholar was performed through May 2025. [...] Read more.
Background/Objectives: To compare the radiographic, perioperative, and patient-reported outcomes between anterior vertebral body tethering (VBT) and posterior spinal fusion (PSF) in adolescents with idiopathic scoliosis. Methods: A systematic search of PubMed, Scopus, Web of Science, and Google Scholar was performed through May 2025. Studies directly comparing anterior VBT and PSF in skeletally immature patients with adolescent idiopathic scoliosis were included. Data were pooled using random-effects meta-analysis and expressed as mean differences (MDs) or odds ratios (ORs) with 95% confidence intervals (CIs). The NIH quality assessment tool was used to evaluate risk of bias. Results: Ten studies comprising 1168 patients (573 VBT, 595 PSF) were included. At 2 years, VBT showed a significantly greater main thoracic curve (MD = 5.03°; 95% CI: 1.87–8.20) and proximal thoracic curve (MD = 3.27°; 95% CI: 1.16–5.38), but no difference in lumbar or main curve Cobb angles. VBT was associated with significantly reduced thoracic kyphosis (MD = −2.68°), increased T1 tilt (MD = 1.50°), shorter operative time (MD = −99.23 min), less blood loss (MD = −405.44 mL), and shorter hospital stay (MD = −1.34 days). However, VBT had a significantly higher revision rate (OR = 5.54; 95% CI: 2.81–10.94). No significant differences were noted in SRS-22 domains, except for higher mental health scores in the VBT group (MD = 0.56; 95% CI: 0.07–1.06). Conclusions: Anterior VBT offers perioperative advantages and comparable radiographic correction to PSF in selected adolescents with idiopathic scoliosis, but at the cost of higher revision rates. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

27 pages, 10443 KB  
Article
Bifacial Solar Modules Under Real Operating Conditions: Insights into Rear Irradiance, Installation Type and Model Accuracy
by Nairo Leon-Rodriguez, Aaron Sanchez-Juarez, Jose Ortega-Cruz, Camilo A. Arancibia Bulnes and Hernando Leon-Rodriguez
Eng 2025, 6(9), 233; https://doi.org/10.3390/eng6090233 - 8 Sep 2025
Viewed by 681
Abstract
Bifacial Photovoltaic (bPV) technology is rapidly becoming the standard in the solar photovoltaic (PV) industry due to its ability to capture reflected radiation and generate additional energy. This experimental study analyses the electrical performance of bPV modules under specific installation conditions, including varying [...] Read more.
Bifacial Photovoltaic (bPV) technology is rapidly becoming the standard in the solar photovoltaic (PV) industry due to its ability to capture reflected radiation and generate additional energy. This experimental study analyses the electrical performance of bPV modules under specific installation conditions, including varying heights, module tilt angles (MTA), and surface reflectivity. The methodology combines controlled indoor testing with outdoor experiments that replicate real-world operating environments. The outdoor test setup was carefully designed and included dual data acquisition systems: one with independent sensors and another with wireless telemetry for data transfer from the inverter. A thermal performance model was used to estimate energy output and was benchmarked against experimental measurements. All electrical parameters were obtained in accordance with international standards, including current-voltage characteristic (I–V curve) corrections, using calibrated instruments to monitor irradiance and temperature. Indoor measurements under Standard Test Conditions yielded at bifaciality coefficient φ=0.732, a rear bifacial power gain BiFi=0.285, and a relative bifacial gain BiFirel=9.4%. The outdoor configuration employed volcanic red stone (Tezontle) as a reflective surface, simulating a typical mid-latitude installation with modules mounted 1.5 m above ground, tilted from 0° to 90° regarding floor and oriented true south. The study was conducted at a site located at 18.8° N latitude during the early summer season. Results revealed significant non-uniformity in rear-side irradiance, with a 32% variation between the lower edge and the centre of the bPV module. The thermal model used to determine electrical performance provides power values higher than those measured in the time interval between 10 a.m. and 3 p.m. Maximum energy output was observed at a MTA of 0°, which closely aligns with the optimal summer tilt angle for the site’s latitude. Bifacial energy gain decreased as the MTA increased from 0° to 90°. These findings offer practical, data-driven insights for optimizing bPV installations, particularly in regions between 15° and 30° north latitude, and emphasize the importance of tailored surface designs to maximize performance. Full article
Show Figures

Graphical abstract

25 pages, 7018 KB  
Article
LiDAR-IMU Sensor Fusion-Based SLAM for Enhanced Autonomous Navigation in Orchards
by Seulgi Choi, Xiongzhe Han, Eunha Chang and Haetnim Jeong
Agriculture 2025, 15(17), 1899; https://doi.org/10.3390/agriculture15171899 - 7 Sep 2025
Viewed by 1417
Abstract
Labor shortages and uneven terrain in orchards present significant challenges to autonomous navigation. This study proposes a navigation system that integrates Light Detection and Ranging (LiDAR) and Inertial Measurement Unit (IMU) data to enhance localization accuracy and map stability through Simultaneous Localization and [...] Read more.
Labor shortages and uneven terrain in orchards present significant challenges to autonomous navigation. This study proposes a navigation system that integrates Light Detection and Ranging (LiDAR) and Inertial Measurement Unit (IMU) data to enhance localization accuracy and map stability through Simultaneous Localization and Mapping (SLAM). To minimize distortions in LiDAR scans caused by ground irregularities, real-time tilt correction was implemented based on IMU feedback. Furthermore, the path planning module was improved by modifying the Rapidly-Exploring Random Tree (RRT) algorithm. The enhanced RRT generated smoother and more efficient trajectories with quantifiable improvements: the average shortest path length was 2.26 m, compared to 2.59 m with conventional RRT and 2.71 m with A* algorithm. Tracking performance also improved, achieving a root mean square error of 0.890 m and a maximum lateral deviation of 0.423 m. In addition, yaw stability was strengthened, as heading fluctuations decreased by approximately 7% relative to the standard RRT. Field results validated the robustness and adaptability of the proposed system under real-world agricultural conditions. These findings highlight the potential of LiDAR–IMU sensor fusion and optimized path planning to enable scalable and reliable autonomous navigation for precision agriculture. Full article
(This article belongs to the Special Issue Advances in Precision Agriculture in Orchard)
Show Figures

Figure 1

9 pages, 6933 KB  
Article
Multi-Actuator Lens Systems for Turbulence Correction in Free-Space Optical Communications
by Matteo Schiavon, Antonio Vanzo, Kevin Campaci, Valentina Marulanda Acosta and Stefano Bonora
Photonics 2025, 12(9), 870; https://doi.org/10.3390/photonics12090870 - 29 Aug 2025
Viewed by 459
Abstract
The implementation of efficient free-space channels is fundamental for both classical and quantum free-space optical (FSO) communication. This can be challenging for fiber-coupled receivers, due to the time variant inhomogeneity of the refractive index that can cause strong fluctuations in the power coupled [...] Read more.
The implementation of efficient free-space channels is fundamental for both classical and quantum free-space optical (FSO) communication. This can be challenging for fiber-coupled receivers, due to the time variant inhomogeneity of the refractive index that can cause strong fluctuations in the power coupled into the single-mode fiber (SMF), and requires the use of adaptive optics (AO) systems to correct the atmospheric-induced aberrations. In this work, we present two adaptive optic systems, one using a fast-steering prism (FSP) for the correction of tip-tilt and a second one based on a multi-actuator deformable lens (MAL), capable of correcting up to the third order of Zernike’s polynomials. We test both systems at telecom wavelength both with artificial turbulence in the laboratory and on a free-space channel, demonstrating their effectiveness in increasing the fiber coupling efficiency. Full article
Show Figures

Figure 1

13 pages, 1336 KB  
Case Report
Resuturing a Dislocated Scleral-Fixated Intraocular Lens in Brown–McLean Syndrome
by Suguru Nakagawa, Atsushi Okubo and Kiyoshi Ishii
J. Clin. Med. 2025, 14(16), 5769; https://doi.org/10.3390/jcm14165769 - 14 Aug 2025
Viewed by 514
Abstract
Background/Objectives: Brown–McLean syndrome (BMS) is a rare peripheral corneal edema that may arise years after cataract extraction or intraocular lens (IOLs) fixation. This article presents a case of IOL dislocation following scleral fixation in a patient with BMS, effectively managed by resuturing [...] Read more.
Background/Objectives: Brown–McLean syndrome (BMS) is a rare peripheral corneal edema that may arise years after cataract extraction or intraocular lens (IOLs) fixation. This article presents a case of IOL dislocation following scleral fixation in a patient with BMS, effectively managed by resuturing the existing IOL. Additionally, a literature review was conducted to summarize the clinical features, etiologies, and surgical outcomes of BMS. A PubMed search identified 30 reports encompassing 169 patients (244 eyes). Among these, corneal transplantation was performed in three eyes. Only four eyes underwent intraocular surgery after BMS onset, with no prior reports of IOL resuturing. Methods: A 73-year-old man with a history of left-eye trauma underwent vitrectomy and scleral fixation of a polymethyl methacrylate IOL 18 years prior. The patient presented with reduced vision in his left eye. Examination revealed BMS-related peripheral corneal edema and partial IOL dislocation. The dislocated haptic was resutured using an ab externo approach under a scleral flap. Results: Postoperative IOL fixation remained stable, with best-corrected visual acuity improving from 0.6 to 0.9. Edema persisted without central spread, and endothelial cell density decreased slightly (2496 to 2364 cells/mm2). One year postoperatively, no IOL tilt progression or suture-related complications were observed. Conclusions: Partial resuturing of a scleral-fixated IOL is effective for managing IOL dislocation in BMS when haptics remain stable. This approach minimizes incision size and potential endothelial trauma compared to explantation. However, aqueous dynamics correction may not reverse established BMS. Long-term endothelial monitoring is advised due to its chronic and progressive nature. Full article
Show Figures

Figure 1

14 pages, 2221 KB  
Article
Dynamic vs. Rigid: Transforming the Treatment Landscape for Multisegmental Lumbar Degeneration
by Caner Gunerbuyuk, Mehmet Yigit Akgun, Nazenin Durmus, Ege Anil Ucar, Helin Ilkay Orak, Tunc Oktenoglu, Ozkan Ates, Turgut Akgul and Ali fahir Ozer
J. Clin. Med. 2025, 14(15), 5472; https://doi.org/10.3390/jcm14155472 - 4 Aug 2025
Viewed by 452
Abstract
Background: Multisegmental lumbar degenerative disease (ms-LDD) is a common condition in older adults, often requiring surgical intervention. While rigid stabilization remains the gold standard, it is associated with complications such as adjacent segment disease (ASD), higher blood loss, and longer recovery times. The [...] Read more.
Background: Multisegmental lumbar degenerative disease (ms-LDD) is a common condition in older adults, often requiring surgical intervention. While rigid stabilization remains the gold standard, it is associated with complications such as adjacent segment disease (ASD), higher blood loss, and longer recovery times. The Dynesys dynamic stabilization system offers an alternative by preserving motion while stabilizing the spine. However, data comparing Dynesys with fusion in multisegmental cases are limited. Objective: This study evaluates the clinical and radiographic outcomes of Dynesys dynamic stabilization versus rigid stabilization in the treatment of ms-LDD. Methods: A retrospective analysis was conducted on 53 patients (mean age: 62.25 ± 15.37 years) who underwent either Dynesys dynamic stabilization (n = 27) or PLIF (n = 26) for ms-LDD involving at least seven motion segments. Clinical outcomes were assessed using the Visual Analog Scale (VAS) and Oswestry Disability Index (ODI), while radiological parameters such as lumbar lordosis (LL), sagittal vertical axis (SVA), and spinopelvic parameters (pelvic incidence, pelvic tilt and, sacral slope) were analyzed. A two-stage surgical approach was employed in the Dynesys group to enhance osseointegration, particularly in elderly osteoporotic patients. Results: Both groups showed significant improvements in VAS and ODI scores postoperatively (p < 0.001), with no significant differences between them. However, the Dynesys group demonstrated superior sagittal alignment correction, with a significant increase in LL (p < 0.002) and a significant decrease in SVA (p < 0.0015), whereas changes in the rigid stabilization group were not statistically significant. Additionally, the Dynesys group had fewer complications, including a lower incidence of ASD (0 vs. 6 cases). The two-stage technique facilitated improved screw osseointegration and reduced surgical risks in osteoporotic patients. Conclusions: Dynesys dynamic stabilization is an effective alternative to rigid stabilization in ms-LDD, offering comparable pain relief and functional improvement while preserving motion and reducing ASD risk. The two-stage approach enhances long-term stability, making it particularly suitable for elderly or osteoporotic patients. Further long-term studies are needed to confirm these findings. Full article
(This article belongs to the Special Issue Orthopedic Surgery: Latest Advances and Perspectives)
Show Figures

Figure 1

18 pages, 3870 KB  
Article
Universal Vector Calibration for Orientation-Invariant 3D Sensor Data
by Wonjoon Son and Lynn Choi
Sensors 2025, 25(15), 4609; https://doi.org/10.3390/s25154609 - 25 Jul 2025
Viewed by 463
Abstract
Modern electronic devices such as smartphones, wearable devices, and robots typically integrate three-dimensional sensors to track the device’s movement in the 3D space. However, sensor measurements in three-dimensional vectors are highly sensitive to device orientation since a slight change in the device’s tilt [...] Read more.
Modern electronic devices such as smartphones, wearable devices, and robots typically integrate three-dimensional sensors to track the device’s movement in the 3D space. However, sensor measurements in three-dimensional vectors are highly sensitive to device orientation since a slight change in the device’s tilt or heading can change the vector values. To avoid complications, applications using these sensors often use only the magnitude of the vector, as in geomagnetic-based indoor positioning, or assume fixed device holding postures such as holding a smartphone in portrait mode only. However, using only the magnitude of the vector loses the directional information, while ad hoc posture assumptions work under controlled laboratory conditions but often fail in real-world scenarios. To resolve these problems, we propose a universal vector calibration algorithm that enables consistent three-dimensional vector measurements for the same physical activity, regardless of device orientation. The algorithm works in two stages. First, it transforms vector values in local coordinates to those in global coordinates by calibrating device tilting using pitch and roll angles computed from the initial vector values. Second, it additionally transforms vector values from the global coordinate to a reference coordinate when the target coordinate is different from the global coordinate by correcting yaw rotation to align with application-specific reference coordinate systems. We evaluated our algorithm on geomagnetic field-based indoor positioning and bidirectional step detection. For indoor positioning, our vector calibration achieved an 83.6% reduction in mismatches between sampled magnetic vectors and magnetic field map vectors and reduced the LSTM-based positioning error from 31.14 m to 0.66 m. For bidirectional step detection, the proposed algorithm with vector calibration improved step detection accuracy from 67.63% to 99.25% and forward/backward classification from 65.54% to 100% across various device orientations. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

24 pages, 4004 KB  
Article
Assessing the Impact of Solar Spectral Variability on the Performance of Photovoltaic Technologies Across European Climates
by Ivan Bevanda, Petar Marić, Ante Kristić and Tihomir Betti
Energies 2025, 18(14), 3868; https://doi.org/10.3390/en18143868 - 21 Jul 2025
Viewed by 535
Abstract
Precise photovoltaic (PV) performance modeling is essential for optimizing system design, operational monitoring, and reliable power forecasting—yet spectral correction is often overlooked, despite its significant impact on energy yield uncertainty. This study employs the FARMS-NIT model to assess the impact of spectral irradiance [...] Read more.
Precise photovoltaic (PV) performance modeling is essential for optimizing system design, operational monitoring, and reliable power forecasting—yet spectral correction is often overlooked, despite its significant impact on energy yield uncertainty. This study employs the FARMS-NIT model to assess the impact of spectral irradiance on eight PV technologies across 79 European sites, grouped by Köppen–Geiger climate classification. Unlike previous studies limited to clear-sky or single-site analysis, this work integrates satellite-derived spectral data for both all-sky and clear-sky scenarios, enabling hourly, tilt-optimized simulations that reflect real-world operating conditions. Spectral analyses reveal European climates exhibit blue-shifted spectra versus AM1.5 reference, only 2–5% resembling standard conditions. Thin-film technologies demonstrate superior spectral gains under all-sky conditions, though the underlying drivers vary significantly across climatic regions—a distinction that becomes particularly evident in the clear-sky analysis. Crystalline silicon exhibits minimal spectral sensitivity (<1.6% variations), with PERC/PERT providing highest stability. CZTSSe shows latitude-dependent performance with ≤0.7% variation: small gains at high latitudes and losses at low latitudes. Atmospheric parameters were analyzed in detail, revealing that air mass (AM), clearness index (Kt), precipitable water (W), and aerosol optical depth (AOD) play key roles in shaping spectral effects, with different parameters dominating in distinct climate groups. Full article
Show Figures

Figure 1

14 pages, 1515 KB  
Article
Foot-Mediated Ground Loading and the Role of Basic and Passive Balance Point—Towards Detecting Posture Abnormalities
by Jacek Marek Dygut and Monika Weronika Piwowar
Appl. Sci. 2025, 15(13), 7352; https://doi.org/10.3390/app15137352 - 30 Jun 2025
Viewed by 345
Abstract
(1) Background: The paper focuses on foot biomechanics in static situations. The aim was to determine the distribution of the load exerted by the human body on the ground in order to establish reference points on the foot for correct human body posture. [...] Read more.
(1) Background: The paper focuses on foot biomechanics in static situations. The aim was to determine the distribution of the load exerted by the human body on the ground in order to establish reference points on the foot for correct human body posture. (2) Methods: A model was developed to describe the body weight-ground relationship, consisting of a support platform and a part imitating the rest of the human body. Experiments consisted of tilting the general centre of gravity from the maximum forward through midfoot, a passive, neutral position, to the maximum backwards while maintaining balance. The ground load was measured in each position. (3) Results: The loads of the front and rear parts of the support platform and the resultant load force at different degrees of body tilt were calculated. It has been shown that at the maximum inclination of the body to the extreme support point, the entire weight falls on this point. For the neutral position (in the Basic Balance Point), the load on the front and rear parts of the support platform was 26% and 74%, and 40% and 60% for the passive position (in the Passive Balance Point). (4) Conclusions: The distribution of body weight on the ground is determined by the projection of the general centre of gravity on the ground through the feet. The resultant ground reaction force defines both the magnitude and direction of the load exerted on the support platform. Ground reaction forces associated with body weight were assessed at five anatomical points of the foot: the forefoot, rearfoot, midfoot, and the Passive and Basic Balance Point. In an upright standing posture, the projection of the general centre of gravity fluctuates between the Passive and Basic Balance Point, corresponding to the passive and neutral positions, respectively. Only in the neutral position, the body’s weight, as concentrated in the general centre of gravity, falls on the axis of the upper ankle joint and distributes the load between the forefoot and rearfoot. Determining the correct distribution of foot loads may serve in the future to study abnormalities in human body posture Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

21 pages, 3324 KB  
Article
The Influence of Axial-Bearing Position of Active Magnetic Suspension Flywheel Energy Storage System on Vibration Characteristics of Flywheel Rotor
by Lei Wang, Tielei Li and Zhengyi Ren
Actuators 2025, 14(6), 290; https://doi.org/10.3390/act14060290 - 13 Jun 2025
Viewed by 519
Abstract
This study introduces a flywheel rotor support structure for an active magnetic suspension flywheel energy storage system. In this structure, there is an axial offset between the axial-bearing position and the mass-center of the flywheel rotor, which affects the tilting rotation of the [...] Read more.
This study introduces a flywheel rotor support structure for an active magnetic suspension flywheel energy storage system. In this structure, there is an axial offset between the axial-bearing position and the mass-center of the flywheel rotor, which affects the tilting rotation of the flywheel rotor and which causes the coupling between its tilting rotation and radial motion. Therefore, the influence of the bearing position on the vibration characteristics of the flywheel rotor is explored in this paper. The tilting rotation constraint of the flywheel rotor by axial active magnetic bearing (AAMB) is analyzed, and the radial active magnetic bearing (RAMB) is equivalently treated with dynamic stiffness and dynamic damping. Based on this, a dynamic model of the active magnetic suspension rigid flywheel rotor, considering the position parameter of the axial bearing, is established. To quantify the axial offset between the position of the AAMB and the mass-center of the flywheel rotor, the axial-bearing position offset ratio γ is defined. The variation trend of the vibration characteristics of flywheel rotor with γ is discussed, and its correctness is validated through experiments. It is indicated that, with the increase of γ, the second-order positive precession frequency of the flywheel rotor decreases obviously, and the influence of the gyroscope torque gradually weakens. Meanwhile, its second-order critical speed ω2c decreases significantly (when γ is 0.5, ω2c decreases by about 62%); ω2c corresponds to the inclined mode, revealing that the offset ratio γ has a prominent influence on the critical speed under this mode. In addition, as γ increases, the mass unbalance response amplitude of the flywheel rotor under the speed of ω2c decreases significantly. The reasonable design of the axial-bearing position parameter can effectively improve the operational stability of the active magnetic suspension flywheel energy storage system. Full article
(This article belongs to the Special Issue Actuators in Magnetic Levitation Technology and Vibration Control)
Show Figures

Figure 1

19 pages, 4218 KB  
Article
A Multi-Deformable-Mirror 500 Hz Adaptive Optical System for Atmospheric Turbulence Simulation, Real-Time Reconstruction, and Wavefront Correction Using Bimorph and Tip-Tilt Correctors
by Ilya Galaktionov and Vladimir Toporovsky
Photonics 2025, 12(6), 592; https://doi.org/10.3390/photonics12060592 - 9 Jun 2025
Viewed by 1028
Abstract
Atmospheric turbulence introduces distortions to the wavefront of propagating optical radiation. It causes image resolution degradation in astronomical telescopes and significantly reduces the power density of radiation on the target in focusing applications. The impact of turbulence fluctuations on the wavefront can be [...] Read more.
Atmospheric turbulence introduces distortions to the wavefront of propagating optical radiation. It causes image resolution degradation in astronomical telescopes and significantly reduces the power density of radiation on the target in focusing applications. The impact of turbulence fluctuations on the wavefront can be investigated under laboratory conditions using either a fan heater (roughly tuned), a phase plate, or a deformable mirror (finely tuned) as a turbulence-generation device and a wavefront sensor as a wavefront-distortion measurement device. We designed and developed a software simulator and an experimental setup for the reconstruction of atmospheric turbulence-phase fluctuations as well as an adaptive optical system for the compensation of induced aberrations. Both systems use two 60 mm, 92-channel, bimorph deformable mirrors and two tip-tilt correctors. The wavefront is measured using a high-speed Shack–Hartmann wavefront sensor based on an industrial CMOS camera. The system was able to achieve a 500 Hz correction frame rate, and the amplitude of aberrations decreased from 2.6 μm to 0.3 μm during the correction procedure. The use of the tip-tilt corrector allowed a decrease in the focal spot centroid jitter range of 2–3 times from ±26.5 μm and ±24 μm up to ±11.5 μm and ±5.5 μm. Full article
(This article belongs to the Special Issue Optical Sensing Technologies, Devices and Their Data Applications)
Show Figures

Figure 1

21 pages, 4228 KB  
Article
Real-Time TECS Gain Tuning Using Steepest Descent Method for Post-Transition Stability in Unmanned Tilt-Rotor eVTOLs
by Choonghyun Lee, Ngoc Phi Nguyen, Sangjun Bae and Sung Kyung Hong
Drones 2025, 9(6), 414; https://doi.org/10.3390/drones9060414 - 6 Jun 2025
Viewed by 1297
Abstract
Unmanned tilt-rotor electric Vertical Take-Off and Landing (eVTOL) aircraft face significant control challenges during the transition from hover to forward flight, particularly when using open-source autopilot systems that rely on open-loop tilt control and static control gains. After the transition, the Total Energy [...] Read more.
Unmanned tilt-rotor electric Vertical Take-Off and Landing (eVTOL) aircraft face significant control challenges during the transition from hover to forward flight, particularly when using open-source autopilot systems that rely on open-loop tilt control and static control gains. After the transition, the Total Energy Control System (TECS) becomes active in fixed-wing mode, but its default static gains often fail to correct energy imbalances, resulting in substantial altitude loss. This paper presents the Steepest Descent-based Total Energy Control System (SD-TECS), a real-time adaptive TECS framework that dynamically tunes gains using the steepest descent method to enhance post-transition altitude and airspeed regulation in unmanned tilt-rotor eVTOLs. The proposed method integrates gain adaptation directly into the TECS loop, optimizing control actions based on instantaneous flight states such as altitude and energy-rate errors. This enables improved responsiveness to nonlinear dynamics during the critical post-transition phase. Simulation results demonstrate that the SD-TECS approach significantly improves control performance compared to the default PX4 TECS, achieving a 35.5% reduction in the altitude settling time, a 57.3% improvement in the airspeed settling time, and a 66.1% decrease in the integrated altitude error. These improvements highlight the effectiveness of SD-TECS in enhancing the stability and reliability of unmanned tilt-rotor eVTOLs operating under autonomous control. Full article
Show Figures

Figure 1

15 pages, 7516 KB  
Article
Correction of Error Interference Fringes Based on Automatic Spectral Analysis
by Siqian Yang, Xinqiang Wang, Tingli Song, Wei Xiong, Song Ye and Fangyuan Wang
Optics 2025, 6(2), 26; https://doi.org/10.3390/opt6020026 - 6 Jun 2025
Viewed by 820
Abstract
When interferograms in space heterodyne spectrometers exhibit tilted or distorted fringes, significant errors may occur in the demodulated spectral information. To address this issue, we propose a method for interferogram correction based on automatic spectral analysis. Simulations on erroneous interferograms of monochromatic and [...] Read more.
When interferograms in space heterodyne spectrometers exhibit tilted or distorted fringes, significant errors may occur in the demodulated spectral information. To address this issue, we propose a method for interferogram correction based on automatic spectral analysis. Simulations on erroneous interferograms of monochromatic and polychromatic light demonstrate that this method effectively corrects fringe tilts and significantly improves spectral demodulation accuracy. The standard deviations between the corrected spectra and ideal spectra for monochromatic and polychromatic light are 0.016 and 0.019, respectively, compared to 0.104 and 0.127 for uncorrected spectra. Additionally, the method successfully corrects experimental interferograms of potassium and neon lamps, accurately demodulating characteristic peaks of potassium and neon emission lines. It also enables accurate displacement measurement in a Michelson interferometer experiment. This method, through automatic analysis and one-sided spectral correction, efficiently and accurately corrects erroneous interferograms and enhances spectral demodulation accuracy, showing broad application potential. Full article
Show Figures

Figure 1

16 pages, 5358 KB  
Article
Empirical Motion Compensation for Turbulence Intensity Measurement by Floating LiDARs
by Shogo Uchiyama, Teruo Ohsawa, Hiroshi Asou, Mizuki Konagaya, Takeshi Misaki, Ryuzo Araki and Kohei Hamada
Energies 2025, 18(11), 2931; https://doi.org/10.3390/en18112931 - 3 Jun 2025
Cited by 1 | Viewed by 958
Abstract
We propose an empirical motion compensation algorithm for a better turbulence intensity (TI) measurement by Floating LiDAR systems (FLSs) with a newly introduced motion parameter, the significant tilt angle θα,1/3, using four datasets from three different FLSs [...] Read more.
We propose an empirical motion compensation algorithm for a better turbulence intensity (TI) measurement by Floating LiDAR systems (FLSs) with a newly introduced motion parameter, the significant tilt angle θα,1/3, using four datasets from three different FLSs in Japan. The parameter was compared to other environmental parameters; it was confirmed to well represent various types of buoy motion. A sensitivity assessment was conducted for the error of the FLS’s standard deviation of wind speed to the buoy motion. The strong correlation obtained by the assessment suggests that the error of the FLS TI is dominated by the motion and that it is possible to offset the error by applying the relationship back to the measurement. The corrected TI shows good agreement with that of a reference fixed vertical LiDAR (VL). Moreover, the similarity of the relationships for the same type of VL mounted on different buoys implies that the correction may be VL-specific rather than FLS-specific, and, therefore, universal regardless of the FLS type. The successful validation suggests that the correction based on θα,1/3 can be applied not only to the future campaign but also to those performed in the past to revitalize numerous existing FLS datasets. Full article
Show Figures

Figure 1

22 pages, 12454 KB  
Article
Analysis of Filled Soil-Induced Pier Offset and Cracking in a Highway Bridge and Retrofitting Scheme Development: A Case Study
by Xiaowei Tao, Haikuan Liu, Jie Li, Pinde Yu and Junfeng Zhang
Buildings 2025, 15(11), 1929; https://doi.org/10.3390/buildings15111929 - 2 Jun 2025
Cited by 1 | Viewed by 757
Abstract
This study investigates the underlying causes of pier displacement and cracking in a highway link bridge. The initial geological assessment ruled out slope instability as a contributing factor to pier movement. Subsequently, a comprehensive analysis, integrating in situ soil investigation and finite element [...] Read more.
This study investigates the underlying causes of pier displacement and cracking in a highway link bridge. The initial geological assessment ruled out slope instability as a contributing factor to pier movement. Subsequently, a comprehensive analysis, integrating in situ soil investigation and finite element modeling, was conducted to evaluate the influence of additional fill loads on the piers. The findings reveal that the additional filled soil loads were the primary driver of pier tilting and lateral displacement, leading to a significant risk of cracking, particularly in the mid-section of the piers. Following the removal of the filled soil, visual inspection of the piers confirmed the development of circumferential cracks on the columns of Pier 7, with the crack distribution closely aligning with the high-risk zones predicted by the finite element analysis. To address the observed damage and residual displacement, a reinforcement strategy combining column strengthening and alignment correction was proposed and validated through load-bearing capacity calculations. This study not only provides a scientific basis for analyzing the causes of accidents and bridge reinforcement but, more importantly, it provides a systematic method for analyzing the impact of additional filled soil loads on bridge piers, offering guidance for accident analysis and risk assessment in similar engineering projects. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop